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High-resolution assessment of coal mining
methane emissions by satellite in Shanxi, China

Shushi Peng,1,6,7,* Clément Giron,2,6 Gang Liu,1 Alexandre d’Aspremont,2,3 Antoine Benoit,2 Thomas Lauvaux,4

Xin Lin,4 Hugo de Almeida Rodrigues,2 Marielle Saunois,4 and Philippe Ciais4,5

SUMMARY

Accurate assessment of coal mine methane (CMM) emissions is a prerequisite for defining baselines and
assessing the effectiveness of mitigation measures. Such an endeavor is jeopardized, however, by large
uncertainties in current CMM estimates. Here, we assimilated atmospheric methane column concentra-
tions observed by the TROPOMI space borne instrument in a high-resolution regional inversion to esti-
mate CMM emissions in Shanxi, a province representing 15% of the global coal production. The emissions
are estimated to be 8.5 G 0.6 and 8.6 G 0.6 Tg CH4 yr�1 in 2019 and 2020, respectively, close to upper
bound of current bottom-up estimates. Data from more than a thousand of individual mines indicate that
our estimated emission factors increase significantly with coal mining depth at prefecture level, suggest-
ing that ongoing deeperminingwill increase CMMemission intensity. Our results show robustness of esti-
mating CMM emissions utilizing TROPOMI images and highlight potential of monitoring methane leak-
ages and emissions from satellites.

INTRODUCTION

China is the world’s largest anthropogenic methane (CH4) emitter since the 2000s.1,2 Coal mining is the largest contributor, accounting for

40%–45% of China’s anthropogenic CH4 emissions and �5% of global anthropogenic emissions.3–5 During the 2000s, CH4 emissions from

coal mining in China increased by 12 TgCH4 yr
�1 ([6–18] TgCH4 yr

�1, 95% confidence interval; ref.4), contributing 85% and 32% to the increase

of China’s and global anthropogenic CH4 emissions, respectively.2–4 Tomitigate climate change, it is urgent for China to curb CH4 emissions,

especially in the coal industry. This requires a solid knowledge of current emissions, including the spatial details (e.g., distribution) about the

most emitting areas or sites, in order to target the most effective measures and prioritize mitigation actions.6

Both bottom-up and top-down approaches give evidence for an increase in CH4 emissions from coal mining in China during the

2000s.3,4,7,8 Yet, they disagree in the magnitude of the trend,2,8–10 ranging from 0.7 to 1.4 Tg CH4 yr
�2. Furthermore, more recent bottom-

up inventory data show a stabilization of coal methane emissions in the 2010s, mainly due to a stabilized coal production.2,4 In contrast, recent

top-down estimates suggested either a significant increase in those emissions after 2010 (0.9–1.1 TgCH4 yr
�2; ref.11,12) or a small increase (0.1–

0.3 Tg CH4 yr
�2; ref.13,14). Differences among inversions could be due to the use of different prior emissions, sparse atmospheric CH4 con-

centrations measurements from surface stations, and previous satellites with coarse resolution (e.g., GOSAT), making it difficult to constrain

emission hotspots from coal mines.4 Overall, current top-down inversion estimates of the magnitude and trend in coal methane emissions in

China are not consistent enough with each other to evaluate or improve bottom-up inventories.

The Sentinel-5P/TROPOMI (TROPOspheric Monitoring Instrument) mission, launched in 2017, collects daily images of the CH4 column

mole fractions (XCH4) at high spatial resolution (5 km3 7 km) since 2018. The TROPOMI images have been used to detect and quantify large

point sources in the oil and gas production sector, including ultra-emitters,15–17 and regional extraction basins.18 Coal mine emissions from

Australia have been recently examined using TROPOMI.19 Here, we focus on coal mining emissions from China, the largest coal producer of

the world, and more specifically from the Shanxi Province. Shanxi represents about 15% of the global coal production, with more than

239 mines producing more than 0.5 million tons of coal annually (Figure 1). We assembled a detailed inventory data for 1,012 coal mines

in the Shanxi, including mining depth, coal production and quality types, reported CH4 ventilation/leak rates, recovery etc (see STAR

Methods). The Shanxi province is suitable for TROPOMI’s monitoring capabilities to assess coal methane emissions using high-resolution
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regional inversions. We intend here to support the improvement of bottom-up inventories by not only assessing provincial total emissions,

but also by identifying groups of mines with the highest emission rates.

We assimilated the TROPOMI methane column mixing ratio bias corrected level 2 products in a high-resolution regional inversion to es-

timate CH4 emissions from coal production in the Shanxi province. The inversion assumes a prior map of emissions based on an annual (thus

flat monthly) bottom-up inventory, with many mines but a uniform emission factor (see STAR Methods; PKU-CH4 v2; ref.
4). The XCH4 plumes

generated by grid cells (0.1 � 3 0.1 �) containing at least one coal mine are simulated by the Hybrid Single-Particle Lagrangian Integrated

Trajectory model20 (HYSPLIT). The nested version of HYSPLIT is similar to that used in previous regional inversion of TROPOMI observations16

and the posterior map of emissions is obtained from the Bayesian inference of maximum a posteriori estimates for the prior emission esti-

mates. In other words, the posterior emission rates are optimized byminimizing the distance between themodeled and TROPOMI-observed

