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Abstract
Underwater light is spatially as well as temporally variable and directly affects phy-
toplankton growth and competition. Here we systematically (following the guidelines 
of PRISMA-EcoEvo) searched and screened the published literature resulting in 640 
individual articles. We mapped the conducted research for the objectives of (1) phy-
toplankton fundamental responses to light, (2) effects of light on the competition 
between phytoplankton species, and (3) effects of climate-change-induced changes 
in the light availability in aquatic ecosystems. Among the fundamental responses of 
phytoplankton to light, the effects of light intensity (quantity, as measure of total 
photon or energy flux) were investigated in most identified studies. The effects of 
the light spectrum (quality) that via species-specific light absorbance result in direct 
consequences on species competition emerged more recently. Complexity in compe-
tition arises due to variability and fluctuations in light which effects are sparsely in-
vestigated on community level. Predictions regarding future climate change scenarios 
included changes in in stratification and mixing, lake and coastal ocean darkening, 
UV radiation, ice melting as well as light pollution which affect the underwater light-
climate. Generalization of consequences is difficult due to a high variability, interac-
tions of consequences as well as a lack in sustained timeseries and holistic approaches. 
Nevertheless, our systematic literature map, and the identified articles within, provide 
a comprehensive overview and shall guide prospective research.
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1  |  INTRODUC TION

Light is of major biological relevance as a fundamental resource for 
photosynthetic organisms. By absorbing the light's photosynthetic 
active radiation (PAR, in the wavelength range of 400–700 nm) and 
exploiting its energy through photosynthesis, phytoplankton con-
tributes to approximately half of the earth's primary production, 
provides oxygen and energy as well as nutrients for higher trophic 
levels (Dokulil & Kaiblinger, 2009; Falkowski, 2012; Field et al., 1998; 
Martin et al., 2018). Within aquatic ecosystems, the availability of 
light was found to affect primary production, structure phytoplank-
ton communities, and therefore indirectly affect higher trophic lev-
els (see e.g., Kirk, 2010). However, light cannot only be seen as a 
resource of energy, but also needs to be considered as a cell dam-
aging, photosynthesis inhibiting, and metabolism regulating factor 
(Ragni, 2004; Straka & Rittmann, 2018). Here, in contrast to previous 
reviews, we aimed to systematically map the previously conducted 
research on the effects of light in phytoplankton ecology. This shall 
provide researchers of (1) a thematic overview, (2) estimations of the 
extent to which an issue has been investigated, (3) reveal open gaps 
in research, and (4) provide a solid list of references covering the 
topic. We investigated the ecological impacts of light, its variability 
in aquatic ecosystems and displayed future scenarios. To provide a 
systematic overview, we split this topic into three main objectives 
(O) as follows:

1.	 O1  The fundamental ecological responses of phytoplankton 
to:
a.	 the underwater light-climate.
b.	 changes and variability in light-climate.
c.	 fluctuations in the light-climate.

2.	 O2 Competition for light and vertical arrangement of phytoplank-
ton in (non-static) light gradients.

3.	 O3 Ecological effects of light-climate changes on phytoplankton 
under future predictions of:
a.	 ocean and lake stratification as well as changing mixing 

conditions.
b.	 lake and coastal ocean darkening.
c.	 UV radiation impact.
d.	 melting sea ice.
e.	 light pollution.
These were analyzed according to the guideline of the Preferred 

Reporting Item for Systematic Reviews and Meta-analysis in Ecology 
and Evolutionary biology (PRISMA-EcoEvo) (O'Dea et al., 2021) and 
the concept as well as these objectives were pre-registered after 
an initial literature search at OSF-Registries (https://osf.io/ky3ut). 
We conducted comprehensive electronic searches for published 
resources in Web of Science on 15th of June 2021 covering all pub-
lished data for each of the three main objectives. Suitable articles 
were identified by “topic,” that is, keywords in titles, abstracts, and 
author keywords of those records. The resulting records were im-
ported to EndNote version X8 (Clarivate). Unsuitable records were 
excluded by title screening and subsequent abstract screening. 

Additional useful and criteria fitting articles which were known to 
the authors, listed in articles reference list, or identified within the 
respective other objectives, were added manually. (See Appendix S1 
for detailed information on search terms and conditions, Appendix 
S2 for PRISMA-like flow chart of report screening, and Appendix S3 
for the PRISMA-EcoEvo checklist.)

The search resulted in a total of 3357 records (Objective 1 (O1): 
2138; Objective 2 (O2): 241; and Objective 3 (O3): 978). With inclu-
sion of additional articles, a total of 675 records (O1: 361; O2: 59; 
O3: 255), that is, 640 individual articles due to duplication across 
the objectives, were retrieved and considered for mapping (Table 1). 
The median year of publication was used to roughly estimate trends 
in research.

2  |  THE PHY TOPL ANK TON' S 
FUNDAMENTAL ECOLOGIC AL RESPONSE 
TO THE UNDERWATER LIGHT- CLIMATE

In aquatic environments, the light's intensity exponentially attenu-
ates with water depth and its spectrum changes due to the selec-
tive absorption of photons by water molecules (Kirk, 2010). In a clear 
water column, the long (red range) wavelengths of the PAR are ab-
sorbed the most and the remaining light spectrum changes in a gradi-
ent with increasing depth toward green–blue at medium depth and 
blue at the bottom of the euphotic zone. Additional light-spectrum 
alterations emerge by colored or chromophoric dissolved organic 
matter (cDOM, gilvin), particles such as detritus and sediments (trip-
ton) as well as living organisms (primarily phytoplankton itself) (Kirk, 
2010). Those are not only attenuating the light intensity but further 
shifting the light-spectrum, as, for example, cDOM in general ab-
sorbs light stronger at low wavelengths below 500 nm resulting in 
“brownificated” water (Coble, 2007; Markager et al., 2004). Likewise, 
intense algae growth can shift the underwater light spectrum “green-
ish” due to its relative low absorbance of green light (Leech et al., 
2018). In ecological research, the light is therefore often either con-
sidered in terms of its integrated intensity (quantity) or its spectral 
composition (quality). However, as both affect the phytoplankton, 
future research has to consider both aspects simultaneously.

