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Abstract: A large number of drugs are used to treat different diseases, and thus to improve the quality
of life for humans. These represent a real ecological threat, as they end up in soil or ground waters
in amounts that can affect the environment. Among these drugs, doxorubicin is a highly cytotoxic
compound used as anticancer medicine. Doxorubicin can be efficiently removed from wastewater
or polluted water using a simple enzymatic (biocatalytic) system, employing the oxidoreductase
enzyme laccase and a stable organic nitroxide-free radical, TEMPO. Results presented in this work
(as percentage of removal) were obtained at pH 5 and 7, after 2, 4, 6, and 24 h, using different ratios
between doxorubicin, laccase, and TEMPO. It was shown that longer time, as well as an increased
amount of catalyst, led to a higher percentage of removal, up to 100%. The influence of all these
parameters is also discussed. In this way it was shown that the laccase–TEMPO biocatalytic system is
highly efficient in the removal of the anticancer drug doxorubicin from wastewaters.

Keywords: laccase; TEMPO free radical; doxorubicin; enzymatic degradation; catalyst; bioremediation;
pollutant removal

1. Introduction

Doxorubicin is an important anticancer medicine used for treatment of different types
of maladies [1]. It is a natural compound isolated firstly from a Streptomyces bacteria [2],
which contains a hydrophobic anthraquinone ring and a hydrophilic amino sugar frag-
ment [3]. This important drug has multiple mechanisms of action that include DNA
intercalation, topoisomerase II inhibition, and so on; another mechanism of action of dox-
orubicin as a strong chemotherapeutic agent involves the formation of reactive oxygen
species (ROS) [4,5]. Doxorubicin can also mediate the intracellular generation of some
types of free radicals [6].

However, doxorubicin treatments in humans are associated with high risks [7], and
some synthetic derivatives were obtained in order to overcome such issues [8], preserving
its therapeutic effect against tumor cells but reducing its toxicity to normal ones. Doxoru-
bicin has a short half-life in the blood [9] and about half is excreted. The biodegradability
of doxorubicin or other medicinal drugs (i.e., antibiotics) from wastewaters can be difficult
and might have long-lasting negative effects. In the specific case of doxorubicin (Figure 1),
the degradation kinetics in water have been well studied [10].

A highly effective and specific method to remove organic contaminants from polluted
environments (and of course lowering their associated toxicity) is enzymatic treatment,
which also offers the potential for end-user applications for an effective, greener pollution
control [11,12]. Laccase [13] is a copper-containing polyphenol oxidase enzyme, found
in many fungi, plants, and bacteria, which can oxidize a variety of compounds such as
amines, phenols, etc., and some dyes and medicines, using molecular oxygen as final
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oxidant [14]. Besides, laccase is affordable and cheap in comparison with other reported
metal complexes, and its efficiency in water as a natural environment may be desirable
when dealing with hydrophobic derivatives [15]. Bacterial laccases are also involved in
toxin oxidation or protection against oxidizing agents [16].

Figure 1. Chemical structure of doxorubicin and the TEMPO stable free radical.

With all these benefits, laccase by itself can be used directly with very few substrates,
but the introduction of laccase-mediator systems to overcome this limitation of its redox
potential has led finally to extended applications, and therefore the mechanistic way of
action is nowadays well-known [17].

The action of laccase substrates can be enlarged to higher-redox potential compounds
that laccase itself cannot oxidize, with the help of a redox mediator, which can be a free radi-
cal [18]. For example, laccases are able to oxidize the TEMPO ((2,2,6,6-tetramethylpiperidin-
1-yl)oxyl) stable free radical to the corresponding oxoammonium cation [19], a very strong
oxidant that is further able to oxidize and decompose many organic compounds. For
instance, laccase has been used for decolorization of azo dyes [20] and topical reviews are
available [21].

Very recently [22], simple laccase was used for the removal of anticancer drugs from
effluents, including doxorubicin (Figure 1). On the other hand, it is well-known that simple
TEMPO can induce apoptosis of some cancer cells and suppress tumor growth [23], or have
a protective effect in regard to doxorubicin cardiotoxicity [24].

Based on these considerations, the laccase/TEMPO/air system, used for the removal
of doxorubicin via an oxidation/degradation process from wastewater or polluted water,
can be regarded as a better, effective and greener approach, as no transition metals or other
strong or harsh inorganic or organic oxidants are used.

In this work, we employed for the first time this laccase–TEMPO mediated system
to study the process of removal of doxorubicin from water, varying and testing different
working conditions in order to find the best settings that can be extended to an applica-
tive process. Due to several advantages, doxorubicin was used as a model compound:
(i) it is a natural chemical compound, intensely used in humans as medicine; (ii) it has
a strong, bright red color, meaning that its concentration can be easily followed by sim-
ple techniques, such as UV–vis measurements; and (iii) it is also fluorescent, denoting a
supplementary advantage in a possible dual-monitoring process and differentiation from
other contaminants.