XCH4 enhancements within images for each satellite overpass (see STAR Methods). We perform an ensemble of sensitivity tests with inver-

sions to assess the uncertainty of posterior emissions, from TROPOMI XCH4 measurement errors, background estimation method, meteo-

rological data, and other key parameters of the inversion (see STAR Methods). To evaluate the impact of the prior emissions choice on pos-

terior emissions, we also perform an inversion with no prior knowledge (see STAR Methods). Then we compare bottom-up inventories

including EDGAR v6.0, Global Fuel Exploitation Inventory (GFEI v2) and PKU-CH4 v2, with our independent top-down estimate derived

from TROPOMI-based inversions. We further hypothesize that the CH4 emission factor of coal mining (EFcoal) should be related to the depth

of mining and the quality of coal that relates to different methane concentration in coal seams.21–23 Taking advantage of the fact that our

inversion has a very high resolution and can distinguish between different groups of mines, we finally examine the relationships between

the EFcoal calculated from the inversion, and mining depth/coal types. This analysis provides direct insights to evaluate the bottom-up inven-

tories emission factors.

RESULTS AND DISCUSSION

CH4 emissions estimated by TROPOMI

Methane emissions from large coal mines or clusters of mines produce plumes of high XCH4, which can be detected by TROPOMI (Figure 2A).

Each large XCH4 enhancement in the Shanxi Province is found to be associated with an ultra-emitter or a cluster of high-emitters, systemat-

ically assessed from 112 images of TROPOMI from 2019 to 2020, selecting only imageswithmore than 30%of valid pixels (see STARMethods).

As expected, the averaged XCH4 enhancement map during 2019–2020 reconstructed using the optimized posterior emissions shows better

agreement with the observed one (Pearson correlation and significance by t test in this study; r = 0.84, p < 0.001) compared to the one based

on the prior emissions (r = 0.42, p < 0.001) from the bottom-up inventory of PKU-CH4 v2 (Figures 2A–2C). Figure 2D shows that the (spatial)

correlation coefficients between observed XCH4 enhancements from TROPOMI images and those reconstructed from posterior emissions

are higher than those modeled from prior emissions, with a mean correlation coefficient of 0.71 for posterior emissions compared to 0.31

for prior emissions across the 112 images. Moreover, the posterior emissions capture 77% of themagnitude of observed XCH4 enhancements

from the 112 TROPOMI images on average, much higher than the 51% explained by the prior emissions. In order to test the sensitivity of our

inversions to meteorological data, parameters and background concentration choices for our inversions, we performed an ensemble of in-

versions for these uncertainties (see STAR Methods). As a result, we found that the TROPOMI images can well constrain the methane emis-

sions from coal mines in Shanxi with an uncertainty less than 10% (Figures 1 and 2).

Even with an agnostic flat monthly prior, our inversion estimates based on TROPOMI (INVTROPOMI) produce a seasonal variation ofmonthly

coal production in 2019 and 2020 (r = 0.54, p = 0.015; Figure 3A). Interestingly, INVTROPOMI detect also a drop and rise of emissions that cor-

responds with the Spring Festival of 2019, and a drop of 0.1 Tg CH4 month�1 (14%) reflecting the impact of the COVID-19 outbreak on coal

Figure 1. Distribution of coal production in China

Map of the coal production at province level in 2019 over China (A) and distribution of gridded coal mines with annual production larger than 0.6 million tons

year�1 with a spatial resolution of 0.1 � 3 0.1 � in the Shanxi Province.

(B) The coal production at each 0.1 � 3 0.1 � grid cell represents the sum of production of all coal mines located at the grid cell. Note that the distribution of coal

mines in the Shanxi Province in (B) is from the ground survey dataset conducted in 2011, but is scaled by the ratio of total coal production between 2011 and 2019

in the Shanxi Province.
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production, which decreased by more than 5% in February 2020. A subsequent recovery of production capacity in the next twomonths is also

apparent in Figure 3A. Note that the reduction of INVTROPOMI (4% between the first three months of 2020 compared to December 2019) is

smaller than that in coal production (�20%) during the COVID regulation period, which may result from uncertainties at monthly scales

from both coal production of statistical bureau and INVTROPOMI. Overall, the seasonal variation of monthly INVTROPOMI could be captured

roughly, although there are relatively large uncertainties of INVTROPOMI in some months. Coal mining in Shanxi emitted 8.5G 0.6 (G1-sigma

confidence interval) Tg CH4 yr
�1 in 2019 from INVTROPOMI results and 8.6 G 0.6 Tg CH4 yr

�1 in 2020, respectively (Figure 3B). The total emis-

sions from INVTROPOMI are higher than those from PKU-CH4 v2 (5.8 G 0.5 Tg CH4 yr
�1) and GFEI v2 (7.3 G 2.0 Tg CH4 year

�1), but similar to

EDGAR v6.0 (8.8 Tg CH4 yr
�1).

Regarding the spatial distribution of emissions inferred by INVTROPOMI within Shanxi, hotspots are detected in most grids that contain

high coal production mines (Figures 1 and 3). However, INVTROPOMI retrieves additional emission hotspots that were missing in our priori

emission map (e.g., high-emissions grids in the southwest; Figure 3). In contrast to the agnostic inversion with no prior, the spatial distribu-

tion of emissions from coal mines in EDGAR v6.0, GFEI v2, and PKU-CH4 v2 depends on activity data such as mine locations and production

and emission factors. The three bottom-up inventories have different spatial patterns, but they all miss the high-emission hotpots found by

Figure 2. Spatial patterns of XCH4 enhancement from TROPOMI, reconstructed XCH4 using prior and posterior emissions, with a spatial resolution of

0.1 � 3 0.1 �

(A) averaged XCH4 enhancement from 112 images of TROPOMI in 2019 and 2020; (B and C) reconstructed XCH4 enhancement using prior and posterior

emissions corresponding to the 112 images from TROPOMI.