2.1  |  Underwater light-climate

The direct consequences of light, only in its integrated intensity 
(quantity) as a single resource that determines growth, were consid-
ered in 229/362 articles (within O1, which covered light exclusively 
in terms of intensity). It is acknowledged that the growth rates of 
phytoplankton increase with light intensity, driven by photosyn-
thesis as long as other resources (such as nutrients) are not limited. 
Photosynthesis is nonlinear related to light supply, can be visualized 
as photosynthesis-irradiance (P–I) curve, and described by three dis-
tinct regions (Dokulil & Kaiblinger, 2009; Kirk, 2010; Lalli & Parson, 
1997) (Figure 1a): (1) When light is limiting, the rate of photosynthesis 

https://osf.io/ky3ut
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TA B L E  1 Overview of literature search and mapping results

Objective Identified articles (median year of publication) Trends and/or knowledge gaps

(O1) The phytoplankton's fundamental 
ecological responses to:

a.	 the underwater light-climate
b.	 changes and variability in light-climate
c.	 fluctuations in the light-climate

Entire objective 362 (2008) Overall trend toward more realistic 
environmental considerations by 
acknowledging the spectrum and 
variability of light. More research 
needed which considers timescales and 
amplitudes as well additional changes in 
spectrum of light fluctuation.

Intensity w/o spectrum 229 (2004)
Spectrum 133 (2013)
•	 for biotechnological purpose 35 (2017)

Sensing 11 (2014)

Acclimation 154 (2009)
•	 to intensity w/o spectrum 101 (2008)
•	 to spectrum 53 (2012)

Regulation 24 (2007)

Adaptation 26 (2011)

Protection 49 (2012)

Light fluctuations 98 (2005)
•	 for biotechnological purpose 21 (2013)

Vertical mixing 38 (2001)

(O2) Competition for light and vertical 
arrangement of phytoplankton in (non-
static) light gradients

Entire objective 59 (2009) More research needed on community 
level. Self-shading and feedbacks 
in acclimation need to be further 
investigated in terms of vertical 
arrangement.

Vertical arrangement 15 (2009)

(O3) Ecological effects of light-climate changes 
on phytoplankton under future predictions 
of:

a.	 ocean and lake stratification as well as 
changing mixing conditions

b.	 lake and coastal ocean darkening
c.	 UV radiation impact
d.	melting sea ice
e.	 light pollution

Entire objective 255 (2013) Difficult predictions due to interaction of 
climate change induced effects and lack 
of sustained time series. Generalization 
of consequences for phytoplankton is 
difficult due to high spatial and temporal 
variability. Lack of data for effects of 
different UV subtypes. Insufficiently 
investigation of light pollution in aquatic 
environments.

Stratification and mixing 89 (2012)

Lake and coastal ocean darkening 85 (2014)

UV radiation 78 (2014)
•	 w/o differentiation of UV subtypes 34 
(2014)

•	 only considering UV-B 16 (2012)

Melting sea ice 32 (2014)

Light pollution 4 (2016)

Note: Results are sorted by each of the three objectives as well as topics within. The number of identified articles is stated with its respective topic 
as well as the median year of publication in brackets. Bold numbers indicate results for the whole objective search. Additionally, identified trends and 
open knowledge gaps are shortly summarized.

F I G U R E  1 (a) Generalized photosynthesis–irradiance (P–I) curve showing the photosynthetic response (P) to light intensity (I). Thereby a 
positive net photosynthesis (gross photosynthesis–respiration) can lead to a positive growth rate of a phototroph. At light intensities below 
the compensation point, it is not sufficient to equal respiration and net photosynthesis is negative. At light intensity above the compensation 
point, the initial slope (α) of photosynthesis is limited to a maximum (Pmax) due to saturation. Per definition, saturation sets in at an intensity 
(Ik) at which a linear growth of the slope α would reach Pmax. At high light intensities (Ip), photoinhibition sets in as the photosynthetic 
apparatus becomes damaged to a certain degree (β). Modified after Lalli and Parson (1997) and Dokulil and Kaiblinger (2009). (b) Schematic 
overview of different absorption spectra of selected groups of pigments. Those can extend the light absorption to wavelengths which are 
less covered by chlorophyll a. Absorbance values are not for scale. Modified after Voet and Voet (2010)
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increases with higher light intensity. Above the compensation point, 
where photosynthesis equals the respiration of the cells, photosyn-
thesis increases with intensity until it becomes limited by saturation 
of the photosynthetic apparatus. (2) The light saturated region indi-
cates the light intensity in a range from the saturation onset point 
until the onset of photoinhibition. (3) At very high-light intensities, 
the photosynthetic apparatus can become damaged by, for example, 
shrinking of chloroplasts, which results in reduced photosynthesis 
rates (Lalli & Parson, 1997).

Of such a P–I curve, one can deviate species-specific traits of 
phytoplankton: The required light intensity (Ic) at the compensation 
point and at which the initial slope (α) of the curve describes the 
efficiency of maximum quantum yield of photosynthesis (Dokulil & 
Kaiblinger, 2009). The maximum photosynthesis rate (Pmax) and the 
onset point of saturation (Ik) at which photon absorption exceeds 
the electron transport of the photosynthetic apparatus (Dokulil & 
Kaiblinger, 2009). And the intensity at which photoinhibition starts 
(Ii) as well as the degree of inhibition (β) which describes how well a 
phototroph can cope with damaging effects of light (Lalli & Parson, 
1997).

