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Abstract: This paper presents research on the influence of material anisotropy caused by the tech-
nological process of its manufacturing on the plastic properties of the material. In the experimental
study, samples cut from an AISI 304L rolled sheet in the rolling direction, transverse, and at a 45°
angle to the rolling direction were predeformed by axial deformation at 18 and 30%. The principal
specimens extracted from the pre-deformed plates, cut in the longitudinal, transverse, and 45° angle
directions, were subjected to tensile loading until failure. The data thus obtained allowed for the
analysis of the plastic flow mechanism using the author’s calculation procedure. The Cr coefficient
analysis provided information on the state of plastic anisotropy caused by the pre-deformation.
For the specimens predeformed in the rolling direction, plastic flow isotropy was observed at a
strain of 35%. For the specimens predeformed in the transverse direction—the plastic anisotropy is
completely removed at a strain of 33%. For the specimens predeformed at 45 degrees to the rolling
direction, it was found that the strain completely removed the plastic anisotropy induced by rolling.
The calculations provided information that due to an abrupt change in the strain path, a strong
reconfiguration of the plastic flow mechanism occurs, causing the removal of anisotropy generated
by rolling.

Keywords: stress—strain measurements; thermal analysis; complex strain path; plastic anisotropy;
reconfigurations of plastic flow; steel AISI 304L

1. Introduction

Material in the form of cold-rolled sheets shows anisotropy characterized by differ-
ences in plastic properties in three mutually perpendicular directions—in the direction
perpendicular to the rolling direction, in the direction lying in the sheet plane, and the
normal direction to the surface of the sheet (main directions of anisotropy). Sheet metal
is widely used in many industries to produce, among other things, car bodies, cans, and
cold-pressed machinery parts. Machine parts are often manufactured by cold stamping.
The process minimizes the number of operations to reduce the costs of manufacturing. The
aim is to obtain a flawless product with a smooth surface on which protective coatings
can be applied directly. In this process, in addition to the friction force, the anisotropy of
the material has a significant effect on the distribution and value of strain and thus on
the quality of the product. It is sufficient to “form” the plastic properties of the material
so that the molding process takes place in a controlled manner. The control of plastic
properties of a material can be carried out, for example, by using predeformation loading
in desired directions [1]. The crystallographic texture of cold-rolled and annealed sheets
strongly depends on the technological process parameters of their manufacture. This
process determines the anisotropy of the plastic properties of the material [2,3].

Very often, the crystallographic texture of a material is not homogeneous—it changes
as a function position within the sample. For example, in rolled samples, the texture is
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strongly dependent on the depth from the surface into the sample. Accurate knowledge of
texture is essential for a variety of applications most commonly related to the prediction
of macroscopic material properties based on the anisotropy of a given property at the
monocrystalline level [4-6]. The crystallographic texture of the sheets affects the strain
distribution and plastic flow during the moulding process of the products. Therefore, it is
plastically deformed to the appropriate level to obtain a material with a specific anisotropy.
In rolled sheets of metals and alloys, plastic anisotropy results from the crystallographic
alignment of slip systems in an otherwise polycrystalline material. The large plastic
deformations caused by the rolling process results in reorientation and fragmentation of
the grains. This has been documented in many experimental and theoretical works [1-4].

These studies have led to the development of various anisotropy coefficients where
the Lankford coefficient R and its derivatives provide a quantitative measure that is used
by both researchers and engineers [5]. Typically, the coefficients are calibrated under
proportional loading conditions, where the textured material is tested along the rolling
direction, transverse direction, and at 45 degrees to the rolling direction. The R-coefficients
are specified at sufficiently large deformation, thus allowing for accurate measurement of
the lateral plastic strains.

Anisotropic yield surfaces are experimentally evaluated in the condition of a constant
strain rate. In textured materials, the uniaxial tests in tension are often conducted in
different orientations with respect to the rolling direction. In addition, biaxial tests in
tension at various stress ratios are used to determine the points on the stress loci [6-10].
It is worth noting that plastic hardening somewhat complicates the analysis, where it is
not entirely clear how to choose the proper amount of plastic work or strain range at the
given hardening rate. The measurements are also sensitive to the deformation protocols,
making a significant difference in whether the experiment is conducted under proportional
or non-proportional loading. For these reasons, the forming limit diagram constructed in
terms of strains is considered a viable indicator of plastic anisotropy [11,12]. The authors
of the work [13-16] used this indicator to analyse the behaviour of plastically anisotropic
materials subjected to loads. Among the numerical methods, the self-consistent anisotropic
approach was recognised [17] and proven to correctly predict the anisotropic behaviour of
various polycrystalline materials.