(D) Frequency distribution of correlation coefficients between TROPOMI observations and prior (yellow) and posterior (blue) XCH4 enhancement on an image-by-

image basis.

(E) Frequency distribution of percentage of XCH4 reconstructed by prior (green) and posterior (purple) estimates.
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the inversion in the southwest, representing 10% of total emissions (Figures 3D–3F). We found that EDGAR v6.0, GFEI v2, and PKU-CH4 v2

used an outdated coal production map from around 2011 to spatialize the total province-level emissions (from the product of an uniform

emission factor and total coal production at province level) into each grid cell of their emission maps.2,24,25 Some coal mines closed while

new coal mines have opened since 2011,26 which could explain the bias in the spatial distribution of CH4 emissions from coal mines in the

bottom-up inventories, compared to INVTROPOMI. The INVTROPOMI-optimized CH4 emission map thus gives insights on local hotspots and

how their emissions change at monthly or sub-monthly scale, although 4 out of 24 months are not covered by the inversion due to none or

only one image available (see Figure S1), which should further be solved by future satellite missions.16 This method can help improving not

only the total emission of the basin, but also the spatial distribution map of coal emissions, and provides timely, updated estimates to eval-

uate bottom-up inventories.

CH4 emission factor increases with mining depth

Combining INVTROPOMI estimate emissions at 0.1 � 3 0.1 � with coal production data available at prefecture level in 2019 and 2020, we

deduced an inversion-based average emission factor of coal methane emission (EFcoal) for each of the ten prefectures of Shanxi (see

STAR Methods; Figure 4). This inversion-based EFcoal varies by more than one order of magnitude between prefectures, from 0.9 m3 t�1

Figure 3. CH4 emissions from coal mining in Shanxi

(A) Monthly CH4 emissions from coal mining from January of 2019 to December of 2020 (green bars) and coal production (red line). The total annual coal mining

emissions of Shanxi province estimated from inversion by TROPOMI (INVTROPOMI) and three bottom-up inventories in 2019 (PKU-CH4 v2, EDGAR v6.0 and GFEI)

are summarized in (B). The error bars show standard deviation of the inversion ensemble from INVTROPOMI. Note that the data of INVTROPOMI in Jun 2019, Jun 2020,

Jul 2020, and Dec 2020 are missing because valid images are not enough for these months (<2) for the inversion. EDGAR v6.0 only provides the annual emission

until 2018, so we scaled the coal mine emissions in 2019 by the ratio of coal production between 2019 and 2018.

(C–F) show the spatial pattern of CH4 emissions from INVTROPOMI and bottom-up inventories (PKU-CH4 v2, EDGAR v6.0 and GFEI) for Shanxi in 2019.
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in Shuozhou to 16.9 m3 t�1 in Yangquan. Across the ten prefectures, this EFcoal shows marginally significant correlation with that from the

ground inventory (r = 0.60, p = 0.067; see Figure S2). That inventory was conducted in 2011 and estimated potential fugitive emissions

from underground mining without taking account of coal methane utilization that already has been adopted in Shanxi (the INVTROPOMI as-

sesses actual coal methane emissions including their fractional reduction from methane utilization/recovery), which explains the smaller

EFcoal in INVTROPOMI (see Figure S2). In addition, China’s energy reforms in the past decade led to the reorganization and closure of some

Shanxi coal mines with large emission and/or low methane utilization rates.27 The large variation of EFcoal between prefectures highlights

again that the use of the same EFcoal for all types of mines in a region, as done in bottom-up inventories (e.g., EDGAR v6.0, PKU-CH4 v2),

could lead to strong biases in the distribution of coal CH4 emissions.

The large spatial variations in EFcoal found between prefectures are expected to be related to coal rank and mining depth.21 For example,

in the northern Shanxi where the coal seams in Datong, Shuozhou, and Xinzhou are shallow, and mostly weakly caking coal and gas coal with

low metamorphic degree, we found low EFcoal values (Figure 4A). On the contrary, in Yangquan where the coal is mainly deep anthracite, we

found the highest EFcoal. As the degree of metamorphism of anthracite increases, methane in the interstices of coal seams could decrease,

which may explain the lower EFcoal in Shuozhou (mainly gas coal) than in Yangquan (mainly anthracite).

The gas pressure of coal seam increases with depth, and so does the volume of methane contained in coal. Thus, depth-specific EFcoal was

suggested by the Intergovernmental Panel on Climate Changemethodology,28,29 with default EFcoal of 10 m
3 t�1, 18 m3 t�1, and 25 m3 t�1 for

mines with depth less than 200 m, 200–400 m, and deeper than 400 m, respectively. Among different coal ranks (coalification), a higher rank

coal generally has a higher methane content,23 and thus accounts for a steeper increase in EFcoal with depth.21,22 Almost 99% of the coal is

produced from underground mines in Shanxi. Mining depth shows large spatial variations from less than 100 m to more than 700 m (see Fig-

ure S3), leading to large spatial variations in EFcoal. We thus regressed the EFcoal derived from INVTROPOMI against the average mining depth

