
RESEARCH ARTICLE

Statistical tests for intra-tumour clonal co-

occurrence and exclusivity

Jack KuipersID
1,2☯, Ariane L. MooreID

1,2☯, Katharina JahnID
1,2, Peter SchramlID

3,

Feng Wang4, Kiyomi MoritaID
5, P. Andrew Futreal4, Koichi TakahashiID

4,5,

Christian Beisel1, Holger Moch3, Niko BeerenwinkelID
1,2*

1 Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland, 2 SIB Swiss Institute

of Bioinformatics, Basel, Switzerland, 3 Department of Pathology and Molecular Pathology, University and

University Hospital Zurich, Zurich, Switzerland, 4 Department of Genomic Medicine, The University of Texas

MD Anderson Cancer Center, Houston, Texas, United States of America, 5 Department of Leukemia, The

University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America

☯ These authors contributed equally to this work.

* niko.beerenwinkel@bsse.ethz.ch

Abstract

Tumour progression is an evolutionary process in which different clones evolve over time,

leading to intra-tumour heterogeneity. Interactions between clones can affect tumour evolu-

tion and hence disease progression and treatment outcome. Intra-tumoural pairs of muta-

tions that are overrepresented in a co-occurring or clonally exclusive fashion over a cohort

of patient samples may be suggestive of a synergistic effect between the different clones

carrying these mutations. We therefore developed a novel statistical testing framework,

called GeneAccord, to identify such gene pairs that are altered in distinct subclones of the

same tumour. We analysed our framework for calibration and power. By comparing its per-

formance to baseline methods, we demonstrate that to control type I errors, it is essential to

account for the evolutionary dependencies among clones. In applying GeneAccord to the

single-cell sequencing of a cohort of 123 acute myeloid leukaemia patients, we find 1 clon-

ally co-occurring and 8 clonally exclusive gene pairs. The clonally exclusive pairs mostly

involve genes of the key signalling pathways.

Author summary

Tumours typically display high levels of heterogeneity, not only between different

tumours but also within a single one. Intra-tumour heterogeneity results from an evolu-

tionary process, giving rise to different populations of cancer cells known as clones. How

clones interact may affect tumour evolution, which in turn determines disease progression

and treatment outcome. In practice, we may observe pairs of mutations that co-occur in

clones or exclude each other more often than we would expect for a given cohort of

patient samples. Exclusive pairs are suggestive that clones carrying one or the other muta-

tion may cooperate in the evolutionary process. Targeting only one of them may then suf-

fice to alter the tumour evolution. Therefore it is critical to have statistical methods which

allow us to identify such pairs. GeneAccord is a novel statistical testing framework we
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developed especially to identify pairs of genes altered in distinct clones of the same

tumour. Accounting for the evolutionary dependencies among clones emerged as critical

to adequately control testing errors. In a cohort of 123 acute myeloid leukaemia patients,

GeneAccord identified one clonally co-occurring and eight clonally exclusive gene pairs.

The latter predominantly involved genes of key signalling pathways.

Introduction

Intra-tumour heterogeneity refers to a diverse set of genetically or phenotypically distinct cell

populations that coexist within a tumour [1, 2]. It is the result of mutation, selection, and pos-

sibly other evolutionary forces during tumour evolution [3–5]. More diverse tumours support

more evolutionary pathways and tend to adapt better to treatment and immune responses.

Hence they are more likely to escape these selective pressures and develop therapy resistance

or immune escape [6, 7]. Profiling tumours [8] and their heterogeneity therefore has the

potential to improve cancer diagnostics and treatment, and the ability to resolve the clonal and

subclonal structure of tumours has progressed rapidly with multi-region bulk sequencing [9]

and single-cell sequencing [10, 11]. Recently, for acute myeloid leukeamia (AML), high-

throughput single-cell panel sequencing has uncovered the clonal diversity across two cohorts

of 123 patients [12, 13]. These studies show that AML samples tend to have a relatively small

number of clones, and importantly that multiple different mutations in signalling pathway

genes often occur in distinct subclones.

Beyond offering more potential evolutionary pathways, intra-tumour heterogeneity pro-

vides more than just a bet-hedging strategy since the individual clones may interact with each

other to confer communal advantages [14–16]. Interaction processes between clones are dis-

tinct from genetic interactions (epistasis), where, for instance, two genes are mutated in the

same cell or clone and together lead to an unanticipated change in the phenotype [17]. The dif-

ferent types of ecological interactions among cancer clones [16] include negative interactions,

for example when clones compete for nutrients or oxygen, while positive interactions such as

commensalism, synergism, and mutualism drive tumour cell proliferation and ultimately

favour greater intra-tumour heterogeneity. One example of commensalism, where one clone

benefits from another one without providing anything in return, is a clone stimulating blood

vessel growth, which also supplies other surrounding cells with nutrients and oxygen [18].

