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Abstract  
Recent advances in single cell RNA sequencing allow users to pool multiple samples into one 
run and demultiplex in downstream analysis, greatly increasing the experimental efficiency and 
cost-effectiveness. However, the expensive reagents for cell labeling, limited pooling capacity, 
non-ideal cell recovery rate and calling accuracy remain great challenges for this approach. To 
date, there are two major demultiplexing methods, antibody-based cell hashing and Single 
Nucleotide Polymorphism (SNP)-based genomic signature profiling, and each method has 
advantages and limitations.  Here, we propose a hybrid demultiplexing strategy that increases 
calling accuracy and cell recovery at the same time. We first develop a computational algorithm 
that significantly increases calling accuracy of cell hashing. Next, we cluster all single cells 
based on their SNP profiles. Finally, we integrate results from both methods to make corrections 
and retrieve cells that are only identifiable in one method but not the other. By testing on several 
real-world datasets, we demonstrate that this hybrid strategy combines advantages of both 
methods, resulting in increased cell recovery and calling accuracy at lower cost.  
 

Highlights 
1. An improved algorithm for cell hashing that distinguishes true positive from background 

for each individual hashtag at higher accuracy 
2. This hybrid strategy increases cell recovery and calling accuracy while lowering 

experimental cost  
3. This hybrid demultiplexing strategy is applicable for single-cell RNA sequencing with 

different donor species, subjects, and cell populations  
4. Doublet rate is a major determinant of the performance of SNP-based demultiplexing 

method 

Introduction 
The technical advances in single-cell sequencing have greatly benefited biological and medical 
research by enhancing our ability to investigate cellular mechanisms of homeostasis and disease 
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in a more precise, high-resolution, and multi-omic fashion(Tang et al., 2009, Svensson et al., 
2018, Stuart and Satija, 2019). In the past decade, more and more single-cell methods have been 
proposed to improve the quality, magnitude, modality, and economy of single-cell experimental 
approaches(Tang et al., 2009, Picelli et al., 2013, Klein et al., 2015, Macosko et al., 2015, Cao et 
al., 2017, Stoeckius et al., 2018, Kang et al., 2018, Heaton et al., 2020). Among them, single cell 
sample pooling and demultiplexing can greatly reduce the per-cell cost, and therefore have been 
extensively studied.  
 
To date, there are two major single cell demultiplexing methods: cell hashing and genomic 
signature profiling (also known as SNP profiling). Cell hashing is one of the key techniques that 
facilitates super-loading and demultiplexing of single-cell samples (Stoeckius et al., 2018). This 
method is comprised of an experimental protocol and a computational algorithm. Based on 
Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq) technology, cell 
hashing involves labelling cells from unique samples with an antibody conjugated to a unique 
oligonucleotide [also called hashtags, or hashtag oligonucleotides (HTOs)]. In the case of 
hashing, these antibodies are specific for ubiquitously expressed surface antigens such as β2-
microglobulin (Stoeckius et al., 2018). After labelling, cells can be pooled and processed 
together during single-cell preparations (e.g., 10X Genomics). Subsequently, after the resultant 
library is sequenced, cells’ sample identities can be demultiplexed based on their expression 
level of all hashtags using computational approaches. The genomic signature profiling utilize 
unique genetic variations, Single Nucleotide Polymorphisms (SNPs), of each subject to 
determine sample identity of each single cell. The “demuxlet” method is a computational tool 
that determines the sample identity by using natural genetic variation of each droplet(Kang et al., 
2018). Later, another computational tool called Souporcell was developed to cluster single cells 
based on their genotypes and detect doublets(Heaton et al., 2020), and has been widely used in 
the community according to its accuracy.  
 
Both demultiplexing methods have their advantages and disadvantages. First, in terms of scope, 
cell hashing has a much wider application range than genomic signature profiling. Cell hashing 
can be applied to most datasets regardless of cell type and donor species, whereas genomic 
signature profiling only works with individuals that have distinct genetic variations (e.g., 
different human donor), therefore cannot be used in most mice studies or on samples from 
longitudinal studies of the same donor simultaneously. Second, in terms of economy, cell 
hashing is more cost-effective despite both methods have extra reagent cost and experimental 
steps. Specifically, cell hashing adds one extra step to the single-cell sequencing workflow 
before pooling all samples together: staining cells with HTOs. Computational tool of genomic 
signature profiling, such as souporcell, can divide all cells into multiple genotype groups based 
on single cell transcriptional data without any extra experimental steps. However, to link the 
sample identities to these genotype groups, souporcell requires genetic variation references of all 
samples generated by bulk DNA- or RNA-seq which results in extensive downstream 
experimental costs and efforts, including DNA/RNA extraction, library preparation, deep 
sequencing, and computational analysis. Of note, since cell hashing uses barcoded antibody 
(HTO), the reagent cost is proportional to total cell numbers of all samples combined whereas 
the cost of genomic signature profiling is only related to sample numbers. In addition, genomic 
signatures of the same sample are consistent and therefore can be shared across different datasets 
(e.g., different cell populations from the same donor), whereas all cell populations must be 
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stained with HTOs when using cell hashing. Third, in terms of performance, genomic signature 
profiling has much higher cell recovery and accuracy compared with cell hashing. In general, 
genomic signature profiling has an average of 90% cell recovery rate with decent accuracy and 
reproducibility, whereas the performance of cell hashing can vary hugely between experiments. 
Bad staining increases percentages of negative cells and doublet rate also increases with the 
number of hashtags being used, both of which inevitably produce unidentifiable cells and drop 
cell recovery rate to 80% or less by sample pair that compounds as additional samples are 
combined. In conclusion, cell hashing has a wider range of application and higher cost-
effectiveness, whereas genomic signature profiling has better performance. 
  