(from the year 2011) for each prefecture and found a high correlation (r = 0.88, p = 0.005) when excluding Changzhi and Jinzhong prefectures

which are outliers (Figure 4B). The EFcoal in these two prefectures could be explained by substantial subsidence of coal seams in Jinzhong and

Changzhi in the tectogenesis after the Carboniferous-Permian when coal was formed30,31 (e.g., depth of 600 m coal seam in Jinzhong similar

as �400 m coal seam in Changzhi or Linfen). The relationship shown in Figure 4B suggests that EFcoal in these eight prefectures of Shanxi

increases by 9.0 m3 t�1 for a 100 m increase in the mining depth. A similar empirical function between coal mining depth and EFcoal was

included in the inventory of 2011 across the eight prefectures22 (r = 0.67, p = 0.07; see Figure S4). However, at the coal mine scale, this relation-

ship could beweakened by the variability of coal ranks in different coalmines (see Figure S4). Note that the positive correlation between EFcoal
andmining depth at prefecture level is derived with limited samples (n = 8), and this relationship also depends on the coal ranks and recovery

or utilization of coalminemethane.21–23 Thus, this relationship cannot be applicable in other regions unless regions have similar coal ranks and

utilization of coal mine methane as Shanxi.

Figure 4. The relationship between emission factor (EF) of coal mining with depth of mining and the quality of coal

(A) The composition of the coal production by coal types for each prefecture in Shanxi.

(B) The relationship between averagemaximummining depth and the emission factor (EF) of coalmethane emissions derived fromTROPOMI top-down inversion

(INVTROPOMI) in Shanxi at prefecture level. Note that the color of dots in (B) corresponds to the background color in (A), with the blue denoting Jinzhong and

Changzhi, the two prefectures having deeper coal seams due to crustal subsidence in three tectogenesis after coal formation in the Carboniferous-Permian.30,31
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Uncertainties and limitations of the study

To analyze the uncertainty of our posterior emissions, we performed an ensemble of tests adding perturbations to the parameter values and

input data (see STARMethods).We found that the relative standard deviation of posterior emissions due to errors in XCH4 retrievals (1.4%), the

uncertain releasedurationasdefinedby the travel timebetweensource locations andobservedXCH4enhancements (15%), and theuncertainty

of atmospheric transport (12%) are all relatively small compared to the standarddeviationdue to theuncertainty in backgroundXCH4 estimates

(38%, seeFigure S5). This suggests that the choiceof backgroundXCH4 for calculating theXCH4 enhancement is themost importantparameter

to accurately estimate CH4 emissions. To test whether prior emission input affects the posterior emissions, we ran inversions without any prior

knowledge (zeroemission for eachgrid inShanxi) anduseda ridge regression to regularize the inverseproblem (seeSTARMethods). This sensi-

tivity test gave similar total emissions as the Bayesian inversionwith prior estimates fromPKU-CH4 v2, but with lower emissions in the north and

higher emissions in themiddle of Shanxi (see Figures S6 and S7). On average, there are two to six images permonth (somemonths have 11–12

images) from TROPOMI fulfilling our quality filter with >30% of valid pixels (see Figure S1), but for somemonths no image was available (e.g.,

June in 2019, June and July in 2020). Future satellitemissions (e.g.,MethaneSAT32) complementarywith TROPOMIwould help better constrain

the seasonal variations in emissions shown in Figure 3A. In addition, coal mines field campaigns for coal mine methane emissions during the

days when high-resolution XCH4 images from satellites are available can further be used to evaluate top-down inversions in the future.

Conclusions

Overall, we show that successive TROPOMI images of XCH4 can constrain monthly CH4 emissions from coal mining in Shanxi well, with annual

emission estimates of 8.5G 0.6 Tg CH4 yr
�1 and 8.6G 0.6 Tg CH4 yr

�1 in 2019 and 2020, respectively. The top-down inversion with TROPOMI

XCH4 suggests that the use of a weighted average emission factor from the ground inventory dataset established in 2011 underestimates CH4

emissions from coal mining.4,25 We further find that deeper mining entails larger emission factors, as shown across the prefectures in Shanxi,

suggesting thatemission factorsare likely to increase ifminingdeepens in the future. In addition,province-level emission factorused inbottom-

up inventories may smooth the spatial variation of emissions due to the variation of mining depth and coal types across the mines. As the

TROPOMI-based inversionused inour study cancapture seasonal variationof coalminingactivity (especially thedrop in emissions correspond-

ing to the coal production decrease in February, 2020 after the outbreak of COVID-19), a near real-time emission map can be updated on a

regular basis. Such a tool could helpmonitoring and verification of emissions aswell as supportingmitigation toward climate neutrality targets.
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RESOURCE AVAILABILITY

Lead contact

Further information and requests can directed to Dr. Shushi Peng (speng@pku.edu.cn).

Materials availability

This study did not generate new physical materials.

Data and code availability

� All data used in this study is publicly available: TROPOMI data (S5P L2 CH4 OFFLINE) are available from the Copernicus Open Access

Hub (https://scihub.copernicus.eu/). The meteorological reanalysis data used for the forward HYSPLIT simulations are available from

the Global Forecast System (GFS), Environmental Modeling Center, National Centers for Environmental Prediction (National Weather

Service, NOAA, U.S. Department of Commerce, NCEI DSI 6182, gov.noaa.ncdc:C00634); and from the Global Data Assimilation Sys-

tem (GDAS), Environmental Modeling Center, National Centers for Environmental Prediction (National Weather Service, NOAA, U.S.