Ras-mutated dermal fibroblast cells have been observed to secrete factors that lead to down-

regulation of a strong angiogenesis inhibitor in normal cells over 10mm away [19], also sug-

gesting that interactions may not only occur between directly neighbouring clones in solid

tumours. Cooperation, including synergism and mutualism, where for example, different

clones cross-feed each other resources, was hypothesised to be a driving factor in tumour pro-

gression [18] and a wealth of examples of clonal cooperation have been discovered in cancer

[20–27]. If a combination of two or more clones is beneficial, these clones will likely co-exist

stably over time and not outcompete each other [18, 24]. More formally, cooperation between

cancer clones can be modelled and interpreted using evolutionary game theory [28–30].

As cooperation can play a significant evolutionary role in tumour progression, it is impor-

tant to elucidate its underlying mechanisms. In particular, understanding how to disrupt this

process potentially opens up novel treatment strategies to improve personal cancer treatment.

In order to investigate how clones co-exist and possibly interact, a systematic screening of sub-

clonal mutation compositions is necessary. From bulk sequencing data, co-occurrence and

mutual exclusivity patterns can be detected from the clonal mutation patterns across cohorts
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of patients [31–37]. This patient-level resolution however does not consider the subclonal

structure within each patient overlooking potential subclonal interactions. Intra-tumour co-

occurrence and exclusivity patterns may differ substantially from the patient level ones. For

example, if two genes are strictly mutually exclusive at the patient level, they never both occur

in the same or different clones and cannot have subclonal interactions. On the other hand, if

genes are exclusive at the clone level and only appear in different subclones, they can still both

occur and produce co-occurrence at the patient level.

Resolving tumours at the subclonal level with multi-region bulk or single-cell sequencing

offers a route to address intra-tumour co-occurrence and exclusivity. However it involves

another challenge: the genotypes of the subclones are not independent observations. Hence,

treating clones like tumour samples in the above-mentioned patient-level analyses would lead

to spurious correlations. Instead, we must account for the dependency structure among clones

encoded by their phylogenetic relationships. For example, for two mutations in a common

lineage, after the first mutation we have clones with the genotype (1, 0) resembling an exclusiv-

ity pattern while after both mutations we have the genotype (1, 1) indicating co-occurrence.

To avoid treating the dependency structure, previous analyses have, for example, been limited

to the common ancestor clone of the mutations to ensure independence, as was the case for

the analysis of clonal co-occurrences and exclusivities of ten selected driver events in clear cell

renal carcinoma using multi-region bulk sequencing [9].

Here we develop a statistical testing framework, called GeneAccord, which considers the

full phylogenetic tree representing the complete evolutionary history of each tumour and the

subclonal mutation patterns across the entire tree. To uncover clonal co-occurrence or exclu-

sity, GeneAccord analyses (i) the placement of mutations within the phylogenetic trees of the

patients exhibiting the mutations, (ii) the occurrence of the mutations across the cohort and

which patient trees contain the mutations, and (iii) the combination of these two signals in a

joint test. GeneAccord can additionally take into account the uncertainty in the tree inference

by allowing the input of multiple alternative tree topologies per patient. With this input, Gen-

eAccord assesses, in a statistically rigorous way, whether specific subclonal mutation combina-

tions occur at a higher or lower rate than expected by chance over the cohort of patient

tumour samples. We evaluate GeneAccord’s power and demonstrate that it correctly controls

the type I error rate, unlike baseline alternatives which do not account for the underlying phy-

logenetic trees. Finally, we illustrate GeneAccord on a cohort of 123 AML patients resolved

with single-cell sequencing [12]. We find significant signs of clonal exclusivity, particularly

between genes involved in signalling pathways.

Results

GeneAccord algorithms

In order to systematically analyse subclonal mutation combinations in tumour clones, we

developed a statistical framework and implemented it in the R package GeneAccord. The sta-

tistical tests can identify pairs of mutated genes or pathways that both occur in the same

tumour but in different clonal lineages. For a particular tumour, we define a gene pair as clon-

ally exclusive if there are two clone lineages in the tumour such that one of them possesses

mutations in only one of the genes, while the other lineage has mutations only in the other

gene. The complement of being clonally exclusive is clonal co-occurrence, where a common

clonal lineage exists that contains both mutations. By resolving the evolutionary history of

tumours, for example through single-cell sequencing and reconstructing the genotypes of the

clones, clonally exclusive gene pairs will display mutual exclusivity (Fig 1). The underlying

rationale for searching for clonally exclusive gene pairs is that if two clones co-exist in a
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tumour and cooperate, for example, by sharing diffusible factors, they may have acquired com-

plementary sets of mutations for mutual benefit.

To search for clonal co-occurrence or exclusivity, we evaluate across a cohort of patient

tumours whether the observed patterns of exclusivity occur more or less often than expected

by chance alone. Specifically, we developed three tests to uncover signals of clonal co-occur-

rence or exclusivity: (i) a gene pair placement test which, for patient trees exhibiting both

mutations, compares the locations of the mutations to a null model of random placement

within each tumour phylogeny; (ii) a gene pair occurrence test which compares which patient

trees exhibit both mutations to a null model of random occurrence across the patient cohort;

and (iii) a combined test of clonal co-occurrence or exclusivity which evaluates the joint signal

from the placement and occurrence tests.