Metals and alloys exhibit complex behaviour under non-proportional loading. It has
been reported that an abrupt change of the strain path triggers equally strong reconfigura-
tion of the plastic flow [18,19]. Furthermore, the materials subjected to an orthogonal strain
path tend to form micro-shear bands [20].

The crush-forming of stainless steels (AISI 304L) as a result of cold plastic deformation
caused by the technological process of rolling creates high strength properties [21-24].
The phenomenon of strengthening by crushing distinguishes these steels from most other
materials. Stainless austenitic and ferritic austenitic steels, when plastic deformed, show an
interesting combination of high strength and formability, making it possible to reduce the
weight of the parts. The mechanical properties of AISI 304L can be improved if the stainless
steel is cold-formed before basic forming [25-28]. This property makes the material well
suited for the production of roll-formed profiles to reduce the weight of the structures
they are used in. These profiles, made from a pre-formed AISI 304L steel strip, are used
for car bodies, train bodies, and various structural frames. Lighter structures use less
energy during acceleration and deceleration, which is an extremely important economic
aspect. In responsible mechanical structures, structural isotropy of the material is aimed for,
which is problematic in the case of prefabricated products manufactured by cold forming
technology [29-31].

The problem discussed in this paper is very important from a technological point of
view. Many papers are concerned with the analysis of the mechanical and corrosion proper-
ties of stainless steel produced using different technologies. The effects of various influences
on the final properties of the material are studied, including pre-deformation [32-34]. How-
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ever, there is no unambiguous answer as to how the plastic properties of the material
should be formed to obtain their required directional distribution.

For parts manufactured from thin cold-rolled sheets, e.g., by pressing, isotropy of
plastic properties is often required. One of the ways to achieve this effect is a directional
predeformation of the material. This paper presents a method for determining the change
of material anisotropy as a function of strain level. This study aims to measure, then
theoretically evaluate, the plastic flow reconfigurations in steel AISI 304L, where the
reconfigurations are triggered by the changing pathways of the tensile strain. Austenitic
chromium-nickel steel is widely used in the petrochemical, chemical, food, automotive,
and other industries, where significant structural components are made from it. Therefore,
it is important to know how to pre-treat the material and how to orient the cut pieces on
the sheet metal; thus, their properties are the same in all directions.

To verify the study aims, 21 configurations of test specimens were prepared and
subjected to uniaxial tension until failure. This provided the data needed to develop a
method for determining the variation in plastic properties of the material. Figure 1 shows
the essence of the work in which the parameter that determines the plastic properties
of the material is the Cr coefficient. Details of the experimental studies are included in
Appendix A of the paper.
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Figure 1. Graphic abstract of work: (a) orientation of test specimens on a cold-rolled sheet; (b) prede-
formation of type-A specimens—18 and 30%; (c) monotonic tensile test of type-B specimens cut from
predeformed type-A specimens; (d) the course of the Cg coefficient determining plastic properties of
the material.

2. Influence of The Direction of Initial Predeformation on the Plastic Anisotropy
AISI 304L Steel

Often, plastic anisotropy is monitored in terms of the Lankford coefficient, where the
ratio of two lateral plastic strains is taken at a sufficiently large magnitude of the axial
strain. The coefficient is regularly incorporated into the descriptions of the anisotropic
yield surfaces. In this approach, it is moved one step back, and instead, a new coefficient of
anisotropy is derived. The analysis suggests that a rate-based coefficient more correctly
captures the instantaneous character of the plastic flow. In order to make the study tractable,
the experimental data obtained from all test protocols were converted into appropriate
polynomials. More specifically, polynomials were constructed where the true plastic strains
and the true stress are expressed in terms of the true axial strain. This ensures that the
error of the approximations is negligibly small. In each test protocol, the loading pathway
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was specified in terms of the deformation path accumulated during proportional and/or
non-proportional loading. In other words, the deformation path is treated similarly as if it
was the adequate time of the active loading process.