Department of Commerce, NCEI DSI 6172, gov.noaa.ncdc:C00379). PKU-CH4 v2 is available at https://figshare.com/s/

b38a368111749f1412be. EDGAR v6.0 is available at https://edgar.jrc.ec.europa.eu/. GFEI v2 is available at https://doi.org/10.7910/

DVN/HH4EUM.
� The inversion method presented in this article is constructed using the HYSPLIT model (v4.2.0; 2019), which was developed by the Air

Resources Laboratory at NOAA and is available from www.arl.noaa.gov/hysplit/. The code of inversion could be available on request

from Dr. Clément Giron (Email: c.giron@kayrros.com).
� Any additional information required to reanalyze the data reported in this article is available from the lead contact on request.

METHOD DETAILS

Satellite-based XCH4 retrievals from TROPOMI

We collected bias-corrected methane column mixing ratios derived from the spaceborne instrument TROPOMI on board of the Sentinel 5P

satellite (ESA products of S5P L2 CH4 OFFLINE33). TROPOMI is an imaging spectrometer, orbiting the earth in near-polar, sun-synchronous

trajectories with a mean local solar time ascending node at 13:30. TROPOMI’s swath is approximately 2600 km wide, achieving near-global

coverage on a daily basis. Our study relies on TROPOMImeasurements from January 2019 to December 2020, with images collected over the

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

High resolution bottom-up inventory of

methane emissions in China

This paper https://figshare.com/s/

b38a368111749f1412be

TROPOMI data Copernicus Open Access Hub https://scihub.copernicus.eu/

The meteorological reanalysis data used

for the forward HYSPLIT simulations

Global Forecast System (GFS), Environmental Modeling Center,

National Centers for Environmental Prediction (National Weather

Service, NOAA, U.S. Department of Commerce, NCEI DSI 6182,

gov.noaa.ncdc:C00634); and from the Global Data Assimilation

System (GDAS), Environmental Modeling Center, National

Centers for Environmental Prediction (National Weather Service,

NOAA, U.S. Department of Commerce, NCEI DSI 6172,

gov.noaa.ncdc:C00379).

https://www.ncei.noaa.gov/products/

weather-climate-models/global-forecast

https://www.emc.ncep.noaa.gov/emc_

new.php

https://www.ncei.noaa.gov/products/

weather-climate-models/global-data-

assimilation

CH4 emissions from coal mine EDGAR v6.0 https://edgar.jrc.ec.europa.eu

CH4 emissions from coal mine GFEI v2 https://doi.org/10.7910/DVN/HH4EUM.

Software and algorithms

The HYSPLIT model Air Resources Laboratory, NOAA www.arl.noaa.gov/hysplit/

MATLAB R2022a Commercially Available Software (Mathworks) N/A
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Shanxi Province shape, and re-projected on a 0.1�30.1� regular grid using the GDAL library.34 As cloud cover, high solar zenith angle, high

viewing zenith angle, large terrain roughness or small surface albedo etc. induce substantial bias in XCH4 retrievals,
33 we only used pixels with

a quality assurance value (qa_value = 1). TROPOMI images were filtered to keep only those with more than 30% of valid pixels (qa_value =1).

With this filter, 58 and 54 images were selected per year in 2019 and 2020 respectively. Uneven albedo and aerosol optical thickness are

amongst the parameters influencing the quality and accuracy of TROPOMI XCH4 retrievals. Although the data product we used in this study

includes a correction based on surface albedo in the SWIR domain,35 we also assessed the reliability of TROPOMI XCH4 retrievals by evalu-

ating its correlation with surface shortwave infrared albedo (Albedo) and aerosols optical thickness (AOD; see Figure S8). When using only

high-quality pixels (qa_value = 1), R2 scores of linear regressions between bias-corrected XCH4 and Albedo (R2=0.010) and AOD

(R2=0.006) are quite low, hence significant bias of XCH4 from albedo or aerosols can be dismissed. When including medium-quality pixels

(qa_value R 0.4), the R2 scores are estimated respectively at 0.007 and 0.130 for albedo and AOD, confirming that the albedo and aerosols

has limited impact on XCH4 retrievals in our region of interest.

Bottom-up inventories for coal CH4 emissions

Three bottom-up inventories for annual methane emissions from coal mining in the Shanxi province were used in this study: PKU-CH4 v2,

EDGAR v6.0 and GFEI v2. PKU-CH4 v2 was updated up to 2020 using annual coal production in 2020 from the latest Statistic Yearbook,

following the bottom-up methodology in ref.4. The annual maps from PKU-CH4 v2 were used as prior for our top-down inversion. For the

EDGAR v6.0, we used the monthly gridded emissions of China in 2018, and then calculated the total emission as the sum of all grids in Shanxi

province.We then scaled the emissions in 2018 from EDGAR v6.0 into emissions in 2019 by using the ratio of coal production of Shanxi in 2019

and 2018. This estimate is referred as EDGAR v6.0. The inventory of GFEI v2 gives the annual emissions that incorporate national reports of

China to the United Nations Framework Convention on Climate Change (UNFCCC) and allocates the total national emissions into infrastruc-

ture locations from ref.25 with a 0.1�30.1� spatial resolution.24 We used annual emissions of 2019 from GFEI v2 here, updated with IPCC

emission factors and yearly activity data from US Energy Information Administration.24,36 To validate seasonal variation of top-down monthly

emissions, the monthly coal production of Shanxi province and yearly coal production in prefecture level were collected from Shanxi Statistic