2. Materials and Methods
2.1. Chemicals

Doxorubicin hydrochloride was a product of AvaChem Scientific (Bucharest, Romania) and
used as received. Laccase from Trametes versicolor was a Sigma product (Bucharest, Romania)
with an activity of 0.84 U/mg. TEMPO stable free radical was from Acros Organics
(Bucharest, Romania). Trisodium citrate dihydrate and citric acid were purchased from
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Roth (Bucharest, Romania). Double distilled purified water was used in all experiments.
Chemicals were used as received and stored in proper conditions (4–10 ◦C).

2.2. Apparatus

UV–vis measurements were performed at 480 nm (the maximum wavelength of the
doxorubicin) using either an Evolution 220 UV–vis spectrophotometer equipped with
Insight software (Thermo Scientific, Schwerte, Germany) or a UVD-3500 double bean
spectrophotometer (Labomed, LA, USA). Standard rectangular quartz cells with 0.5 or 1 cm
optical path were used. A calibration curve was used for measuring the concentration of
doxorubicin (see Figure S1, Supplementary Materials).

2.3. Methods

Stock solutions were prepared each day and kept in a fridge prior to measurements,
with the following concentrations: TEMPO (1 mg/mL), laccase (1 mg/mL), and doxorubicin
(0.1 mg/mL) were prepared in distilled water. Citrate buffers (0.1 M) were prepared by
mixing 17.099 g of sodium citrate dihydrate and 8.042 g of citric acid in 800 mL distilled
water. The solution pH was adjusted by using HCl or NaOH, and then distilled water was
added until the final volume was 1 L.

In order to determine the degradation rate of doxorubicin in the presence of laccase
and TEMPO, three batches of doxorubicin, with 0.5 mL, 1 mL, and 1.5 mL, were made.
Each batch was then divided into five samples, by adding from stock solutions the same
laccase and TEMPO volume, varying from 0.01 mL to 0.05 mL, then the citrate buffer was
added to make a final volume of 2 mL. All samples were monitored at 0, 2, 4, 6, and 24 h.

The percentage of removal was calculated using the following formula:

% o f removal =
[Dox0 − Doxt]

[Dox0]
× 100

where Dox0 is the initial concentration of doxorubicin (at time 0) and Doxt is the concentra-
tion of doxorubicin at selected time (2, 4, 6, or 24 h).

3. Results and Discussion

Doxorubicin is an organic compound that is intensely red colored (also fluorescent),
and in the degradation process this bright color fades to colorless. Doxorubicin can be
regarded as an anthraquinone dye, a polyphenol, and a saccharide derivative, and this
makes it very susceptible to degradation processes following an oxidative path. Oxidation
of organic compounds can be achieved employing high-oxidant transition metal cations
(manganese and chromium derivatives being the most used), but this approach is consid-
ered very harmful for the environment, as these metal cations are extremely hard to remove
from the system. As a greener approach, catalytic systems that avoid harsh chemicals can be
used, with better results. The biocatalytic system of laccase/TEMPO (TEMPO being acting
as a mediator) is well-known and has been reviewed many times in the literature [25], and
nowadays is often used for the oxidation of phenols and amines via four single electron oxi-
dation steps, using molecular oxygen from air [26]. Due to these important advantages, our
work focused on employing such biocatalytic systems in the degradation of doxorubicin.
The overall process is represented in Figure 2.

Both laccase and TEMPO work as catalysts in the activation process of oxygen. Thus,
the oxidative form of the laccase enzyme transforms TEMPO free radical into an oxoammo-
nium salt, a strong oxidant, which is able to degrade doxorubicin. In this process, TEMPO
is also regenerated, while the reduced form of laccase is activated by the oxygen from
air. The reaction mechanism of the laccase–TEMPO system is well documented in the
literature [27].
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Figure 2. An overview of the laccase enzymatic process and of the TEMPO mediator in aerobic
degradation of doxorubicin.

Bioremediation using fungi-based technology (such as laccase) is regarded as a very
cheap, effective, and environmentally friendly way of removing different pollutants, in-
cluding human drugs from wastewaters [28]. Thus, this double catalyst process uses only
oxygen from air as an oxidant and finally degrades doxorubicin, making the whole process
effective without the use of any metal cations or other harsh chemicals that may further
affect the environment.

Firstly, several tests were made, in order to achieve the best results and also to see if
the proposed system works (and have some advantages over the literature data). From
the literature data we know that the best pH working domain is between 5 and 7 [26,29],
therefore the tests were performed in citrate buffers with standard pH values of 5 or 7. As
doxorubicin slightly decomposes in the presence of laccase [22], we also tested first (i) its
own degradation as a plain aqueous solution, (ii) its degradation in the presence of enzyme
laccase, and (iii) its degradation in the presence of TEMPO free radical. Measurements
were made at 2, 4, 6, and 24 h, and at pH 5 and 7, as already mentioned.