The analysis starts with selecting the mechanisms of plastic flow that were justifi-
able by physics. It is noted that the general rule of the Huber-Mises mechanism can be
applied to stainless steel. In this approach, the mechanism is constructed in the frame-
work of tensor representation [35,36]. As a result, the plastic flow tensor is introduced
M =M + CR (N* — N¥) + CR}(N" — N?) 4+ CE(N¥ — N?) such that:

&l = %M Ceq (1)

In the Cartesian coordinate system, the symmetric plastic flow tensor M;; has six
components, where i,j = 1,2,3. The tensor consists of the isotropic Huber-Mises mecha-
nism MY =+/3S/ \/J2 and there are three slip orientations aligned with the active plastic
processes. In this notation, the stress deviatoris S = ¢ — 1tro /3 and the true stress is ¢
The second invariant of the stress deviatoris J, = S : S/2, where the double colon indicates
that it is a scalar product of the tensors. Herein, the directional plastic flow may occur along
three planes of B samples, namely the plastic flow on the plane {a,w} is defined by the
tensors (N* — N%), the plastic flow on {a,z}is (N” — N?) and, lastly, the plastic flow on
{w,z} is (N¥ — N?). The three tensors N*, N¥ and N~ are dyadic products constructed
on the basis of unit vectors n?, n¥ and n*. The vectors are pointing in the direction of the
active loading n?, and the later direction n™ and the through-thickness direction #*. In this
manner, the tensors are N* = n’ @ n’, N = n¥ @ n and N* = n* @ n®, respectively. The
unit vectors are orthogonal and, therefore 1 = N* + N% + N?, where the identity tensor is 1.
The polynomials of the stress—strain curves and elastic properties are used for the prediction
of the plastic strain rates. In the next step, the experimentally obtained strain rates were fed
into the rates specified by Equation (1). As a result, three rates of plastic strain were defined,
where the first is aligned with the axial deformation &, = N“ : ¢”. The through-width
strain rate is &, = N : £ and the through-thickness strain rate becomes ;' = N7 : &’ Itis
assumed that the material is plastically incompressible (frM = 0) and, therefore, we have

e = — (sz, + SZ) In the analysis, the current stress is ¢ = N%0, and, therefore, the plas-
tic flow tensor becomes M = (3N* —1) + C; (N* — N¥) + Co(N* — N?) 4+ C3(N“ — N7).

Consequently, the measured rates of plastic strain ¢; and &/, are:

ég = (1 + C1/2 + CZ/Z)éeq
e = —(1/24 C1/2 — C3/2)éeq )
EIZ) = *(1/2 - C2/2 - C3/2)éeq

where the through-thickness rate is calculated. In plastically isotropic material, it must
be ensured that the three coefficients C;, Cp and Cj are equal to zero. The equations are
solved, and it was noticed that the three coefficients were reduced to just one:

P

CR=1+2% @)
Ea

while the equivalent plastic strain becomes e.; = ¢, The isotropic plastic flow requires
that éZ, = —ég /2, and then the coefficient Cy is equal to zero. In its final form, the plastic
flow tensor becomes:

~V/3S

M T Cr (NW — N?) (4)
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In the next step, the equivalent stress is derived. It must be ensured that the require-
ment of plastic work invariance [35] is always satisfied. This requirement states that the
rate of plastic work is independent of the frame of description, hence ¢ : &’ = Oeqleq:

1
UquEMIG (5)

Note that the rate of plastic strain is defined in (1), and the plastic flow tensor is given
in (4). In this construction, the equivalent stress is described in terms of the Huber-Mises
plastic flow mechanism M and is a function of the dynamic coefficient of anisotropy
CRr. The coefficient quantifies the directionality of plastic flow and explicitly affects the
shape of the yield surface, where the yield surface is 0,; = 0;. The stress contours are
determined in terms of the current stress c,. This stress is rescaled by an arbitrarily chosen
reference stress ou. Accordingly, we choose the axial stress that is measured in A1B1_0
sample at strain 0.9%. In summary, the following were obtained: stresses, the rates of
plastic strain, and the coefficient Cr—all the quantities are determined at each point of the
deformation path. The path is the cumulative axial strain achieved during the proportional
and non-proportional test protocols. The plastic strain rates are not quite constant, but
their variations are sufficiently small throughout the entire deformation process such that
these variations do not impact the stress, the plastic flow mechanisms, and the dynamic
coefficient Cg.