Yearbook.37

Ground inventory from 1012 coal mines in 2011

We collected the information of coal mines in Shanxi province publicly available in the ground inventory of the National Coal Mine Methane

Level Identification for 2011, by the State Administration of Coal Mine Safety.38 The coal production in Shanxi province increased by �60%

from 2011 to 2020. Emission factors from this inventory have been applied to estimate CH4 emissions from coal mining in refs.24,25. We

collected data from 1012 coal mines, more than 95% coal mines in Shanxi province, including annual coal production (537 coal mines), mining

depth (984 coal mines) and emission factors (727 coal mines) reported in the ground inventory of 2011. The location of these coal mines were

derived from Baidu Map Platform (http://api.map.baidu.com/lbsapi/getpoint/index.html). Note that 84 out of the 1012 coal mines are

excluded in our analysis, as these 84 coal mines have been closed since 2016 because of a supply-side structural reform of the coal industry

by eliminating low efficiency coal production.27

According to the ground inventory and the locations of coal mines, we aggregate the production and average the mining depth, extrac-

tion rate and emission factors weightedby the coal production into 0.1�30.1� grid scale in 2011. For themap of coal production in 2019 (2020),

we scaled themap of 2011 by the ratio of total province-level production in 2019 (2020) and in 2011. Themain types of coal for each prefecture

in Shanxi were collected from the dataset in ref.39. To compare the EFcoal derived from INVTROPOMI in 2019, we adjusted the EFcoal derived

from ground inventory in 2011 by the composition of coal production mined from low gas mines, high gas mines and outburst gas mines in

each prefecture between 2019 and 2011 in Figure S2.

TROPOMI-based top-down inversion

Model

The estimates are produced using a classical Bayesian regression framework.40,41 Specifically, we solve the following quadratic programming

problem for each useable TROPOMI XCH4 image

minx JðxÞ = ðy � KxÞTSO
� 1ðy � KxÞ+ lðx � xPÞTSp

� 1ðx � xPÞ
s:t: xR 0

where y is themethane columnmixing ratio enhancement (i.e. methane columnmixing ratio bias corrected image subtracted from itsmedian

value and with negative values clipped to 0); K is the methane dispersion footprints produced using the Hybrid Single-Particle Lagrangian

Integrated Trajectory model20 (HYSPLIT); xP is the prior emission rates vector (all 0.1�30.1� regular grid cells); SO is the covariance matrix

for observational error; Sp is the covariance matrix for prior error.40,42

If we omit the non-negativity constraint xR 0, this quadratic program can be solved in closed form by

x = xP + l� 1SPK
T
�
l� 1KSPK

T+SO

�� 1ðy � KxPÞ
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and a condition number of this problem can be computed to assess the stability and robustness of the solution. This condition number is

defined as kðlÞ = smaxð~SlÞ
sminð~SlÞ

with smax (resp. smin) denoting the highest (resp. smallest) singular value of ~Sl = ðKTSO
� 1K+lSP

� 1Þ� 1. We add

the non-negativity constraint for x and solve the quadratic program numerically. This constraint regularizes the solution and limits overfit.

l is used to scale the relative weights of the TROPOMI XCH4 image and prior terms. It should ideally be equal to 0 or very small. Yet for several

dates, the quadratic program is ill-conditioned due to the sparsity of the TROPOMI XCH4 image and near-colinearity of some HYSPLIT foot-

prints (kðlÞ[ 0). We ensure that the estimates for each date are produced by a well-conditioned minimization program by incrementing l˛
½10� 2; 102� on a log10 scale up to the smallest value such that kðlÞ < t. We set t = 103 based on the criterions as explained in detail below.

The quadratic program solved at each date to estimate emission rates from grid cells is composed of one term controlling the fit of esti-

mated emissions with TROPOMI observations, and one term forcing the solution to be close to some prior knowledge on the basin emitters.

The second term is regularizing the inversion, and its weight should be kept as small as possible when TROPOMI retrievals are complete and

reliable enough, and the HYSPLIT simulations matrix has a high rank. Hence, we use the minimum l parameter that keeps the quadratic pro-

gramwell-conditioned. By construction, the condition number of the inversion should converge to that of Sp when l increases (see Figure S9).

We scale the system so that the condition number of Sp is 10. In our results, we pick themaximum acceptable condition number t = 103 which

controls inversion error while ensuring that the corresponding regularizing coefficients l have the following properties:

- Percentage of methane reconstructed. The proportion of methane reconstructed is steady (roughly 0.8) for small fixed values for l, and

decreases when l s 1 (see Figure S10 middle panel). We pick the threshold so that the l values correspond to the ‘‘elbow’’ of the bar

chart in Figure S10 (middle), between 0:1 and 1, to regularize the system while avoiding over-penalization. Similarly, our condition

number criterion yields more than 97% of l values in f10� 2;10� 1;1g, and the corresponding proportion of methane reconstructed is

0.76 (Figure S10 middle panel).

- Distribution of l values. l values determined by the condition number criterion should mostly be smaller or equal to 1, as we want

TROPOMI data to havemore weight in the final output than the prior database. This distribution is shown on the top panel of Figure S10.

- Degrees of freedom for signal (DOFS). By construction, high l values heavily reduce the degrees of freedom of the system by constrain-

ing the solution to be very close to the prior. Our condition number criterion preserves significant DOFS as in ref.40, mostly in range

[20-125] (see Figure S10 bottom panel).