Here, we propose a hybrid single cell demultiplexing strategy that combines both methods and 
improves computational algorithms, aiming to increase both cell recovery rate and calling 
accuracy while decreasing the experimental cost. By applying the hybrid strategy on multiple 
single-cell datasets that have cell hashing profiles and single cell transcriptomes, our results 
show that the cell recovery rate can be increased to 90% just by running the bioinformatic 
pipeline, which is significantly higher than the original cell hashing approach. Next, we apply 
this strategy to multiple integrated datasets that share the same group of donors and demonstrate 
that it greatly decreases the reagent cost while maintaining the same level of performance. For 
samples that don’t have genetic variations, this strategy can still increase the cell recovery rate to 
a great extent with our improved demultiplexing algorithm on cell hashing. Therefore, this 
strategy can be applied to a large variety of single-cell experimental setups and consistently 
generates high quality results. Together, our hybrid single cell demultiplexing strategy is 
generalizable, highly cost-effective, and excellent in performance.  

Results 
The existing demultiplexing methods have limitations in performance, efficiency, and 
economy  
To date, two methods for single-cell demultiplexing have been developed and widely used by the 
community, cell hashing and SNP profiling. However, each method has certain limitations that 
prevent it from being an universal demultiplexing approach.  
 
Demultiplexing with cell hashing has suffered from low cell recovery rate and reproducibility. 
Using the algorithm in Seurat package, the overall cell recovery rates of a benchmark dataset 
(dataset 1, Figure 1-A), two unpublished datasets (dataset 2 and 3, Figure 1-B,C), and two 
published dataset (dataset 4 and 5, Figure 1-D,E) are 81.67%, 79.57%, 80.31%, 62.29%, and 
30.56%, respectively. In dataset 2, 3, and 4, a significant number of cells with low level of a 
single hashtag were falsely classified as “negative”, partially explaining the low cell recovery 
rates (Figure 1-B,C,D). In dataset 5, 68.98% of cells were not detected for any hashtag, 
indicating that cell hashing is highly sensitive to antibody staining quality and insufficient 
staining results in extremely low cell recovery (Figure 1-E). Notably, even in dataset 1, the 
benchmark dataset with perfect staining, 16% of cells were detected positive for multiple 
hashtags and classified as “doublets” (Figure 1-A). These were either multiple individually-
hashtagged cells sticking together or single cells labeled with other hashtags after sample pooling. 
As a result, the design of cell hashing inevitably leads to ~20% cells loss, regardless of 
experimental quality. 
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SNP profiling has a much narrower range of application and requires extra resources for 
downstream analysis. Since it exploits natural genetic variations as a reference to distinguish 
individuals, it can’t be used in most mice studies or to separate samples from the same individual. 
To establish SNP reference, bulk RNA-seq or genomic DNA-seq data of each individual donor 
must be obtained, making this approach labor-intensive, time-consuming, and less cost-effective. 
Furthermore, we found that SNP-based demultiplexing could generate incorrect results in 
datasets with high doublet rate, revealing a critical caveat of this method. We applied SNP-
profiling to dataset 6 that is comprised of B cells and T cells from nine human donors and used 
cell hashing as a quality control for demultiplexing. Shockingly, we observed that each genotype 
cluster identified by SNP profiling expressed all HTOs evenly instead of exclusively expressing 
one HTO, indicating that SNP profiling failed to demultiplex dataset 6 (Figure 1-G, Table S1). 
Further investigation on single cell gene expression revealed that a significant number of cells 
expressed both B cell (CD19, MS4A1) and T cell (CD3E, IL7R) markers and therefore were 
most likely doublets with B and T cells in the same droplet (n = 2419, Figure 1-H). Notably, cell 
hashing also identified a higher-than-normal doublet rate in dataset 6 (3,910 doublets in 14,366 
cells), supporting our observation that high doublet rate interferes with the formation of genotype 
clusters in SNP profiling(Figure 1-I).  
 
HTOreader, an improved demultiplexing pipeline for cell hashing that increases calling 
accuracy and cell recovery  
The key step of cell hashing-based demultiplexing approach is to determine the cutoffs that 
distinguish true positive from background for each individual hashtag. The existing 
demultiplexing algorithm in Seurat package often generates inaccurate cutoffs for datasets with 
highly imbalanced sample sizes, resulting in increased mislabeling and decreased recovery rates. 
To address this problem, we developed a finite-mixture-modeling-based method that increases 
cutoff calling accuracy for all types of dataset. The pipeline is comprised of four steps: 1) 
normalize raw counts for each individual hashtag;  2) perform a mixture model to fit normalized 
data into two Gaussian distributions, representing background and true positive groups;  3) 
determine the cutoff based on means and standard divisions of the two groups; 4) determine the 
sample identities of each cell (singlet, doublet, or negative) according to their binding status for 
each individual hashtag (Figure 2-A). We have implemented this pipeline in R, calling it 
HTOreader, and have made it compatible with Seurat data so that all Seurat users can easily 
integrate it into their own pipelines (https://github.com/WilsonImmunologyLab/HTOreader). 
 