All these traits were found to be species specific, have a high 
interspecific variation and correlate with other phytoplankton 
traits, for example, with a lower α at a larger cell size (Edwards 
et al., 2015). Falkowski and Owens (1978) found, for example, 
that the compensation light intensity can vary over four orders 
of magnitude between species. This implies that a phytoplank-
ton species that still has positive net photosynthesis and growth 
rates at a low-light intensity has a competitive advantage over a 
species that is not capable of positive rates at that light intensity 
(Edwards et al., 2015; Huisman & Weissing, 1994; Weissing & 
Huisman, 1994). Estimated species-specific P–I curves and growth 
responses to the light intensity can therefore be used as predic-
tor for competitive outcomes (Huisman et al., 1999; Huisman & 
Weissing, 1994; Weissing & Huisman, 1994). Additionally, there 
are tradeoffs among these traits, for example, species that grow 
well at low irradiance grow poorly at high irradiance and vice versa 
(Falkowski, 1980; Litchman, 2007; Richardson et al., 1983; Ryther, 
1956). Along the vertical light gradient in aquatic ecosystems, such 
tradeoffs can therefore lead to niche separation and result in dif-
ferent community compositions at different depths (Schwaderer 
et al., 2011).

Additionally, we identified 133/362 articles which considered the 
effects of the light's spectrum on photosynthesis and growth, as dif-
ferent wavelengths are exploited species specifically. Phytoplankton 
harvests the light via absorption by their pigments built into the light 
harvesting complex (LHC), often referred to as antennae complex 
(Kirk, 2010). Most eukaryotic phytoplankton species rely on LHCs 
characterized by the combination of a central chlorophyll a molecule 
and accessory pigments belonging to the groups of chlorophylls and 
carotenoids (Jeffrey & Wright, 2006). In contrast, cyanobacteria, red 
algae, and glaucophytes feature phycobilisomes as LHCs equipped 
with phycobiliproteins as light absorbing pigments (Glazer, 1985). 
These pigments absorb the available wavelengths of the PAR with 

a different efficiency (Figure 1b). The chlorophylls are characterized 
by two absorption peaks in the blue (~440 nm) and red wavelength 
range (~650  nm) but only a low absorption in the green (~500–
600 nm) part of the spectrum (Jeffrey & Wright, 2006). The carot-
enoids are a very diverse pigment group which in general absorb 
in the blue–green region (~300–500 nm) (Kirk, 2010). They extend 
the absorption range of the chlorophylls and are further involved 
in photoprotective mechanisms by non-photochemical quenching of 
excessive energy (Brunet et al., 2011) (see also below). The phyco-
biliproteins phycoerythrin, phycocyanin, and allophycocyanin effi-
ciently absorb green (~565 nm), yellow (~620 nm), and red (~650 nm) 
wavelengths, respectively (Grossman et al., 1993). Besides the ubiq-
uitous chlorophyll a, the occurrence and composition of those ac-
cessory pigments varies remarkedly among different species (Kirk, 
2010). Certain combinations of pigments result in light absorptions 
that allows species to absorb portions of PAR with varying effi-
ciency, which, in turn, affects species performance and competition 
(Glover et al., 1987; Luimstra et al., 2019).

However, the sum of the absorption of individual pigments (i.e., 
individually extracted pigments) does not accurately/directly deter-
mine the light harvesting of the phytoplankton, because the pigment 
absorption is slightly different due to (1) bindings in pigment–protein 
complexes and (2) self-shading of the pigments in the chloroplast, 
known as package effect (Kirk, 2010). Furthermore, differences in 
the optical properties of the organisms surrounding tissue can influ-
ence the efficiency of light-spectrum harvesting as it determines the 
light reaching the photosynthetic apparatus (Goessling et al., 2018, 
2019).

In general, the species-specific ability to harvest photons of cer-
tain wavelengths is an important ecological trait as phytoplankton 
species growing under different supplied light spectrum but equal 
integrated intensities resulted in species specifically different pho-
tosynthesis and growth rates (Baba et al., 2012; Jeon et al., 2005; 
Sánchez-Saavedra, 2002). This is also acknowledged in biotech-
nological approaches to optimize phytoplankton culture growth 
(35/362 articles). Overall, the light cannot be simply seen as a single 
resource (intensity) for phytoplankton but is acknowledged as a mul-
titude of resources which can differently be exploited (Stomp et al., 
2004). Yet, in ecological considerations, the light is often simplified 
to its intensity, but a more holistic view as a combined light-climate 
including information on the available wavelengths is needed and 
shows an increasing trend in current research (only intensity: 229 
articles, medium year of publication: 2004; intensity and spectrum: 
133 articles, medium year of publication: 2013).

2.2  |  Changes and variability in light-climate

In nature, the light-climate further exhibits a broad temporal vari-
ability and is also affected by environmental changes. The terres-
trial runoff after strong precipitation which may result in a pulsed 
“brownification” of coastal waters is, for example, rapidly changing 
the available intensity and spectrum of light (Thrane et al., 2014). In 
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such a disturbance event, phytoplankton can respond by different 
mechanisms (Box 1) or will otherwise experience limiting light condi-
tions which can consequently result in a shift in community compo-
sition. These response mechanisms present crucial traits for survival 
as well as optimal usage of variable light conditions and were found 
to vary strongly between species (Harris et al., 2009).

As for the impacts of light on photosynthesis, the response to 
a changed light availability was earlier and more often investigated 
regarding the light intensity without acknowledging responses to 
the spectrum of light. Especially for the photoacclimation of phy-
toplankton 101/362 articles were identified, which did not consider 
acclimation toward a changed light spectrum. This acclimation to-
ward an optimized absorption of the light spectrum or intensity and 
spectrum in combination was comparably less investigated (53/362 
articles). The so-called complementary chromatic acclimation by 
changes in the pigment composition was found to be predominantly 
granted to cyanobacteria being able to increase the proportions 
of phycoerythrin under green light or phycocyanin under red light 

within their phycobilisomes to maximize light absorption efficiency 
(Grossman et al., 1993; Gutu & Kehoe, 2012). In contrast, the com-
plementary chromatic acclimation was tested and observed for a 
variety of eukaryotic species but for those no general pattern could 
be determined (Mouget et al., 2004; Vesk & Jeffrey, 1977). In a 
tradeoff principal, a fast-responding organism may perform better 
in frequently changing environments, whereas a slow responding 
organism may perform better under constant conditions without 
the perpetual investment in acclimation (see e.g. van Leeuwe et al., 
2005). In any case, the acclimation response includes metabolic 
costs which was found to lower productivity yield at fast changing 
conditions (Retkute et al., 2015). Especially the protection to high ir-
radiance is important for survival but leads to a decreasing maximum 
yield in photosynthesis and carbon fixation which is a competitive 
disadvantage when the irradiance dims (Marra et al., 2000).