Observational and prior error covariance matrices

SO is computed using the relative residual error method.42 In particular, we split our work domain into a 2�32� grid and compute the standard

deviation matrix of the residual error in the bias corrected subtraction of observed methane concentrations by simulated concentrations

(derived from HYSPLIT simulations and prior PKU-CH4 v2 emission rates). SO is defined as the normalized, relative standard deviation matrix

and, by construction, it accounts for both the sensor error and the model error. SP is defined as the absolute error between the gridded in-

ventories PKU-CH4 v2 and EDGAR v6.0, re-projected on the same 0.1�30.1� regular grid as the images. Both SO and SP are normalized so

that their relative weight in the objective function J is fully controlled by the parameter l. In addition, very small diagonal values of SP are

set at 1=10 of its maximal value (i.e. 0.1 after minmax normalization) to avoid ill-conditioning that would occur when EDGAR v6.0 and

PKU-CH4 v2 have very similar values. In more than 97% of the daily inversions, the condition number criterion yields l ˛ f10� 2;10� 1;1g, hence
giving to the observational term a greater of equal weight with respect to the prior penalization term.

HYSPLIT simulations

Each grid pixel with a positive methane emissions value in the PKU-CH4 v2 inventory is considered as a potential source from which we simu-

late methane plumes using the Lagrangian particle dispersion model HYSPLIT. These simulations are executed in concentration, forward

mode on a 0.01�30.01� grid and re-projected on the priors and images 0.1�30.1� grid. HYSPLIT parameters are mostly similar to those

used in ref.16. Particles are released continuously at constant rate (10000 particles per hour) from a grid cell; each particle represents a fixed

amount of methane spreading horizontally as a gaussian puff with respect to themeteorological fields. The Planetary Boundary Layer in which

the particles diffuse vertically is derived from the meteorological data. The release altitude is set at 10 meters, consistent with the fact that

methane is mainly emitted from coal mines through Ventilation Air Methane (VAM) devices located close to the ground level. Following

the analysis of ref.16 on the negligible impact of the parameters defining the mixed layer height model and vertical mixing strength, we

keep these parameters at default value. These fields come from the Global Data Assimilation System (GDAS) meteorological data produced

by the National Centers for Environmental Prediction (NCEP) at 1-degree spatial resolution and sampled hourly; they are downloaded from

the NOAA FTP server. For sensitivity analysis purposes, we also rely on data from the Global Forecast System (GFS), also produced by NCEP

at 0.25�30.25� spatial and hourly temporal resolutions available on the same NOAA FTP server.

Release is set to start 10 hours before TROPOMI overpass time, assuming that the simulated plumes have reached a steady state at sensing

time. This hypothesis is discussed and supported in next section. HYSPLIT plumes thereby obtained are normalised to produce footprints

which play the same role as the Jacobian matrix derived from GEOS-FP data in refs.40,41

Uncertainty and sensitivity analysis

Sources of uncertainty for the Shanxi methane emissions estimates include the TROPOMI sensor error, uncertainty in the background esti-

mation method, in the meteorological data used as input for HYSPLIT simulations, and in the HYSPLIT parameters. To account for the
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modelling uncertainty, we perform an ensemble of inversion with perturbations of the parameters and input data. Notably, we evaluate the

standard deviation of the methane emission estimates with respect to variations in meteorological data, simulation duration and methane

background estimation process, respectively denoted sw , sd , sb. The sensitivity of meteorological data sw is performing the inversion using

two different meteorological data sources, namely GFS 0.25 degree, GDAS 1 degree. The uncertainty induced by the choice of the param-

eters in the transport model, sd , mainly stems for the release duration parameter td used for simulating methane plumes (which are further

normalized to produce the K matrix). We perform simulations for td˛ f6;8;10;12;14g. The methane background concentration contributes

significantly to the uncertainty on the methane emissions. We compute the standard deviation of the emission estimates when the back-

ground is either the first, second, third quartile of each image. We also use a setting where the background value is the TROPOMI image

median and where all pixels below median + std are set to 0 (i.e. small enhancements are considered as noisy values and are not taken

into account). The standard deviation of this ensemble is denoted sb. We also propagate the TROPOMI error, as provided by the precision

data product,43 to derive the sensor measurement error sm. Figure S5 shows the marginal sensitivity distributions (sm, sb, sd and sw on an

image-per-image basis) and highlights the strong impact of the background computation method on the emission estimates (mean relative

standard deviation is 38%), which influences the output much more than the meteorological data choice and the release duration. The

TROPOMI measurement error has a negligible effect on the emission estimates.

We also account for the absence of valid readings for some days (namely sampling uncertainty ss) by using a poll setting and deriving ss

from the unbiased Horvitz-Thompson confidence bounds.44 For a given period of time, each processed image produces a methane emission

flux rate that is observed and each date without image produces a non-observed flux rate. Considering a poll plan with equal probabilities, we

derive the sampling uncertainty ss as the Horvitz-Thompson estimator for one-sigma confidence bounds in such a poll plan. The computation

of ss with the Horvitz-Thompson estimator assumes independence of the observations, which is presumably fallacious for our use case, but

undoubtedly useful to account for sampling-induced uncertainty.

Assuming independence of the uncertainty sources, we finally apply the law of propagation of uncertainty to evaluate the total uncertainty

s =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sw+sd+sb+sm+ss

p
: This yields one-sigma sensitivity intervals, centered on themean ensemble estimates, at [7.9 - 9.1]Mt CH4 yr

-1 and [8.0

- 9.2] Mt CH4 yr
-1 .