We set out to test HTOreader with the perfectly balanced benchmark dataset 1 and compare its 
performance to the demultiplexing function in Seurat(Stoeckius et al., 2018). Results 
demonstrated that the performance of HTOreader was comparable to Seurat (Figure S1). Next, 
we compared their performances on two unpublished datasets (dataset 2 and 3) containing B and 
T cell data with imbalanced sample sizes (Figure 2-B,E). For dataset 2, Seurat alone failed to 
determine a proper cutoff for hashtag1 and incorrectly assigned a sizeable amount of hashtag1-
labeled cells (n = 1322) into the negative group, resulting in a 13.22% cell loss (Figure 2-B). In 
contrast, by generating accurate cutoffs with HTOreader, the cell recovery rate (singlet rate) 
increased from 79.57% to 88.71% (Figure 2-C). For dataset 3, as we expected, Seurat incorrectly 
assigned a fair amount of hashtag3-labeled cells (n = 435) into negative group, resulting in a 5.98% 
cell loss (Figure 2-D,E). Again, HTOreader was able to increase the cell recovery rate from 
80.31% to 84.74% (Figure 2-F,G). To further demonstrate that this issue commonly exists, we 
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performed the comparison on a published dataset (dataset 4) from our lab (Figure 2-H,I)(Dugan 
et al., 2021). Unsurprisingly, Seurat mislabeled a significant amount of hashtag2_R2-labeled 
cells (n = 210, 21.23% of total cell) and HTOreader increased the cell recovery rate from 62.29% 
to 82.10% (Figure 2-H). To verify the accuracy of HTOreader, we performed SNP profiling to 
dataset 4 via Souporcell, a highly accurate, genotype-based demultiplexing pipeline (Heaton et 
al., 2020). Results showed that almost all hashtag2_R2-labeled cells retrieved from negative 
group by HTOreader were kept in “singlet0” in Souporcell, demonstrating the superior accuracy 
of HTOreader (Figure 2-I). Therefore, compared to Seurat, HTOreader has similar performance 
for well-balanced datasets and much higher accuracy and cell recovery rate when it comes to 
imbalanced, real-world datasets.  
 
A hybrid demultiplexing strategy that combines cell hashing with SNP profiling increases 
cell recovery rate and calling accuracy at lower cost 
Although HTOreader has greatly improved the calling accuracy and cell recovery rate of cell 
hashing, the cell loss caused by poor staining quality and high false-doublet rate remain unsolved. 
To solve these problems, we exploit the recent advances in computational demultiplexing 
algorithms, such as Souporcell, which clusters single cells based on genetic variations obtained 
from their transcriptomic data. Here, we propose a hybrid demultiplexing strategy that integrates 
results from HTOreader (cell hashing) and Souporcell (SNP profiling). Using this hybrid strategy, 
sample identities of poorly stained cells (negative) and single cells stained by multiple hashtags 
(false doublet) can be determined by clustering with singly-hashtagged cells (singlet) according 
to their SNP profiles. Since sample identities have been linked to hashtags, there is no need to 
generate SNP references separately. Therefore, by performing SNP clustering via Souporcell and 
integrating the results with cell hashing, both cell recovery and calling accuracy can be increased 
with no additional cost.  
 
We applied this hybrid strategy to real-world datasets we recently generated to examine its 
performance. In this dataset, a small aliquots of PBMCs from each of eight donors were stained 
with hashtag individually and pooled together to sort carrier cells that contained CD19+ B cells 
and CD4+ T cells (dataset 9), whereas the rest of PBMCs from the eight donors were pooled 
together to sort antigen-specific B cells (dataset 8) (Figure S2-A,B). We applied our hybrid 
strategy to demultiplex this integrated dataset by running all cells in dataset 8 and 9 through 
Souporcell and cells in dataset 9 through HTOreader. Results showed that HTOreader grouped 
all cells in dataset 9 into ten clusters, including 10,000 cells in eight singlet clusters (77.6%), 
2,795 cells in doublet cluster (21.69%) and 127 cells in negative cluster (0.71%) (Figure 3-A, 
Figure S2-C,D, Table 1). On the other hand, souporcell also groups all cells in dataset 8 and 9 
into ten genotype clusters, specifically, 13,837 cells in eight singlet clusters (2,285 in dataset 8 
and 11,552 in dataset 9), 1,742 cells in doublet cluster (416 in dataset 8 and 1,326 in dataset 9) 
and 71 cells in unassigned cluster (63 in dataset 8 and 8 in dataset 9). As expected, the singlet 
rate of dataset 9 by souporcell reached 89.65%, which is 12.05% higher than that of HTOreader 
(Figure 3-B, Table 1). To take a closer look, 99.39% of singlets identified by HTOreader were 
also registered as singlet in souporcell, validating the accuracy of both methods (Figure 3-B). 
Furthermore, the extra 12.05% singlets recovered in souporcell were almost exclusively from the 
doublet group in HTOreader (1,541 out of 1664), consistent with observation of high false 
doublet rate in cell hashing (Figure 3-B, Table 1). Finally, since datasets 8 and 9 shared the same 
group of donors with the same SNP profiles, cells in dataset 8 that were not labeled with hashtag 
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can be demultiplexed in the same way as dataset 9 and our hybrid strategy achieved an overall 
cell recovery rate of 88.42% with all cells in the 2 datasets combined (Figure 3-C). Therefore, 
only a small portion of cells from each donor is required to be properly stained with hashtag 
when using our strategy, which increases experimental flexibility and decreases reagent cost 
without sacrificing performance.  
 