Overall, rapid changes in light-climate are favoring fast accli-
mating or good endowed species over those who cannot acclimate 
and efficiently harvest the “new” light-climate. As a consequence, 

BOX 1 Phytoplankton responses to light. Physiological responses are species specific and the timing as well as 
metabolic cost may decide of competition outcomes in phytoplankton communities. As the terms sensing, 
photoacclimation, -regulation, -adaptation, and -protection are often used in different contexts, we here state a 
short definition of those. Especially in older articles the term (photo)adaptation was frequently used to describe 
acclimation of species, whereas the evolutionary adaptation of species to light was rarely examined.

Sensing of light is mediated by a variety of photoreceptors such as the phytochromes sensing the proportions of spectral wavelength 
notably the red to far-red light ratio but also orange, green, and blue wavebands (Rensing et al., 2016; Rockwell et al., 2014). In 
aquatic environments, where red and far-red wavelengths strongly attenuate at the surface, phytochromes may act as depth and 
phytoplankton neighbor sensing mechanism and thus modulate phototaxis (Fortunato et al., 2016). This topic was covered by 11/362 
articles.
Photoacclimation is the tuning of light harvesting by de novo synthesis or degradation of photosynthetic structures to respond to tem-
porary changes to (low-, high-, and spectral-) light conditions (Falkowski & LaRoche, 1991). This mediates the ratio of photosynthetic 
to photoprotective carotenoids (Brunet et al., 2011) as well as the size of the light antenna of the photosystems (Eberhard et al., 2008; 
Granata et al., 2019). Further acclimation includes also functional morphological changes (Janssen et al., 2001), for example, within 
the thylakoid membrane (Lepetit et al., 2012). This topic was covered by 154/362 articles.
Photoregulation is the rapidly tuning of the photosynthetic efficiency, for example, by Rubisco activity, photosynthetic state transi-
tion, or the xanthophyll cycle without the de novo synthesis or degradation of photosynthetic structures (Raven & Geider, 2003). The 
phototaxis of mobile phytoplankton species presents another way of photoregulation to available PAR, and diel migration has further 
been shown to be dependent on the spectral quality (Figueroa et al., 1998). This topic was covered by 24/362 articles.
Photoadaptation refers to the evolutionary adaptation of species to long-term light exposure (Falkowski & LaRoche, 1991). For exam-
ple, oceanic diatoms were found to be adapted to more constant light conditions by cutback of their photosynthetic apparatus which 
allows lower iron demands but might have also sacrificed their acclimation abilities to rapid light fluctuations in coastal areas (Lavaud 
et al., 2007; Strzepek & Harrison, 2004). Additionally, adapted cellular structures can manipulate the intracellular light availability and 
enhance photosynthesis (Goessling et al., 2018, 2019). This topic was covered by 26/362 articles.
Photoprotection includes all reaction types of above if performed to prevent or counteract damaging processes by high (PAR and/
or UV)-light conditions. Structural protection by, for example, diatom frustules, potentially reduces UV radiation (Demmig-Adams & 
Adams, 1992; Ellegaard et al., 2016). “Sunscreen” compounds screen against UV radiation (Gao & Garcia-Pichel, 2011). Excessive ra-
diation energy can be reduced by either heat dissipation by non-photochemical quenching (NPQ) or chlorophyll fluorescence (Bailey 
& Grossman, 2008; Demers et al., 1991). Secondary damage is prevented by scavenging of reactive oxygen species using antioxidants 
(Szymańska et al., 2017). This topic was covered by 49/362 articles.
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changes in the light spectrum can change species growth rates 
(Luimstra et al., 2019) and alter the phytoplankton community com-
position (Hintz et al., 2021).

2.3  |  Fluctuations in light-climate

In addition to single changes in the light-climate, natural irradiance 
often periodically fluctuates over temporal periods of 10−8  s−1 up 
to 10 s−1 (Litchman & Klausmeier, 2001). Fast fluctuating underwa-
ter light is often given by (1) the formation of waves which lead to 
rapid refraction effects and focusing of light (Schenck, 1957) and 
(2) changed positions of phytoplankton during the vertical mixing 
of a water column, for example, by fast and deep Langmuir circula-
tion (Denman & Gargett, 1983). Longer fluctuations cover (3) mete-
orological changes as by cloud formation (Nann & Riordan, 1991) as 
well as global cycles of (4) day–night changes in combination with (5) 
seasonal changes (seasonal changed solar angle) (Dubinsky, 1986).

For phytoplankton, the experienced light-climate hence is rather 
fluctuating than constant in natural systems. Therefore, the re-
sponse of phytoplankton to fluctuating light is regularly considered 
in our identified articles (98/362). Due to these fluctuations, phyto-
plankton might experience on average longer periods under subop-
timal conditions (limiting low or inhibiting high light, in regard of the 
species P–I curves) (Guislain et al., 2018). If so, growth might be re-
duced compared to constant conditions even if both conditions have 
the same daily mean intensity (Köhler et al., 2018). A slow fluctua-
tion would allow a species to acclimate in time to efficiently perform 
under the changed conditions, whereas the resource use of an indi-
vidual cannot be efficient if the resource fluctuates faster than accli-
mation is feasible (Cullen & Lewis, 1988; Koussoroplis et al., 2017). 
Contrariwise, very fast fluctuations (frequencies >1  s−1) in light 
supply were found to enhance photosynthesis (Grobbelaar et al., 
1996; Walsh & Legendre, 1983) which is also considered in biotech-
nological approaches (21/362 articles) as it reduces energy costs in 
production (Abu-Ghosh et al., 2016). Possible explanations for that 
are the match of the photon input rate to photosynthesis (e.g., elec-
tron transfer rates), or reduced photoinhibition (Abu-Ghosh et al., 
2016). As described above, the species-specific acclimation to (not 
necessarily recurring) changes in light takes time, costs energy, and 
is limited to the degree of plasticity which applies for the response to 
fluctuation, too (van Leeuwe et al., 2005; Nicklisch, 1998).