3. Results

As mentioned earlier, the test protocols are summarized in the Table A2 of Appendix A.
The research assumed the adoption of 21 test protocols, where each test was repeated three
times. First, the three B samples obtained from the virgin (non-deformed) A1, A2 and A3
samples were tested. The second group of the Al, A2, and A3 samples was pre-deformed
to 18% of true strain. Each such sample was unloaded and then used to extract B1, B2, and
B3 samples. The last group of large samples was pre-deformed to 30% of strain and after
unloading, the final group of the B samples was obtained. In our notation, A1B1_0 means
that the B sample was obtained from the non-deformed A1l sample. Consequently, the B
sample was subject to loading in the B1 direction until failure. The label A3B2_18 indicates
that the A3 sample was initially pre-deformed to 18% of the true strain, then the B sample
was deformed in the B2 direction until failure. This notation was consistently applied to all
samples. The stress—strain responses in all B samples were measured (Figure 2).
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Figure 2. Stress—strain measurements in samples subjected to tensile deformation under 21 test
protocols. Stress overshoot is clearly observed in the samples subjected to non-proportional strain
paths. An increase in the plastic-hardening rate is depicted in the samples loaded and reloaded in the
same direction.
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There are interesting trends worth noting. An increased rate of plastic hardening
was observed in the A1B1_18, A2B1_18, and A3B1_18 samples. All the samples were
preloaded, unloaded, and reloaded in the same direction. It has been argued that the
increase in the hardening rate may result from the twin-slip interactions [20,21,23,33].
The non-proportional loading protocols consistently caused a noticeable stress overshoot.
Clearly, the pre-existing dislocation structures imposed additional constraints on the cross-
slip mechanism. The ultimate tensile stress (UTS) under all loading protocols was in the
same range, and its mean magnitude was 1134 MPa, with the standard deviation being
36 MPa. The mean ductility was 48 percent, and the standard deviation was 2.6 percent.

Due to the technological process of its manufacture, the tested material had a higher
dislocation density and thus higher internal energy than the non-deformed metal [37,38].
This results in the occurrence of anisotropy of mechanical properties. Directional plastic
deformation (predeformation) causes elongation of individual grains in the flow direction
of the material. The elongation of grains is accompanied by the ordering of their crystal-
lographic axes, characterized by the parallelism of specific planes and crystallographic
directions of individual grains. The directed deformation of the grains thus causes a change
in mechanical properties depending on the flow direction of the material. In [39], the
authors considered using similar AISI316L steel for hip acetabular cups. However, despite
its good biomedical properties, this material, due to the anisotropy of its mechanical prop-
erties, proved to be worse at reducing Tresca stresses than it was considered by others.
Predeformation of the material introducing targeted grain crosslinking could be an effective
method to counteract this, which was confirmed in this work.

A summary of this research is grouped and presented in Figures 3-5. The first group
consists of the material responses on B samples obtained from Al samples (Figure 3).
The next group represents the predictions made on B samples extracted from A2 samples
(Figure 4). The last set of results is gathered from B samples based on A3 samples (Figure 5).
In the first column of each figure, the dynamic coefficients Cg as they evolve during the
active deformation path were displayed. For convenience, the loading direction is shown in
the sketch of the A sample. The three contours ¢,y = 0, of the yield stress are constructed
on the planes of principal stresses (a,w), (4,z) and (w,z). As mentioned earlier, the yield
stress o, is normalized by the axial stress (A1B1_0) taken at strain 0.9%. This stress is
09 = 240 MPa. The contours are defined at three deformation points, namely at strains
equal to 19% (point 1), 31% (point 2), and 40% (point 3). Colour-coding has been applied
here. The anisotropy coefficient Cr and stress contours marked in black, represent the
uninterrupted proportional tests (baseline tests). The blue lines depict results obtained on
samples pre-deformed to 18% of true strain. The red lines refer to the samples preloaded to
30% of true strain.

3.1. Pre-Deformation in the Rolling Direction

In the A1B1_18 sample (blue lines in Figure 3), the coefficient Cr only slightly deviated
from the baseline coefficient (black lines). However, the plastic flow mechanism in the
A1B1_30 sample experienced an abrupt change. It was noticed that the stress contours in
points 2 and 3 are not much different from each other. The dynamic coefficient was plotted
as a function of the deformation path. The contours of the yield stress were constructed on
three planes of principal stresses at deformation points 1, 2, and 3.