We have demonstrated the hybrid demultiplexing strategy increases cell recovery rate by moving 
false doublet calls into the singlet group that share the same SNP profile. Another benefit of this 
strategy is to detect errors in souporcell caused by a high true doublet rate by validating SNP 
profiling results with cell hashing (Figure 3-D). As previously mentioned, we applied the hybrid 
strategy to dataset 7 and observed extremely poor correlation on singlet calls between 
HTOreader and souporcell (Figure 1-D, Table S1). We suspected there were unexpectedly high 
amounts of true doublets that interfere with the unsupervised clustering process of souporcell and 
make it unable to correctly distinguish genotype clusters. To test our hypothesis, we removed 
cell clusters consisting of true doublets that express marker genes of both B and T cells and 
found correlation greatly improved to 54.52% (Figure 3-E, Table S2). We then removed all 
doublets assigned by cell hashing (Figure 1-H) and obtained 96.06% of correlation (Figure 3-F, 
Table S3). Our results suggested that souporcell (and most likely other methods that use 
unsupervised clustering algorithms) is not accurate when applied to cell populations with high 
percentages of true doublets, while the hybrid strategy can identify and remove doublets to 
completely recover accuracy.  
 
Together, by integrating results from cell hashing and SNP profiling, the hybrid demultiplexing 
strategy corrects errors, decreases reagent cost, plus increases accuracy and recovery rate without 
extra experimental efforts. 
 
Comparative analysis of the multiple demultiplexing strategy for different types of single-
cell datasets 
Like detailed before, each demultiplexing strategy has its own application range, strengths and 
limitations. Here, we compare all available strategies and provide suggestions for demultiplexing 
different types of single-cell datasets (Figure 4-A).  
 
To demultiplex mice samples or samples from a single donor (e.g. different time points) that 
share the same genetic background, cell hashing is the only strategy available. For such datasets 
lacking genetic variants, using HTOreader, the improved demultiplexing algorithm for cell 
hashing, would increase both cell recovery and accuracy, especially under the condition of bad 
staining quality. To demultiplex samples from different human donors, cell hashing is optional 
since both cell hashing and SNP profiling are available. For such datasets, demultiplexing with 
cell hashing alone leads to reduced cell recovery rate, and demultiplexing with SNP profiling 
alone requires generation of genetic variant references which leads to extra reagent cost and 
experimental efforts. Therefore, the best way to demultiplex these datasets is the hybrid strategy 
that combines results from cell hashing and SNP profiling, ensuring high cell recovery rate and 
accuracy at low cost and labor. In addition, the hybrid strategy is especially useful for 
demultiplexing large-scale and complicated datasets. For an integrated analysis of multiple 
datasets from the same group of donors (e.g. multiple cell populations), the hybrid strategy only 
requires users to label a small fraction of cells or cells in one dataset with hashtags to link 
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individual hashtag with donors’ identities. Then cells from all datasets that do or do not have 
hashtag profile are clustered together based on their SNP profile where donor identities of each 
cluster can be determined by the small fraction of hashtagged cells within them. We have made a 
decision tree of demultiplexing method selection that users can follow and determine the 
demultiplexing method that works best for their experimental setting and budget (Fig 4-B). 

Discussion 
Despite being more and more accessible, single-cell sequencing remains relatively unpopular 
largely because of the high per-cell cost that is not affordable for many research labs. Thus, 
methods that allow users to pool multiple samples into one lane and demultiplex in downstream 
analysis have been aggressively studied. To date, there are 2 major demultiplexing approaches, 
cell hashing that labels each individual cell from one sample with a unique barcode and SNP 
profiling that group cells from each subject based on their SNPs. However, each demultiplexing 
approach has its own limitations and have a lot of room for improvement. Here, we propose a 
hybrid demultiplexing strategy for single-cell sample pooling and super loading. By integrating 
results of both cell hashing and SNP profiling, we successfully complement the two approaches 
with each other and hugely improve their weaknesses. We used this hybrid strategy to 
demultiplex several real-word datasets and found it increased cell recovery rate and accuracy at 
lower cost and with less bench work, compared to demultiplexing with either approach alone. 
Therefore, we developed a hybrid demultiplexing strategy that has better performance and cost-
effectiveness than the existing demultiplexing approaches.  
 
R and Python are two major coding languages in single-cell analysis. In the R research 
community, Seurat package is the most widely used pipeline for downstream analysis because of 
its versatility, rich documentations, usability, and compatibility with multi-omics. As we 
demonstrated above, the default demultiplexing algorithm for cell hashing in Seurat performs 
poorly in terms of cell recovery for datasets with imbalanced sample sizes (Fig 1B-D). We found 
that Seurat often generates inaccurate cutoffs for each hashtag when staining quality or number 
of cells varies across samples, causing a significant number of cells with low hashtag signal to be 
classified as negative. To improve this, we developed a toolkit, HTOreader, to conveniently 
demultiplex cell hashing data for R users. Compared to Seurat, we demonstrated that HTOreader 
performs equally well on benchmark dataset and has much higher accuracy and cell recovery rate 
on real-world datasets with imbalanced sample sizes. The HTOreader is also compatible with the 
Seurat data format and can be seamlessly integrated into any single-cell analysis workflow in R.  
 