Figure 3A shows the results obtained at pH 5, while Figure 4A shows the results
obtained at pH 7. On its own, doxorubicin decomposition is very slow, reaching a maximum
of 0–3% after 24 h, and in the presence of only laccase 1–6%; in the presence of TEMPO,
again a low amount of doxorubicin decomposes, from 3–8% (Figures 3A and 4A). These
results mean that the employment of only one catalytic cycle (either the enzymatic cycle
of laccase or the TEMPO free radical cycle, as depicted Figure 2) in the degradation of
doxorubicin does not lead to a practical and effective result with regard to doxorubicin
degradation, even after 24 h.

However, the simultaneous presence of laccase and TEMPO (considered a greener chem-
istry approach [29,30]) induces a dramatic change: as can be noted in Figures 3B–D and 4B–D,
the percentage of removal is close to 90–100% in some cases. Details will be discussed next.

The influence of the reaction time, of the concentrations, and of the ratios between the
three components (doxorubicin, laccase, TEMPO) of the chosen system can be clearly seen
following the trends in Figures 3 and 4.

Thus, in all these pictures it is observed that: (i) a higher time of reaction led to higher
yields of removal of doxorubicin; (ii) the rate of doxorubicin degradation was higher in
the first 6 h; (iii) a higher ratio between the biocatalytic system (laccase/TEMPO) and the
doxorubicin yielded also a higher percentage of removal.

In this way, in Figures 3B–D and 4B–D it is noted that by increasing the concentration of
TEMPO and laccase from 5 mg/mL to 25 mg/mL, the degradation percentage at 24 h rises from
10–20% to more than 90% (for exact values see Tables S1 and S2 from the Supplementary Materials).

Regarding the influence of the concentration of doxorubicin, and also the influence
of different ratios between laccase and TEMPO on the final values of the percentage of
removal, a different set of measurements were performed. Thus, we used next a different
ratio between the concentration of the enzyme laccase and TEMPO free radical, following
the same three concentrations of doxorubicin that were used before.
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Figure 3. Percentage of removal of doxorubicin at pH 5: (A) blue, plain doxorubicin; red, in the
presence of laccase; black, in the presence of TEMPO; (B–D) with the simultaneous presence of the
laccase enzyme (L) and TEMPO (T) free radical. Starting doxorubicin concentrations: (A) 75 mg/mL;
(B) 25 mg/mL; (C) 50 mg/mL; (D) 75 mg/mL.

Figure 5 shows the data obtained using doxorubicin at three different concentrations,
25 mg/mL (red), 50 mg/mL (blue), and 75 mg/mL (black). The percentage of removal
measured using different ratios between the enzyme laccase and TEMPO free radical
was slightly smaller (by a few percentage points) when the concentration of laccase was
5 mg/mL and the concentration of TEMPO was 25 mg/mL (Figure 5A), compared with
the case in which the concentration of laccase was 25 mg/mL and the concentration of
TEMPO was 5 mg/mL (Figure 5B). As a partial conclusion, these parameters seem to have
a small influence on the final percentage of removal, and also are not affected by the time
of reaction. A similar conclusion can be drawn about the influence of pH.

Although in this work no attempts to recycle the laccase and TEMPO were made (the
employed microgram concentrations cannot be successfully isolated for reuse), further
work on immobilization of laccase and/or TEMPO on inert materials can be achieved, for a
better reusability of the catalyst [31–33]. Anyway, the process can be extended for removal
of other synthetic dyes [34], so the use of this specific dual system of laccase–TEMPO can
be regarded as a multipurpose biocatalyst for environmental remediation [18].
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Figure 4. Percentage of removal of doxorubicin at pH 7: (A) blue, plain doxorubicin; red, in the
presence of laccase; black, in the presence of TEMPO; (B–D) with the simultaneous presence of the
laccase enzyme (L) and TEMPO (T) free radical. Starting doxorubicin concentrations: (A) 75 mg/mL;
(B) 25 mg/mL; (C) 50 mg/mL; (D) 75 mg/mL.

Figure 5. Percentage of removal of doxorubicin at different concentrations, varying the ratio between
laccase and TEMPO: (A) laccase 5 mg/mL, TEMPO 25 mg/mL; (B) laccase 25 mg/mL, TEMPO
5 mg/mL; the concentrations of doxorubicin were 25, 50, and 75 mg/mL.
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4. Conclusions

The system employed in this study, bringing together the laccase enzyme as a multi-
purpose biocatalyst and TEMPO stable free radical as a redox mediator, showed that it is
able to remove doxorubicin from wastewater, constituting a greener approach for medical
or pharmaceutical environmental remediation. This biocatalytic process can be easily ex-
tended to suitable substrates, including other medicinal drugs, dyes, organic contaminants,
and so on.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijerph19116645/s1, Table S1. Influence of time and concentrations
of doxorubicin, TEMPO and laccase upon the % of removal of doxorubicin at pH 5. Table S2. Influence
of time and concentrations of doxorubicin, TEMPO and laccase upon the % of removal of doxorubicin
at pH 7. Figure S1. Calibration curve showing the correlation of the doxorubicin concentration with
the values of the registered absorbance at 480 nm.
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