This was not a surprise because the coefficients C in these points have similar values.
The non-proportional loading brings the coefficient Cr to zero, where the plastic flow
becomes isotropic. At strains near failure, the coefficient Cr increased again. It was
observed that this pattern repeated itself in nearly all samples subjected to the complex
loading protocols (Figures 3-5). The behaviour was quite different in the reloaded samples
at 45 degrees to the rolling direction.
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Figure 3. (a) Dynamic coefficient of anisotropy Cr and stress contours in B samples extracted from
Al samples—A1B1 samples reloaded in the rolling direction. (b) Dynamic coefficient of anisotropy
Cg and stress contours in B samples extracted from Al samples—A1B2 samples reloaded in the

transverse direction. (c) Dynamic coefficient of anisotropy Cr and stress contours in the B samples
extracted from Al samples—A1B3 samples reloaded at 45 degrees to the rolling direction.
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Figure 4. (a) Dynamic coefficient of anisotropy Cr and stress contours in B samples extracted from A2
samples—A2B1 samples reloaded in the transverse direction. (b) Dynamic coefficient of anisotropy

Cr and stress contours in B samples extracted from A2 samples—Samples A2B2 reloaded in the

rolling direction. (c) Dynamic coefficient of anisotropy Cg and stress contours in B samples extracted
from A2 samples—Samples A2B3 reloaded at 45 degrees to the rolling direction.
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Figure 5. (a) Dynamic coefficient of anisotropy Cr and stress contours in B samples extracted from
A3 samples—A3B1 samples reloaded at 45 degrees to the rolling direction. (b) Dynamic coefficient of
anisotropy Cr and stress contours in B samples extracted from A3 samples—A3B2 samples reloaded
at 45 degrees to the transverse direction. (c) Dynamic coefficient of anisotropy Cr and stress contours
in B samples extracted from A3 samples—Samples A3B3 reloaded in the rolling direction.

In the A1B2_18 and A1B2_30 samples, the plastic flow mechanisms did not follow
the baseline pattern (A1B1_0 sample). The abrupt reconfiguration of the plastic flow
mechanism was also detected on the stress contours (0, 0%), (04, 0%) and (0w, 0%). At strain
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35%, the A1B2_18 sample exhibited nearly isotropic plastic flow. In this case, the plastic
deformation removed the rolling-induced anisotropy.

In the A1B3_18 sample, the coefficient Cy takes values close to zero, and as a result,
the plastic flow becomes nearly isotropic. However, large deformations are responsible
for the re-development of a directional plastic flow. Small differences in the coefficient Cg
made the stress contours closely spaced.

3.2. Pre-Deformation in the Transverse Direction

The coefficient Cr indicates that this test protocol triggered an abrupt reconfiguration
of the plastic flow mechanism. The baseline coefficient Cr was re-established as the
deformation continued, but the near-failure strain reintroduced the directional plastic flow.

The behaviour in the A2B2_18 and A1B2_18 samples were very similar. The plastic
anisotropy is completely erased at strain 33%. It should be emphasized that the baseline
anisotropy remained almost unchanged. The differences in the coefficient Cy are clearly
displayed on the stress contours.

This test protocol produces conditions suitable for erasing the rolling-induced anisotropy.
Consistent with the other test results, the near-failure plastic flow became anisotropic again.

3.3. Pre-Deformed Sample at 45 Degrees to the Rolling Direction

In all A3B1 test protocols, the applied deformation erased the rolling-induced plastic
anisotropy. The trend is seen in the plots of the coefficient Cr. Consequently, the stress
contours remained nearly symmetric with respect to the stress axes.

The strongest anisotropy was detected in the A3B2_30 sample. The plastic flow
mechanism in the A3B2_30 sample evolved, causing a reduction of the anisotropy of
the subsequent deformation. Anomalous behaviour was observed in the A3B2_18 sam-
ple, where the mechanism departed from the baseline mechanism, then the plastic flow
mechanism became increasingly anisotropic.