One major caveat of cell hashing is that the cell recovery rate decreases as the number of 
hashtags being used increases due to the accumulation of false doublets. Based on our experience, 
it is completely normal to lose 25-40% of cells when using more than 8 hashtags. On the other 
hand, recent advances in bioinformatics allow users to cluster cells from each human donor 
according to their SNP profiles obtained from scRNA-seq data. This SNP-based demultiplexing 
approach is highly accurate and can recovery up to 90% of cells. However, this approach is often 
considered complicated and expensive because it requires users to generate SNP references for 
each donor via bulk DNA- or RNA-seq to link donors’ identities to cell genotype clusters. 
Therefore, we devised a hybrid demultiplexing strategy that integrates results of cell hashing and 
SNP-based clustering so that the two approaches can validate and complement with each other to 
increase both accuracy and cell recovery. Our results showed that this hybrid strategy increases 
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cell recovery to 90% regardless of staining quality of hashtag. Since only a small fraction of 
singlet determined by cell hashing is sufficient to link donor identities with each SNP cluster, the 
generation of SNP references is no longer needed. Additionally, this approach is extremely 
useful to demultiplex multiple pooled samples from the same group of donors since only cells 
from one sample need to be hashtagged and all cells can be demultiplexed by SNP-clustering 
(e.g., dataset 6 + dataset 7, dataset 8 + dataset 9). Lastly, this strategy allows users to use N 
hashtags to label N+1 donors since cells from unlabeled donor will form a SNP cluster without 
any hashtag signal. 
 
Sample super-loading and demultiplexing will continuously be important topics for single-cell 
sequencing. Recently, the 10x Genomics 3’ CellPlex, a lipid-based cell hashing technology, 
provides a promising alternative for super-loading and demultiplexing that might solve some of 
the issues of antibody-based cell hashing approach. So far, CellPlex is only available for 3’ 
sequencing, which is not compatible with single cell immune profiling and some other 
applications. However, as single cell sequencing becomes more available, more demultiplexing 
techniques, both computational and experimental, are going to be available in the near future to 
greatly benefit biological and medical research. 
 
 

Material and Methods 
Datasets 
Dataset 1 A single-cell dataset from human peripheral blood mononuclear cells (PBMCs). 
This dataset is comprised of 8 individual donors that are uniquely labeled by 8 cell hashtags. 
This dataset has been published with cell hashing original paper(Stoeckius et al., 2018). Dataset 
is available from https://www.dropbox.com/sh/ntc33ium7cg1za1/AAD_8XIDmu4F7lJ-5sp-
rGFYa?dl=0. More details of this dataset can also be found from Seurat website: 
https://satijalab.org/seurat/articles/hashing_vignette.html . 
Dataset 2 A novel single-cell dataset generated for this paper, labeled by subject ID, 3V007. 
In this dataset, mRNA, B Cell Receptor (BCR) repertoire, surface protein expression (CD27 and 
CD79b), and binding affinity of 14 antigen-probes, including HA proteins of several endemic 
influenza strains, were measured. Two groups of cells (from same donor), antigen-specific B cell 
(influenza HA specific) and carrier cells (T cells and B cells) were uniquely labeled by 2 cell 
hashtags, hashtag1 and hashtag2, respectively. These three hashtags were also sequenced with 
those antigen-probes. This dataset will be uploaded to public repository upon publication. 
Dataset 3 A novel single-cell dataset generated for this paper, labeled by subject ID, S414. 
In this dataset, mRNA, B Cell Receptor (BCR) repertoire, surface protein expression (CD27 and 
CD79b), and binding affinity of 8 antigen-probes, including HA proteins of several endemic 
influenza strains, were measured. Four groups of cells (from same donor) were uniquely labeled 
by 4 cell hashtags, hashtag3, hashtag4, hashtag5, and hashtag6. We splitted carrier cells (T cells 
with a few B cells) into two groups, labeled them with hashtag3 and hashtag4; and splitted 
antigen-specific B cells into two groups, labeled them with hashtag5 and hashtag6. These four 
hashtags were also sequenced with those antigen-probes. This dataset will be uploaded to public 
repository upon publication. 
Dataset 4 This dataset (dataset ID is R125) is from a published single-cell dataset from a 
previous publication(Dugan et al., 2021). In this dataset, mRNA, B Cell Receptor (BCR) 
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repertoire, and binding affinity of 17 antigen-probes, including Spike, NP, ORF8 and RBD 
protein of endemic and pandemic COVID strain, HA protein of influenza virus, and interferon 
alpha and omega, were measured. Cells from 3 individual human donors were uniquely labeled 
by 3 cell hashtags, hashtag1-R1, hashtag2-R2, and hashtag3-R5. These three hashtags were also 
sequenced with these antigen-probes. This dataset (R125) is available from Mendeley Data: 
https://doi.org/10.17632/3jdywv5jrv.3 . 
Dataset 5 This dataset (dataset ID is R6) is from a published single-cell dataset from a 
previous publication(Dugan et al., 2021). In this dataset, mRNA, B Cell Receptor (BCR) 
repertoire, and binding affinity of 17 antigen-probes, including Spike, NP, ORF8 and RBD 
protein of endemic and pandemic COVID strain, HA protein of influenza virus, and interferon 
alpha and omega, were measured. Cells from 2 time points of an individual human donor were 
uniquely labeled by 2 cell hashtags, hashtag3-early and hashtag4-late. These three hashtags were 
also sequenced with these antigen-probes. This dataset (R6) is available from Mendeley Data: 
https://doi.org/10.17632/3jdywv5jrv.3 . 
Dataset 6 A novel single-cell dataset generated for this paper, labeled as 9pool-CA (carrier). 
In this dataset, we sorted B cells and T cells from nine subjects and pooled them together. 
mRNA, and surface protein expression panel were measured. Cells from nine individual human 
donors were uniquely labeled by nine cell hashtags, hashtag1 to hashtag9. These eight hashtags 
were also sequenced with those surface proteins. This dataset will be uploaded to public 
repository upon publication. 
Dataset 7 A novel single-cell dataset generated for this paper, labeled as 9pool-AS (antigen-
specific). In this dataset, we sorted antigen-specific B cells from nine human donors (as same as 
dataset 6) and pooled them together. mRNA, B Cell Receptor (BCR) repertoire, surface protein 
expression (CD27 and CD79b), and binding affinity of 18 antigen-probes, including HA proteins 
of several endemic influenza strains, were measured. This dataset will be uploaded to public 
repository upon publication. 
Dataset 8 A novel single-cell dataset generated for this paper, labeled as 8pool-AS (antigen-
specific). In this dataset, we sorted antigen-specific B cells from eight subjects and pooled them 
together. mRNA, B Cell Receptor (BCR) repertoire, surface protein expression (CD27 and 
CD79b), and binding affinity of several antigen-probes, including HA proteins of several 
endemic influenza strains, were measured. This dataset will be uploaded to public repository 
upon publication. 
Dataset 9 A novel single-cell dataset generated for this paper, labeled as 8pool-CA (carrier). 
In this dataset, we sorted B cells and T cells from eight subjects (as same as dataset 8) and 
pooled them together. mRNA, and surface protein expression panel were measured. Cells from 
eight individual human donors were uniquely labeled by eight cell hashtags, hashtag1 to 
hashtag8. These eight hashtags were also sequenced with those surface proteins. This dataset will 
be uploaded to public repository upon publication. 
 