The species-specific response to light fluctuations can further 
lead to changes in the phytoplankton community compositions 
and diversity (Flöder et al., 2002; Guislain et al., 2018). Litchman 
and Klausmeier (2001) found that the fluctuating light generally 
promotes opportunistic—often fast growing—species but on the 
other side slows or even prevent competitive exclusion, thus al-
lows a higher species richness. Thereby, coexistence of species is 
favored if they differ strongly in the gleaner-opportunistic tradeoff 
which applies to competition between a species that performs well 
in the low-light intensity phase due to a low required intensity at 
its compensation point (Ic), while a species with a high maximum 

photosynthesis or growth rate (Pmax) performs better in the high-
light intensity phase.

In contrast to atmospheric or planetary reasons of light fluctu-
ation, changes of the position within the water column do not only 
affect the light intensity, but also the spectrum as experienced by 
phytoplankton. In this regard, we identified 38/362 articles which 
investigated the effects of vertical mixing of the water column. On 
the one hand, the low-light availability at a large mixing depth nega-
tively affects phytoplankton growth (Bernhardt et al., 2008). On the 
other hand, the mixing also reduces the time spent at the surface and 
therefore potentially mitigates photoinhibition, and enhances pho-
tosynthesis, resulting in higher growth compared to static light envi-
ronments (Marra, 1978). Additionally, the mixing counteracts sinking 
losses of phytoplankton and total phytoplankton biomass was found 
to be highest at intermediate mixing depths (Diehl et al., 2002).

As for the light fluctuation alone, some species are more adapted 
to static intensities while others are more competitive under well-
mixed conditions and the vertical mixing can therefore affect com-
munity composition according to the photosynthesis traits of the 
included species (Litchman, 2008; Strzepek & Harrison, 2004). In ad-
dition, this is not only due to photosynthetic traits as Huisman et al. 
(2004) found that a weak mixing favors buoyant cyanobacteria over 
fast sinking diatoms and green algae as the former can float upwards 
and shade the latter. Indirectly, the vertical mixing may also resuspend 
particles at shallow waters which lowers the overall light availability 
(Helbling et al., 2015). But the suspended sediment can mitigate pho-
toinhibition effects which was also found to lead to increased pro-
ductivity as compared to static environments (Mallin & Paerl, 1992).

Overall, the consequences of fluctuating light are dependent on 
the timescales and amplitude as well as the individual species traits 
and other environmental factors. Therefore, a generalization of the 
response for fluctuating light is difficult. We highlight the need for 
more investigations of variability of light and fluctuations as those 
are more common in nature than static (often simplified laboratory) 
conditions.

3  |  COMPETITION FOR LIGHT 
AND VERTIC AL ARR ANGEMENT OF 
PHY TOPL ANK TON IN (NON-STATIC)  LIGHT 
GR ADIENTS

As highlighted above, the different species-specific requirements 
for light allow for a niche separation along the water column's light 
gradient. The individual pigment composition enables complemen-
tary light utilization as different parts of the light spectrum can be 
exploited (Glover et al., 1987; Ting et al., 2002) and promotes biodi-
versity (Stomp et al., 2004; Striebel et al., 2009), whereas a curtailed 
spectrum leads to competition and selection (Luimstra et al., 2019; 
Rocap et al., 2003; Stomp, Huisman, Voros, et al., 2007).

Vertical arrangement of phytoplankton species along the poorly 
mixed water column's light gradient can be of key importance in 
this regard and was considered in 15/59 articles. The respective 
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light spectrum at certain depths within a water column predicts 
competition outcomes and subsequently the composition of local 
phytoplankton communities. This concept was very early stated 
by Engelmann (1883) and supported by few observations (Hickman 
et al., 2009; Holtrop et al., 2021; Stomp, Huisman, Stal, et al., 2007). 
However, it does not necessarily hold predictable for highly variable, 
that is, well-mixed environments (Jäger et al., 2008) and when addi-
tionally considering the availability of other (co-)limiting resources, 
such as nutrients (Mellard et al., 2012). In addition, phytoplankton 
growth at the surface decreases light intensity due self-shading 
and thus feeds back into the light availability (Shigesada & Okubo, 
1981). This does not only affect the intensity of light but also its 
spectrum, as the absorption is wavelength specific. This biological 
light filtering, that is, selective absorption of wavelengths passing 
phytoplankton in the upper water layer shifts the spectrum in the 
lower water column selectively favors those who can efficiently use 
the remaining light (Montesinos et al., 1983). The concept of “luxury 
consumption,” the excess consumption of a non-limiting resource 
(Chapin et al., 1990), has also recently been discussed with regard 
to phytoplankton (Luimstra et al., 2019). Cyanobacteria with phy-
cobilisomes are less effective in utilizing blue light than eukaryotic 
phytoplankton, although potentially absorbing it to a similar extent, 
making it unavailable to cells below (de Mazancourt & Schwartz, 
2012). This applies also for light which is not used for photosynthe-
sis but absorbed by cell tissue. Harris et al. (2009) found that the 
photoprotective measures of phytoplankton such as the synthesis 
of “sunscreen” substances can further increase the potential shading 
effect. Such photoacclimation and -protection measures by pigment 
adjustment would alter the absorption spectra and respectively 

feed back to the transmitted light-spectrum behind the phytoplank-
ton cell. Hypothetically, in a steady water column, this could affect 
organisms beneath in a cascade sequence of several species accli-
mating to the available light at their depth and respective remaining 
light spectrum. However, we could not identify such studies which 
combines the effects of species-specific light absorption and accli-
mation to the available spectrum on the transmitted/remaining light 
spectrum available for other species in a water column. This topic 
becomes even more complex as it also implies that phototaxis by 
certain species not only optimizes access to light but further actively 
affects the shading of competitors.