As in all other cases, the near-failure strain reversed the trend. Note that the stress
contours (0, 0y ) and (0w, 07) consistently shifted toward the stress ¢,. At the same time,
the contours on the plane (0, 07 ) remained nearly symmetric. In summary, the A3B2 test
protocol produces very different responses than the other tests.

An abrupt reconfiguration of the plastic flow mechanism is observed in the A3B3_18
sample. It should be emphasized again that plastic deformation tends to reduce the initial
anisotropy.

4. Conclusions

The investigations carried out in this work prove that an abrupt change of the strain
path induces a reconfiguration of the plastic flow mechanisms, as shown in the dynamic
Cr coefficient waveforms. Moreover, the complex strain paths reduce, and in some cases
eliminate, the anisotropy caused by the technological process of rolling the analysed AISI
304L sheet. The dynamic Cg factor presents the plastic flow mechanism at a given moment
of loading. Due to this property, changes in the anisotropy of the material were observed
for the tested specimen configurations and loads. It was shown that for load levels close
to the failure of the AISI 304L material, the strain-reconfigured plastic flow mechanism
became anisotropic again in some cases. The level of elimination of the anisotropy of
the plastic properties of the material cannot be unambiguously determined for the load
configurations analysed. Each case must be considered individually on the basis of the
courses of the dynamic Cr coefficient. For the analysed cold-rolled AISI304L sheet, it is
possible to generalize:

e  For the pre-deformation in the rolling direction:

An increase in deformation induced by non-proportional loading results in a Cr value
close to zero, which is evidence that the material has acquired isotropic plastic properties.
Further deformation induces an anisotropy of its properties in the material again but less
than the original one.
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o  For the pre-deformation in the transverse direction:

For the A2Bx specimens cut in the direction perpendicular to the rolling, a reconfigura-
tion of the plastic flow mechanism is also observed during the loading process. The change
in the anisotropy of the material is more pronounced the higher the strain level.

e  For the pre-deformed sample at 45 degrees to the rolling direction

For all strain configurations of the A3Bx specimens, there was complete removal of
the anisotropy of the mechanical properties of the cold-rolled AISI304L sheet already at a
strain level of 38%.

The approach presented in this paper to determine the degree of anisotropy of plastic
properties of directionally deformed material was verified for cold-rolled AISI 304L sheet.
If the method is to be used for forms other than cold-rolled thin sheets, further verification
tests should be carried out, which will indicate the limitations of the presented approach.
This will be the subject of forthcoming papers.
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Appendix A Material and Methods

Appendix A.1 Experimental Investigation on the Influence of Initial Predeformation on the
Strength Properties of AISI 304L Steel

Austenitic chromium-nickel steel AISI304L was selected for the tests as it shows high
resistance to corrosion, especially in natural environments, as well as it is characterized
by very good weldability and good pressability [23,27,29]. It is used in the petrochemical,
chemical, food, automotive and other industries. From the rolled sheet AISI 304L size
1125 x 2500 x 1.5, samples A type were cut out, the shape shown in Figure A4. A laser
cutting plotter was used to cut samples.

Nine samples (A1) were oriented in the direction of sheet metal rolling, nine (A2)
perpendicular to this direction, and another nine (A3) oriented at an angle of 45° to the
rolling direction of the sheet. Figure A1l shows the arrangement of cut-out samples on the
sheet metal. Table Al presents the chemical composition of the analysed material. The
above was determined with the use of a Hitachi S-3000N scanning microscope with an
X-ray microanalysis device—Quest type from Thermo Noran.

Table A1. Chemical composition of AISI 304L.

Mn

Si P S Cu Cr Ni N Other

0.078

1.95

0.750 0.04 0.02 - 19 9.5 0.1 -
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Transverse direction

-ab Rolling direction

Figure A1l. Placement of A-type samples on a rolled sheet of AISI 304L steel.

Subsequently, in order to eliminate the residual stresses occurring after the rolling
process, the samples were subjected to supersaturation. The parameters of the supersatura-
tion process of the main samples were determined based on the observation of the AISI
304L austenitic steel structure taken from the rolled sheet in two perpendicular directions.
Direction 1 coincided with the direction of material rolling; direction 2 was perpendicular
to it. Figure A2 shows the observed structures obtained on the etched samples on a confocal
microscope before and after heat treatment.