Cell hashing demultiplexing methods 
We developed and introduced an improved demultiplexing approach for single-cell cell hashing, 
called HTOreader. To accurately determine the hashtag identity for each individual cell, we 
developed a cutoff calling method that precisely distinguishes true positive from background. 
Specifically, the distributions of normalized counts for each hashtag were first fitted into two 
Gaussian distributions, representing background and true positive groups. Then a cutoff value 
that distinguishes the two groups was calculated based on means and standard divisions of these 
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two Gaussian distributions. Finally, the identity of each individual cell was determined according 
to the hashtags they were positive of. 
Data normalization Two normalization methods: Centered Log-Ratio (CLR) and Log (log1p) 
normalization are available. CLR method is more common in normalization of CITE-seq protein 
expression and hashtags(Aitchison, 1982, Hao et al., 2021). For a given raw counts vector � of 
a hashtag, the CLR normalization will be: 

������ � �	
�
��

����
, 	
�

��

����
, … , 	
�

��

����
� 

Where � is the length of vector �, and ���� � �∏ ��
�
��� ��/� denotes the geometric mean of �.  

The conventional Log normalization works well in some datasets. We use 	
�1� to avoid the 
undefined log[0]. For a given raw counts vector � of a hashtag, the Log normalization will be: 

�
���� � �log ��� � 1�, log ��� � 1�, … , log ��� � 1�� 
Mixture modeling Mixture modeling has been extensively used in single-cell data pre-
processing, such as estimation of the drop-out rate, determination of effective sequencing depth 
and amplification noise(Fan et al., 2016, Kharchenko et al., 2014). We adopted an mixture 
modeling approach implemented in the Flexmix package to fit two Gaussian distributions from a 
vector of normalized hashtag counts(Leisch, 2004). In this step, we fit normalized data of each 
hashtag into two Gaussian distributions indicating one positive group, representing background 
and true positive groups, and calculate the means and standard deviations of these two groups 
respectively.  
 

Cutoff determination For two Gaussian distributions ����, ��
�� and ����, ��

��, �� � �� , we 
determine the cutoff to distinguish true positive and background using the following equation: 

���
�� � �� �
√��
�

√��
� � √��

�
��� ! ��� 

Where � is the rank of the model, the recommended rank is 2 in most cases. Please see the 
supplementary material for details.   
 
Sample identity assignment For each cell, we assign their sample identities based on their 
binding status of each hashtag(Hao et al., 2021). If a cell is deemed positive for only one hashtag, 
it will be labeled as a singlet for that corresponding hashtag; if it’s deemed positive to multiple 
hashtags, it will be labeled as doublet; if it’s deemed background for all hashtags, it will be 
labeled as negative. Sample identities of every cell labeled as singlet will be assigned according 
to their hashtag identities. 
 
Genomic signature demultiplexing 
Genomic signature demultiplexing method is an essential part of this hybrid demultiplexing 
strategy, and to date many computational methods are available, for example demuxlet and 
souporcell. In this paper, we applied souporcell, which has been widely used in the community, 
onto our strategy to demonstrate the effectiveness of this workflow. As most SNP-based 
demultiplexing methods do, souporcell aligns all short reads against a reference genome to get 
the SNPs for each cell, then groups cells into multiple clusters according to their genotypes (SNP 
signatures) using an unsupervised learning algorithm. The number of genotype clusters is pre-
defined by users according to the number of subjects in the pooled sample. For a sample pooled 
from N subjects (individual human donors), there will be N+2 distinct genotype clusters 
identified, in which one “doublet” cluster containing cells fit in more than one genotypes, one 
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“negative” cluster containing cells whose SNP signatures are not sufficient therefore cannot be 
fit into any genotype, and N singlet clusters indicating cells from N individual donors.  
 
Flow cytometry staining and cell sorting 
Flow staining and cell sorting were performed as previously described (Dugan et al., 2021). 
Briefly, human PBMCs were thawed in 10% FBS RPMI1640 medium and enriched by negative 
selection using a pan-B cell isolation kit according the manufacturer’s instruction (StemCell, 
Cat#. 19554) prior to staining with the following antibodies and flurorescently oligonucleotide-
labeled streptavidin-antigen tetramers (Biolegend) : anti-huCD19-PE-Cy7, anti-huCD3-BB515, 
anti-huCD4-BB515, anti-huIgD-BB515, TotalSeq-C anti-human hashtag antibodies, antigen-PE 
or-APC, and at 4 degree for 30 mins. Cells were subsequently washed three times with 2% FBS 
PBS buffer supplemented with 2mM D-biotin. Finally, cells were adjusted at a maximum of 2 
million cells per ml in washing buffer, stained with DAPI and subjected to sorting by either 
MACSQuantTyto (Miltenyi) or BD Melody (BD). Cells that were viable/CD19+/antigen-PE+ and 
antigen-APC+ or viable/CD4+ were sorted for downstream 10X Genomics processing. 
 