Alternatively, sensitivity intervals can be produced by simply computing the mean yearly estimates with respect to all the parameter sets

previously described. We added to this ensemble the estimates produced by the ridge regression setting (see next section). This yields an

ensemble of 12 estimates, whose distribution is represented by a box plot at Figure S11. From the lower and upper fences (corresponding to

the 10%-90% percentile), we derive an interval at [7.1-10.5] Mt CH4 yr
-1. It is noteworthy that both intervals do not account for the same quan-

tities (resp. one sigma and 80% sensitivity bounds), hence their amplitudediscrepancy. In addition, the latter does not properly account for the

sensor error and the sampling uncertainty, but is better at catching the temporal dependence of the various scenario.

The condition numbers and the degrees of freedom for signal (DOFS; defined as traceðI � ~SlSp
� 1Þ where I is the identity matrix) of the

quadratic programs solved in the inversions are qualitative indicators for the sensitivity of the results produced. These are discussed in the

‘‘Validation’’ section.

Inversion with no prior knowledge on methane emission source rates

Prior knowledge on methane emission sources is required to apply the full inversion methodology presented in this paper. This is a limiting

factor as accurate and up-to-date inventory data might be unavailable. We present in this section a more generic framework, where the

Bayesian prior is replaced by a L2-penalization. This is a simplification of the quadratic program presented in this manuscript, by setting

SO = In, Sp = In and xp = 0. The minimization problem becomes a ridge regression:

minx JðxÞ = k y � Kxk22 + l k xk22
s:t: xR0

where we only consider as potential emitters the pixels where relevant activity is detected. The second term of the objective function loses its

prior information but keeps its regularizing role. This framework is particularly useful for areas where intensivemethane activity evolves quickly

(e.g. shale oil and gas basins in the USA), and where precise inventory might not be available whereas satellite sensors can derive precise

ground activity data (e.g. flaring detected from the VIIRS sensor45).

Results andmetrics from this framework are presented at Figure S6. The estimated yearly emissions are slightly smaller in the ridge regres-

sion setting than in theBayesian framework (resp. 8.2MtCH4 yr
-1 and 8.8MtCH4 yr

-1 in 2019 and 2020 in the ridge regression setting against 8.6

Mt CH4 yr
-1 and 9.0 Mt CH4 yr

-1 in 2019 and 2020 in the Bayesian framework). The image-per-image correlation of the reconstructed methane

imageswith observedTROPOMIdata is slightly higher in the ridge settingat 0.74, as is the correlationof averaged images (0.86against 0.83). By

construction, the DOFS values are significantly higher in the pure ridge regression model (range [35-140], mean value at 99).

Figure S7 shows that differencesbetween spatial emission rates estimatedbyboth settings have absolute valuesmostlybelow200gCH4m
-2

yr-1. Outputs of the ridge regression setting have a higher spatial volatility (shown by the alternance of negative and positive values on neigh-

boring grid cells on Figure S7, as well as the differences between panels (e) and (f) of Figure S6) due to the absence of prior on emission rates.

Validation

To assess the validity and robustness of the results, we compute a series of metrics and indicators. This includes the distribution of correlations

between observed TROPOMI images and prior and posterior reconstructed images (Figure 2); the correlation between the mean observed
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image and themean reconstructed images (Figure 2D); and the percentage of reconstructed methane with respect to observed images (Fig-

ure 2E). On average, the mean image-per-image correlation increases from 0.31 (prior reconstruction) to 0.71 (posterior reconstruction) after

the optimization process. The same metrics on averaged images rises from 0.42 to 0.83, hence validating the ability of the model to explain

local methane enhancements by emissions originating in coalmining areas. Themeanposterior percentageofmethane reconstructed is 76%,

thus indicating that a minor part of the observed methane enhancements is not explained by coal mining emissions.

The condition number criterion is discussed and supported in Figures S9 and S10. In particular, we show that this criterion leads to l pa-

rameters mostly comprised in f10� 2;10� 1;1g, hence efficiently improving the conditioning of the quadratic programswithout over-penalizing

the objective function (which would artificially lower the emissions estimates). Likewise, the distribution of the DOFS of the system has a lower

bound at 20 with a mean value at 75. It shows that the quadratic programs are well-constrained, namely that output of the optimization prob-

lem is largely influenced by TROPOMI images and not primarily determined by the prior term (see Figure S10).

Figures 2 and 3 reveal a high stability in the estimates, bothmonthly and hourly, aggregated and on a gridded basis (standard deviation of

themonthly estimates is 0.11Mt). This is expected as ventilation air methane systems are set to continuously ventilate coal mines, and it argues

for the robustness of the inversion estimates.

We show that the results have a very low sensitivity to the construction of theminimization problem. A pure ridge regression setting (SO =

In, Sp = In and xp = 0) produces very similar methane emission estimates and validation metrics (see Figures S6 and S7).

In the inversion, we only consider coal mines to be responsible for the methane emissions we measure. The rationale is that 1) emissions

from coal represents 92% of themethane emissions in Shanxi according to the EDGAR v6.0 database; 2) at the grid pixel level, methane emis-

sions from non-coal sources are two orders of magnitude smaller than methane emissions from coal sources (see Figure S12). Emissions from

other sources have a very high spatial regularity (see Figure S12), hence they mainly contribute to the background methane value which is

removed in the methane enhancement images used in our inversion.
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