7 + E
i -

x425 x1075 x2115

Rolling direction

@)

(b)

——100 pum ——40 pum —20 pm
Transverse direction

(9)

(d)

x425 x1075 x2115

Figure A2. Rolled sheets of AISI 304L steel prior to and after heat treatment: (a,c) microstructure
prior to the treatment; (b,d) microstructure after the steel was heated at 1100 °C for 1 h.
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647 Hydraulic Wedge Grip

AR

Figure A3. Sample on the test stand: (a) sample type A; (b) sample type B: 1—MTS 809.10 testing
machine; 2—thermal imaging camera; 3—cameras of the Aramis vision system DIC; 4—sample
type A; 5—MTS 858 Mini Bionix testing machine; 6—Sample type B; 7—longitudinal extensometer,
8—transverse extensometer.

As aresult of the heat treatment, the residual stresses caused by rolling were eliminated.
The shapes, as shown in Figure A2b,d, owe their regularity to temperature and heating
time. The heat treatment process for the adopted parameters caused dissolution in the
austenitic matrix of all carbides and intermetallic phases separated in the structure. The
long annealing time also led to the dissolution of ferrite precipitates in the structure,
blocking the tendency of the material to separate the sigma intermetallic phase, resulting
in clearly outlined structures. Similar observations were made by the authors of several
works [24,29,31,34].

Subsequently, three samples from the A1, A2, and A3 series were subjected to mono-
tonic tensile tests with a deformation rate of 10 mm/min. A static tensile test was carried
out on a servo-hydraulic strength machine MTS 809.10. During the test, the force and corre-
sponding strain of the measuring base were recorded continuously. Figure A3a shows a
sample on the test stand. Initial tests were aimed at determining the material characteristics
and determining the level of deformation that will be used to load samples in the next stage
of testing. The Aramis vision system and the Titanium thermal imaging camera were used
to plot the level of uniformity of deformation of the sample base.

In order to visualize the evenness of the deformation fields in the base part of the
tensile samples, five points were selected for each of them, for which the main deforma-
tion waveforms as a function of stress were determined by means of the Aramis vision
system. The position of the measurement points and the obtained waveforms are shown in
Figure A4.



Materials 2022, 15, 3575

14 of 20

Sample Type: A1 Sample Type: A2 Sample Type: A3
7004 700 4 700
600 - 600 600
© 500 @ 500 @ 500
o [ o
= = =
%»400— ﬁaoo— gaoo—
8 8 8
@ 300 @ 300 @ 300
g 300 P1 g 300 P1 g 300 P1
P2 P2 P2
" 200 P3 " 200 P3 " 200 P3
P4 P4 P4
100 P5 100 P5 100 P5
o T T T 0 T T T T T o T T T T
) 0.1 0.2 0.3 0.4 05 0 0.1 0.2 03 04 0.5 0 0.1 0.2 03 0.4 0.5
True strain True strain True strain
w
S st A-A
T Y i

100
. 70hé6
bl o
= N
° o
ba
a
o ‘
= "
lm
N

! Al
e L
130 .50
32210.10

Figure A4. Uniaxial stress—strain responses obtained from the A1, A2, and A3 samples. The stress—
strain responses are taken at five points on the sample surface.

The thermographs of A1, A2, and A3 samples were taken at true strains of 5%, 9.5%,
18%, 26%, 34%, and at failure (Figure A5). In this manner, it was confirmed that the stress—
strain responses are repeatable in the relevant areas of the samples up to about 40% of true
strain.

Subsequently, samples from the Al, A2, and A3 series were predeformed. The follow-
ing levels of total strain were used: 18% and 30%.

True strain
5% 9% 18% 26% 34% failure

Sample Al

Sample A2

!

Figure A5. Thermal images taken of the A1, A2, and A3 samples at true strains of 5%, 9%, 18%, 26%,
34%, and failure. These images confirm uniformity of plastic deformation above 30% of total strain.
Images obtained using IR software and a Cedip Titanium camera.

Sample A3
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In the next step, a series-B sample was cut from the A-type predeformed samples.
Figure A6 shows the location of type-B samples on the predeformed sample type A. They
were cut as follows: four pieces (B1) according to the rolling direction of the sheet, four
pieces (B2) in a direction perpendicular to rolling, and four pieces (B3) oriented at an angle
of 45° to the rolling direction of the sheet. As a consequence, the following combinations
were obtained: A1B1- (B11), A1B2- (B12), A1B3- (B13), A2B1- (B21), A2B2- (B22), A2B3-
(B23), A3B1- (B31), A3B2- (B32), A3B3- (B33). Table A2 summarizes the description of the
test samples.