10X Genomics libraries construction and Next Generation Sequencing 
5’ gene expression, VDJ and surface protein feature libraries were prepared using the 10X 
genomics platform as per the manufacturer’s instructions (Chromium Next GEM Single Cell 5’ 
(HT) Reagent Kits v2 (Dual Index)). Three libraries were quantified by real-time quantitative 
PCR using KAPA Library Quanitification Kits (Roche) and pooled at recommended ratio and 
sequenced using NextSeq1000 (Illumina) with 26 cycles for read 1, 10 cycles for i7/i5 index, 150 
cycles for read 2. 
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Figure 1. Limitations of cell hashing method and SNP calling method revealed by real-world 
datasets. (A - E) Heatmap of expression of hashtags in dataset 1, 2, 3, 4, and 5, respectively. 
Singlet, doublet, and negative groups were indicated by a color bar with number of cells in each 
group. (F) Expression of nine cell hashtags on dataset 6. Singlet, doublet, and negative groups 
are indicated on the top of the heatmap. Panels A – F share the same scale bar of heatmap to the 
right. (G) Expression of nine hashtags on genotype clusters generated by SNP calling method. 
(H) Expression of two B cell gene markers (CD19 and MS4A1) and two T cell gene markers 
(CD3E and IL7R) visualized on a UMAP embedding of carrier cells of dataset 6. (I) Doublets, 
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negative cells, and singlets identified by cell hashing method are visualized on a UMAP 
individually. Cells are colored by transcriptome clusters. 
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Figure 2. HTOreader achieves high accuracy and increases cell recovery for cell hashing 
datasets. (A) The workflow of HTOreader to determine proper cutoff for each cell hashtag. (B) 
Cell demultiplexing by Seurat on dataset2. Left: expression heatmap of both hashtags with 
Seurat labels annotation. Center: violin plot of expression of both hashtags on Seurat groups. 
Right: Scatter plot of hashtag expression with Seurat label color coding. (C) Cell demultiplexing 
by HTOreader on dataset2. Left: cutoffs determined by HTOreader based on density of 
normalized values for both hashtags; Center: violin plot of expression of both hashtags on 
HTOreader groups; Right: Scatter plot of hashtag expression with HTOreader label color coding. 
(D) Expression of four hashtags on the UMAP embedding of dataset3. (E) Cell demultiplexing 
by Seurat on dataset3. Left: expression heatmap of all hashtags with Seurat labels annotation. 
Right: violin plot of expression of all hashtags on Seurat groups. (F) Cell demultiplexing by 
HTOreader on dataset3. Left: cutoffs determined by HTOreader based on density of normalized 
values for all hashtags; Right: violin plot of expression of all hashtags on HTOreader groups. (G) 
Cells labeled by different hashtags demultiplexed by HTOreader. (H) Cell demultiplexing by 
Seurat on dataset4. Left:  Expression of three hashtags on the UMAP embedding of dataset4. 
Right: expression heatmap of all hashtags with Seurat labels annotation. (I) Comparing 
HTOreader and Seurat using Souprocell as benchmark on dataset4. Numbers of cells are 
indicated in the heatmap.  
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2023. ; https://doi.org/10.1101/2023.04.02.535299doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.02.535299
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure 3. The hybrid strategy combines cell hashing technology and genomic signature method 
and achieves higher recovery rate and calling accuracy on a real-world immune cell dataset. (A) 
Expression of eight cell hashtags on dataset 6. Singlet, doublet, and negative groups are indicated 
on the top of the heatmap. (B) A heatmap of correlation between cell hashing demultiplexing and 
SNP-based demultiplexing on all cells of dataset 9. True doublets and false doublets were 
highlighted in thick black border, and genotype cluster-cell hashing pairs were highlighted in 
thick gray border. (C) Cells demultiplexed by this hybrid strategy of dataset 5 and dataset 6 are 
visualized on an integrated UMAP individually. (D) A heatmap of correlation between cell 
hashing demultiplexing and SNP-based demultiplexing on all cells of dataset 6. (E) A heatmap 
of correlation between cell hashing demultiplexing and SNP-based demultiplexing on all cells of 
dataset 7 after remove B&T doublets (cells that express both B and T cell markers). (F) A 
heatmap of correlation between cell hashing demultiplexing and SNP-based demultiplexing on 
all cells of dataset 7 after all potential doublets (cells that express more than one hashtag). 
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Figure 4. Optimized demultiplexing workflows for single-cell datasets with different
experimental technics, sample numbers and donor species. (A) overall comparison among two
existing demultiplexing methods and the hybrid method. The hybrid method performs best in
recovery rate, economy, and labor saving among three demultiplexing methods. (B) A decision
tree for users to select demultiplexing method according to their experiment design. 
 
 
 
 
 
 
  

 
nt 
o 

 in 
on 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2023. ; https://doi.org/10.1101/2023.04.02.535299doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.02.535299
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1. Hybrid demultiplexing on dataset 8 and dataset 9. 