Overall, the vertical arrangement of cells according to the ambi-
ent light-intensity and -spectrum is an intricate combination of the 
physical environment and competing species with potential for fur-
ther investigations.

4  |  ECOLOGIC AL EFFEC TS OF LIGHT-
CLIMATE CHANGES ON PHY TOPL ANK TON 
UNDER FUTURE PREDIC TIONS OF 
CLIMATIC CHANGE

Various environmental changes, such as elevated CO2, elevated tem-
perature as well as reductions in ice and snow coverage are expected 
to directly affect phytoplankton communities (Hays et al., 2005) and 
are of high importance when investigating ecosystem functionality 
(Isbell et al., 2011). The direct implications of an indirectly changing 
underwater light-climate are partially neglected, and we aim to struc-
ture their ecological consequences (Figure 2). Despite the thematic 

F I G U R E  2 Schematic overview of climate change effects on the underwater light as experienced by phytoplankton. Fundamentally, the 
incident sunlight decreases with water depth and shapes spectral niches (for a detailed niche formation, see Holtrop et al., 2021; Stomp, 
Huisman, Stal, et al., 2007). (a) Wind and temperature changes will affect stratification of the water column as well as mixing depth which 
affects light availability for mixed phytoplankton. (a1) Increasing surface temperatures may increase thermal stratification and reduces 
mixing depth. (a2) If exposed to surface winds, those can cool down surface waters and destabilize stratification which allows a deeper 
mixing depth. Mixing arrow colors roughly illustrate the water temperature at respective depth (red: warmer surface water in scenario a1), 
blue: colder surface water in a2). (b) Increasing cDOM subsidies in coastal areas are expected due to stronger precipitation and agricultural 
land use. The input of cDOM shades the overall light availability and light spectrum. Conversely, cDOM might protect phytoplankton 
due to shading of UV light. (c) UV light, due to ozone depletion rapidly attenuates below the water surface, can damage phytoplankton 
and degrades cDOM. (d) Sea ice covers the water surface and reflects sunlight (albedo). Melting will expose the surface to wind and 
light. (e) Artificial light at night induces light pollution in a close-by environment with light levels potentially exceeding the lower limit of 
photosynthesis
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partition hereinafter, these changes cannot be seen as isolated fac-
tors as they interact with each other and act simultaneously on phy-
toplankton (Häder et al., 2014). For this objective, we identified 255 
articles covering light-climate change effects on phytoplankton by 
altered stratification and vertical mixing, lake and coastal darkening, 
UV radiation, melting sea ice, and ecological light pollution.

4.1  |  Ocean and lake stratification as well as 
changing mixing conditions

The effects of light due to stratification and altered vertical mixing 
patterns, as potential consequence of climate change, on phyto-
plankton were covered in 89/255 of the identified articles. Thereby, 
stratification of large waterbodies does not only limit nutrient avail-
ability in the epilimnion, but further holds phytoplankton at depths 
with rather constant light conditions (Figure 2a). Increasing average 
temperatures as well as wind sheering is predicted to change strati-
fication onset, depth, and stability which is overall correlated to net 
primary production (Behrenfeld et al., 2006; Berger et al., 2010; 
Wahl & Peeters, 2014). In lakes, surrounded by trees with low 
winds, surface waters will warm up, leading to stronger differences 
in densities among water layers, and consequently a lower prob-
ability for deep mixing events disturbing the stratification between 
the epi-  and hypolimnion (Figure 2a1). On the other hand, when 
local winds chill surface temperatures, the stratification thermo-
cline will become destabilized and allows for deeper vertical mixing 
(Saros et al., 2012) (Figure 2a2). Additionally, in upwelling regions, 
winds are overall expected to increase and favor upwelling as well 
as suppresses stratification (Sydeman et al., 2014). This has impli-
cations for the mixing layer depth but was found to vary regionally 
as well as seasonally (Somavilla et al., 2017). When being dragged 
through different light regimes in interaction with variable nutrient 
supply dependent on the mixing depth, phytoplankton communi-
ties are expected to change in their species composition (Marzetz 
et al., 2020; Saros et al., 2012). Thus, increased vertical mixing 
depth acts selectively by limiting light in spectrum and intensity at 
depth and reduces phytoplankton growth due to longer periods at 
depth (Lehman, 2002; Northington et al., 2019). On the other hand, 
when the mixing depth or the water column itself is shallow enough 
for light being not limited, the higher availability of nutrients from 
hypolimnic water and sediments would promote phytoplankton 
growth (Planas & Paquet, 2016). Contrariwise, when primary pro-
ducers are trapped within the epilimnion by strong stratification, 
the broader PAR bandwidth availability may facilitate higher di-
versity as it can be used concertedly (Striebel et al., 2009). This, 
however, might then be again mitigated if nutrients are limiting or 
the impact of damaging UV radiation gains influence (Häder et al., 
2014).

Based on these scenarios, we expect future outcomes to be spa-
tially high variable and be an individual combination of multiple envi-
ronmental factors. The effects of altered light fluctuation by predicted 
vertical mixing can also be counteracted by other climate changes 

such as increasing acidification and nutrient inputs (Bermejo et al., 
2020), which complicates predictions but opens directions for further 
research and combined approaches.