Al A2 A3

Al A2 AZ

- %/@@/ﬁ 1

AT A2 A

Figure A6. Location of type B samples on a predeformed sample type A.

Table A2. List of test protocols.

Samples as Received Pre-Deformation: 18% Pre-Deformation: 30%
(Black) (Blue) (Red)
Al1B1_18 A1B1_30
Al1B1 0 Al1B2_18 A1B2_30
A1B3_18 A1B3_30
A2B1_18 A2B1_30
A2B1 0 A2B2_18 A2B2_30
A2B3_18 A2B3_30
A3B1_18 A3B1_30
A3B1_0 A3B2_18 A3B2_30
A3B3_18 A3B3_30

These samples were subjected to a monotonic load until they were destroyed. The
tensile test was carried out on the station shown in Figure A3b. The MTS 858 MiniBionix
testing machine was used for the tests. The Instron extensometer with a 10 mm measuring
base was responsible for measuring the longitudinal strain of the sample base. Transverse
strain measurements were made with the modified Instron extensometer.

Axial and transverse plastic strain rates were calculated at each stage of deforma-
tion, and the Huber—Mises plastic flow mechanism was determined to capture the plastic
anisotropy of the material. In these calculations, the plastic incompressibility of the mate-
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rial was assumed, which allowed for full calibration of the plastic flow mechanisms in a
two-stage tensile test [7-10].

Appendix A.2 Metallographic Examinations

In the next stage, metallographic examinations were conducted on the fractures ob-
tained during monotonic tensile tests. Metallographic studies of deformed samples were
performed on an optical microscope at 20x magnification. In the case of A-type pre-
deformed samples up to 18%, the test material was cut from the centre of the sample, and
the structure observed on the surface was determined by its cross-section. For the AB-type
samples, the metallographic observation was obtained by cutting the area of the deformed
sample above the crack surface. Figure A7 shows the obtained images of the deformed
structure of the samples. All photographs of metallographic structures were obtained for
the cross-section of the test samples—the observation area in each case was always the
centre of the sample.

A |

I {f R

‘ | |

A2 18%

G

1

Al1B2_18% A2B2_18% A3B2_18%

A2B1_18%

Figure A7. Structure of the tested material obtained at 20x magnification.
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1000x

A1B1_18

Microstructural studies using optical microscopy were performed on pre-deformed sam-
ples up to 18% (A1_18%, A2_18%, A3_18%), as well as samples that, after pre-deformation,
were cut and monotonic tensioned until destruction in 1 direction (A1B1_18%, A2B1_18%,
A3B1_18 %) and in direction 2 (A1B2_18%, A2B2_18%, A3B2_18%). The structure observa-
tions of the deformed material allowed us to conclude that the analysed austenitic stainless
steel has the structure of face-cantered cubic (fcc) with low stacking fault energy. For the
tested material, the most important element in the process of plastic deformation are the
effects of the microtwins induced by plastic deformation (parallel faults on microstruc-
tural images) and the effects associated with the phase transformation caused by plastic
deformation (dark field on the microstructural images).

The plastic deformation is caused by the appearance of twins, which block the slipping
bands of dislocation. With the increase in plastic deformation, this effect became stronger,
resulting in the reinforcement of the deformation phenomenon. The second effect of plastic
deformation causes the martensitic transformation, which leads to an increase in the content
in the alloy, having a higher strength than the martensite, austenite. In addition, as a result
of the increase in the number of martensite precipitates, the free path of dislocation glides,
which accumulate around the martensite grains, decreases. The slip bands appear along
with the selected directions. Similar observations were presented in [19,27-29].

Subsequently, microstructural studies were carried out for selected configurations of
the B-type samples. The performed images confirm the differences in the microstructure of
the material predeformed and cut in different directions. This proves the existence of the
anisotropy of the AISI304L material properties.

3000x 6000x

A1B1_30

Figure A8. Cont.
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A2B1_18

A2B1_30

A3B1_18

A3B1_30

Figure A8. Microstructural images of selected type-B samples.
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