  

SNP demultiplexing 

doublet 
singlet 
0 

singlet 
1 

singlet 
2 

singlet 
3 

singlet 
4 

singlet 
5 

singlet 
6 

singlet 
7 unassigned 

Hashtag  
demultiplexing  
on Dataset 9 

Doublet 1213 588 163 167 176 123 125 58 141 5 

Negative 4 27 1 76 1 5 12 1 0 0 

S282 37 0 0 1 0 0 0 220 43 1 

S283 14 0 0 1 1682 0 0 1 0 0 

S284 4 0 0 1385 0 0 0 0 0 0 

S344 18 0 1450 0 1 0 0 7 0 0 

S397 7 1627 0 0 0 0 0 1 0 0 

S417 13 1 0 0 1 1128 1 2 0 2 

S421 3 0 0 0 0 0 0 0 724 0 

S423 13 0 0 0 0 0 1612 0 0 0 

Dataset 8 416 391 868 71 130 447 28 118 232 63 
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Figure S1. Comparing cell demultiplexing on a public benchmark dataset using both Seurat and 
HTOreader. (A) expression heatmap of all eight hashtags ordered by Seurat labels. (B) violin 
plot of expression of all eight hashtags on Seurat groups. (C) cutoffs determined by HTOreader 
based on density of normalized values for all eight hashtags. (D) violin plot of expression of all 
eight hashtags on HTOreader groups. 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 4, 2023. ; https://doi.org/10.1101/2023.04.02.535299doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.02.535299
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure S2. Cell demultiplexing on a B cells and T cells pooled dataset (dataset 8 and dataset 9) 
using hybrid method. (A) expression of CD27 protein, expression of BACH2 gene, Somatic 
hypermutation (SHM) of heavy chain, and isotype of BCR repertoire visualized on a UMAP 
embedding of antigen-specific B cells of dataset 8. (B) Expression of two B cell gene markers 
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(CD19 and MS4A1) and two T cell gene markers (CD3E and IL7R) visualized on a UMAP 
embedding of carrier cells of dataset 9. T cell and B cell clusters are roughly indicated by labels 
(C) Cutoffs determined by HTOreader based on density of normalized values for all eight 
hashtags on dataset 9. (D) Violin plot of expression of all eight hashtags on HTOreader 
demultiplexing groups on dataset 9. 
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Table S1. Hybrid demultiplexing on all cells of dataset 6. 

  

Hashtag demultiplexing 
Double
t 

S28
9 

S29
7 

S29
9 

S30
2 

S35
4 

S36
5 

S37
4 

S40
3 

S40
9 

Negativ
e 

SNP 
demultiplexin
g 

doublet 488 161 102 96 58 104 147 142 222 169 38 

singlet0 134 39 27 34 26 27 42 35 63 58 7 

singlet1 624 195 139 137 78 148 171 200 321 237 60 

singlet2 371 178 62 83 44 60 106 123 164 142 19 

singlet3 261 81 86 72 28 64 75 80 146 93 12 

singlet4 462 129 108 103 60 87 120 146 195 225 34 

singlet5 237 83 55 68 29 61 76 63 114 102 13 

singlet6 372 106 91 82 41 82 90 152 178 126 20 

singlet7 293 98 73 68 34 63 115 94 141 128 22 

singlet8 570 216 141 105 53 105 138 158 355 224 41 
unassigne
d 98 25 29 16 15 17 23 27 47 34 11 

 
Table S2. Hybrid demultiplexing on dataset 6 after remove all B&T doublets. 

  

Hashtag demultiplexing 
Double
t 

S28
9 

S29
7 

S29
9 

S30
2 

S35
4 

S36
5 

S37
4 

S40
3 

S40
9 

Negativ
e 

SNP 
demultiplexin
g 

doublet 344 50 48 39 18 56 50 47 70 49 6 

singlet0 214 116 55 54 50 41 60 72 96 930 10 

singlet1 185 521 99 74 45 48 80 105 131 88 14 

singlet2 94 74 25 34 145 22 35 42 43 50 4 

singlet3 137 83 388 45 32 30 67 81 60 57 4 

singlet4 80 44 23 31 16 381 38 32 37 20 6 

singlet5 123 51 39 406 32 36 69 57 47 49 1 

singlet6 143 67 63 49 35 52 510 85 66 71 9 

singlet7 258 127 69 57 50 57 62 85 
126
2 94 15 

singlet8 168 94 61 63 31 57 90 573 89 77 11 
unassigne
d 92 24 25 3 8 31 23 32 30 39 5 

 
Table S3. Hybrid demultiplexing on dataset 6 after remove all doublets identified by cell 

hashing method. 

  

Hashtag demultiplexing 
Double
t 

S28
9 

S29
7 

S29
9 

S30
2 

S35
4 

S36
5 

S37
4 

S40
3 

S40
9 

Negativ
e 

SNP 
demultiplexin
g 

doublet 0 15 12 17 8 13 17 13 28 14 26 

singlet0 0 0 0 32 414 0 0 0 0 0 4 

singlet1 0 0 0 0 0 47 999 0 0 1 6 

singlet2 0 0 0 0 0 0 0 1 91 
138
2 26 

singlet3 0 0 23 809 0 0 0 2 0 0 7 

singlet4 0 0 0 0 0 1 59 110 0 0 6 
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0 

singlet5 0 14 852 0 0 0 0 0 0 0 5 

singlet6 0 0 0 0 37 730 0 0 1 0 10 

singlet7 0 
120
5 0 0 0 0 0 0 0 0 9 

singlet8 0 0 0 0 0 0 1 71 
179
8 0 30 

unassigne
d 0 77 26 6 7 27 27 33 28 141 148 
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