4.2  |  Lake and coastal ocean darkening

Increasing storm events, precipitation, melting glaciers, and thawing 
permafrost, which are expected due to climate change (de Wit et al., 
2016; Grosse et al., 2011; Parry et al., 2007; Weyhenmeyer et al., 
2015) but also increasing land use and urbanization (Lyu et al., 2021) 
can lead to terrestrial runoffs into adjacent waters (Vizzo et al., 2021; 
Weyhenmeyer & Karlsson, 2009). By this, the input of cDOM to small 
water bodies as well as coastal shores (Figure 2b) affects the underwa-
ter light in terms of increasing “brownification” and overall darkening 
(Dutkiewicz et al., 2019; Roulet & Moore, 2006; Thrane et al., 2014). 
Storm events may raise sediment in shallow lakes which increases 
fluxes of nutrients from the sediment as well as water turbidity (Beaver 
et al., 2013; Blom et al., 1994). On the one hand, a darker waterbody in-
creases also in its heat absorption at the surface, leading to a potential 
increase in thermal stratification (Williamson et al., 2019). On the other 
hand, Houser (2006) identified lower temperatures but higher ranges 
in daily temperature changes in colored compared to clear lakes. The 
authors argue that stronger light absorption by cDOM could reduce 
heat storage in the hypolimnion and effects of watercolor on water 
temperature are also depending on groundwater exchange.

The ecological effects of “brownification” and darkening on phy-
toplankton as consequence of climate change were investigated in 
85/255 articles. As a general consequence, the light limitation by 
increasing levels of cDOM is expected to reduce phytoplankton 
growth and shift community composition, but at medium cDOM 
concentrations the additional nutrients contrariwise can support 
growth (Feuchtmayr et al., 2019; Thrane et al., 2014; Villafane et al., 
2018). This antagonism of light and nutrient availability becomes 
apparent if the decrease in light availability leads to reduction of 
benthic phytoplankton. As the benthic phytoplankton is intercept-
ing arising nutrients from the sediments, this would then result 
in more nutrients reaching the water surface, which, in turn, pro-
motes the growth of pelagic primary producers and leads to even 
more shading (Vasconcelos et al., 2016). The acclimation of cells to 
low-light conditions was additionally found to adversely result in a 
higher susceptibility to UV radiation (Helbling et al., 2013). Despite 
the high attenuation of UV light by cDOM (Gibson et al., 2000) (see 
also below), low-light acclimated cells can be rapidly exposed to high 
levels of UV radiation if cDOM dissipates, the cells are dragged to 
the direct water surface, or the light becomes focused by waves 
(Schubert et al., 2001).

In general, regions where cDOM inputs and wind stress are in-
creasing are therefore predicted to be reduced in phytoplankton 
growth (Helbling et al., 2015). Among the identified studies, knowl-
edge gaps arise due to the high variability in cDOM composition and 
degradation (Hansen et al., 2016) and hence wavelength-specific 
light attenuation on variable timescales.
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4.3  |  UV radiation impact

Previous anthropogenic impacts reduced the atmospheric ozone 
layer which led to increasing UV radiation within aquatic ecosystems 
with variable but damaging consequences for its inhabitants (Smith, 
1989; Williamson et al., 2014, 2019). Due to the Montreal Protocol, 
stratospheric ozone depletion could successfully be cushioned by 
reduction of damaging chlorofluorocarbons but to date the ozone 
layer has not recovered and is continually affected by climate change 
(Bais et al., 2015; Williamson et al., 2019). Within this context, the 
effects of UV radiation on phytoplankton (Figure 2c) are important 
and investigated in 78/255 articles.

In combination with stratification, the depth of the epilimnion 
would either strengthen the exposure of phytoplankton to UV ra-
diation if restricted to upper layers (Häder et al., 2011) or, if deep 
enough, allow avoidance from UV radiation (Helbling et al., 2013) 
and allows for recovery of the photosynthetic apparatus after in-
hibition (Smyth et al., 2017). Therefore, the interaction of stratifi-
cation and mixing depth with UV radiation strongly depend on the 
pace and mixing depth (Neale et al., 1998). The penetration depth 
of UV-light is further directly related to the concentration of cDOM 
due to its absorption (Gibson et al., 2000; Harrison & Smith, 2009). 
Fluorescent dissolved organic matter (fDOM) and cDOM strongly 
absorb and attenuates UV light but, in turn, degrades (Hansen 
et al., 2016; Miranda et al., 2018). This degradation allows a deeper 
UV penetration and permits UV damaging effects (Williamson 
et al., 2014) but at the same time increases the availability of PAR 
(Schubert et al., 2001).

Where primary producers cannot avoid the UV radiation by ac-
tive movement, this gains a high ecological relevance. Especially 
sessile organisms such as endosymbiotic zooxanthellae of corals 
are recognized to become photo-inhibited which leads to coral 
bleaching under additionally rising temperature (Hoegh-Guldberg, 
1999). Phytoplankton at the surface of waters is in principle di-
rectly negatively affected by damaging UV radiation (Harrison 
& Smith, 2009). The effects of UV radiation on phytoplankton 
are species specific and linked to other consequences of climate 
change as well as other environmental factors, such as nutri-
ent availability and thermal stress (Harrison & Smith, 2009; Jin 
et al., 2019; Williamson et al., 2019). The tolerance and protection 
against UV radiation displays a strong advantage and may favor 
protected species (Häder et al., 2011) and species living in niche 
environments of high UV radiation (Wu et al., 2017). The other way 
around, the pigment group of phycobilins are highly sensitive to 
UV radiation making it a disadvantage to cyanobacteria, red algae, 
glaucophytes, and cryptomonads (Häder & Gao, 2015). And due 
to ocean acidification, calcareous coccolithophorids are becoming 
more susceptible to UV radiation because of shell thinning (Gao & 
Häder, 2017). However, general trends of UV radiation on phyto-
plankton community composition are hardly to generalize as only 
a limited number of comparison of species UV susceptibility was 
made (Harrison & Smith, 2009). The UV radiation availability and 

its effects are temporally variable, which might be considered as 
a temporary disturbance on a phytoplankton community. Such as 
the PAR displays a multitude of resources, the damaging effects 
of UV radiation are wavelength dependent as well, with shorter 
wavelengths (UV-B, 280–315 nm) having generally stronger dam-
aging potential (Peng et al., 2017) but longer wavelengths (UV-A, 
315–400 nm) penetrating the water column deeper. In contrast to 
damaging UV-B, UV-A radiation was found to promote photosyn-
thetic carbon fixation under low or fluctuating irradiance (Beardall 
et al., 2014; Gao et al., 2007). 34/78 of the identified studies did 
not distinguish between effects of the UV subtypes UV-A and -B 
and 16/78 focused only on UV-B; thus, adverse effects may be 
over-estimated when projecting to natural environments where 
short wavelengths are attenuated the strongest (Williamson et al., 
2019). Williamson et al. (2019) further highlight the lack of data for 
spectral dependence of UV radiation effects as experiments are 
often conducted under artificial UV light sources being not as com-
plex as sunlight and further point out to consider the interactions 
of other climate change effects with UV radiation.

4.4  |  Melting sea ice

The trend of global warming drives melting and reduction of sea ice 
as well as snow coverage (Lannuzel et al., 2020; Magnuson et al., 
2000). Among multiple effects, this ice thinning primarily reduces 
light attenuation and receding of ice cover lowers albedo. Within 
this context, we identified 32/255 articles covering the effects of 
changed light by melting sea ice (Figure 2d). The trends of increas-
ing in PAR and temperature are expected to enhance productiv-
ity and can cause earlier seasonal phytoplankton bloom onsets 
(Gronchi et al., 2021; Patara et al., 2012). Subsequently, enhanced 
growth of phytoplankton darkens the surface of ice and water, lead-
ing to a higher heat absorption resulting in an ice melting feedback 
(Williamson et al., 2020). Contrariwise, the sudden exposure to full 
incident light can result in photoinhibition of phytoplankton (Kauko 
et al., 2017). The outcome of increased PAR on the one side but 
photoinhibition on the other side thereby depends not only on the 
intensity of light, but also on the species adaption and acclimation 
mechanisms (Croteau et al., 2021; Juhl & Krembs, 2010). Additionally 
to PAR availability, the UV radiation was found to presumably in-
crease up to 10 times in arctic surface water which also negatively 
affects surface phytoplankton (Fountoulakis et al., 2014). Rapid 
melting events but also the duration and intensity of ice coverage 
thus can change community composition (Lenard & Wojciechowska, 
2013; Williamson et al., 2020).

To better predict future outcomes of sea ice melting, Lannuzel 
et al. (2020) and Steiner et al. (2015) emphasized the need of new 
and sustained field data, longer time series as well as improved mod-
els of environmental changes, but also further insights on biological 
mechanisms and processes such as phytoplankton individual re-
sponses, community compositions, and trophic interactions.
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4.5  |  Light pollution

In comparison to sunlight, artificial light pollution (Figure 2e) does 
only play a minor role in terms of resource for primary producers 
due to its restricted areas and our search identified 4/255 articles. 
Yet, artificial light at night (ALAN) in coastal areas can penetrate the 
whole water column and affect ecosystems (Davies et al., 2020). In 
shore near waters, the illumination, even though being of compa-
rable low intensity and locally restricted, was found to exceed the 
lower limit for photosynthesis when in combination with full moon 
light (Raven & Cockell, 2006). Additionally, caves which are lit for 
touristic purposes are known to exhibit the so-called “Lampenflora” 
consisting of moss and algae. Thus, trophic processes in a total light 
excluded microbial ecosystem became severely changed (Popkova 
et al., 2019). However, except for those few specific examples, gen-
eral effects of light pollution in terms of being ecological resources 
are insufficiently investigated or focused on animals (-behavior) or 
terrestrial systems (Gaston et al., 2013).

5  |  DISCUSSION OF THE SYSTEMATIC 
LITER ATURE MAP

In this study, we mapped the conducted research on ecological 
consequences of light in terms of intensity, spectrum, variability, 
and aspects of predicted climate change to extend existing re-
views about light effects on phytoplankton. However, this map-
ping approach has some restrictions. (1) The wide field of research 
in photosynthesis and primary production forced us to define the 
literature search in a specific way, thus including restriction within 
the fields of science. By that, the declaration of numbers of identi-
fied studies is only as robust as the search itself. Yet, our selection 
of search terms resulted in a high number of identified records and 
thus a well-appointed overview which was additionally amended 
with studies known to the authors. (2) Even though we aimed to 
cover direct light effects alone, most research included (insepa-
rably) coupled effects as well, meaning that effects of light on 
phytoplankton are often coupled to and investigated with effects 
of, for example, nutrient availability. (3) We aimed only at direct 
effects of light on phytoplankton, but also want to highlight the 
need for investigations on indirect effects within food webs such 
as reduced grazing pressure due to UV damage on zooplankton 
(Williamson et al., 2019). Therefore, a generalization of the herein 
mapped consequences is difficult and should be considered as mo-
tivation for further research.

6  |  CONCLUSION

By systematically mapping the published research, we described 
and structured the ecological consequences of photosynthetic light 
harvesting in aquatic environments. We highlighted light as highly 
variable and as a multitude of resources and explained competition 

and possible coexistence of photosynthetic species which shapes 
communities and succession. Undisputed is the effect of light in-
tensity and spectrum on the ecology of phytoplankton communi-
ties but consequences may differ strongly between ecosystems. 
Future alterations in the underwater light availability and spectrum 
are an indirect consequence of anthropogenic climate change and 
will certainly alter primary producer's community compositions 
and ecological interactions. We highly encourage further research 
in the discussed topics and the consideration of the variability of 
light in both spectrum and intensity. Together with progress in cli-
mate change research, this will help to improve prediction of conse-
quences for phytoplankton communities.
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