We frame the testing procedures as likelihood ratio tests with a single clonal exclusivity

score Δ for each gene pair, which when negative indicates that the gene pair is mutated in dif-

ferent clones more often than expected, and when positive indicates a higher rate of co-occur-

rence in the same clonal lineage. We developed and implemented the statistical tests in the

GeneAccord R package (Methods, https://github.com/cbg-ethz/GeneAccord). After testing

gene pairs, multiple testing correction is performed to control the false discovery rate with the

Benjamini-Hochberg procedure [38]. If a pair is significantly clonally exclusive, it suggests that

this specific clone configuration may confer a selective advantage, possibly through coopera-

tion between the clones.

Calibration and power of the placement test

The statistical test of gene pair placement (Methods) is a likelihood ratio test where the test sta-

tistic asymptotically follows a chi-squared distribution. For gene pairs observed in a smaller

Fig 1. Tumour evolution and clonal exclusivity. During tumour evolution different mutations may arise leading to heterogeneous subclones with

distinct genotypes. From single-cell sequencing we may reconstruct the mutational history of each tumour, encoding the ordering of mutations and

their phylogenetic relationships. The clones are numbered in each tree and inherit mutations in ancestral clones. For example in patient 1, clone 2

exhibits mutations in genes A, D and H (red, orange, purple) as displayed in the clone-genotype matrix on the right. Clonally exclusive mutations will

appear in different branches of the trees and exhibit mutually exclusive patterns in the clone-genotype matrices, as exhibited for example for the two

rightmost mutations G and H (blue and purple) in both patients.

https://doi.org/10.1371/journal.pcbi.1009036.g001
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number n of patient samples this asymptotic result can however be poorly calibrated. For

example, we simulated data under the null where the background clonal exclusivity rates r are

sampled from a beta distribution with parameters 2 and 3 which gives a similar mean and vari-

ance to the rates computed from the real AML dataset. Using the chi-squared distribution to

compute p-values under the null we see an enrichment of lower p-values for smaller n (Fig 2).

The chi-squared approximation however seems appropriate when the gene pair is observed in

enough samples (more than *10).

We therefore developed an exact version of the placement test (Methods) to ensure calibra-

tion. For the same simulated example as before we now observe fewer than 5% of p-values

under the null being significant at a 5% threshold (Fig 3). However, since the number of possi-

ble outcomes is limited, we also observe very strong discrete effects in the null p-value distribu-

tion. For larger n, enumerating all possible outcomes for the exact placement test becomes

more computationally expensive, while the chi-squared approximation improves. As a default

in the R package we therefore switch to the chi-squared approximation for n> 12.

Fig 2. Calibration of the chi-squared approximation for the gene pair placement test. For gene pairs simulated to occur in n patient samples, for

smaller n we observe overly liberal p-values and a lack of calibration with the chi-squared approximation for the gene pair placement test. For larger n,

the approximation becomes more appropriate.

https://doi.org/10.1371/journal.pcbi.1009036.g002

Fig 3. Calibration of the exact gene pair placement test. For the exact test on the simulated data of Fig 2 we observe conservative p-values at lower

significance levels, and very pronounced discrete effects for larger values.

https://doi.org/10.1371/journal.pcbi.1009036.g003
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Solely to check calibration of the exact placement test while dampening the discrete effects,

we created a Monte Carlo version of the exact test (Methods) into which we could additionally

add smoothing through adding noise to the sampled clonal exclusivity rates. Performing such

smoothing (with ν = 10) we observe uniformity of the p-values under the null for larger n, with

some remnants of the discrete effects visible for lower n (Fig 4). The simulated data therefore

show that the exact test is calibrated on average.

Having checked the calibration of the GeneAccord exact placement test under the null, we

next evaluate the power of a single test by simulating data under the alternative for different

values of Δ. The rates are again sampled from a beta distribution with parameters 2 and 3. For

very small sample sizes, we need a relatively strong effect to have a high power, for example a Δ
of -4 to have a power of 75% for gene pairs in only 4 patients. To illustrate this effect size, for

the expected exclusivity rate of 40% of the null beta distribution, a shift of Δ = -4 corresponds

to an exclusivity rate of 97% for the alternative. The power rapidly increases for larger samples

sizes as expected; for example, a Δ of -3 (corresponding to an exclusivity rate of 93% for the

alternative compared to 40% for the null) can be detected in 10 patients with a probability of

over 96% (Fig 5).

Comparison to exclusivity testing without trees

Alternative methods to GeneAccord to test for exclusivity do not take the phylogenetic infor-

mation into account. As a demonstration that utilising evolutionary histories is necessary, we

perform naïve exclusivity testing at the clonal level by constructing a contingency table for

each gene pair and running standard independence tests: the Fisher’s exact test, the G-test

using the chi-squared distribution and the log odds ratio test with the normal approximation.

To generate data we uniformly sampled random binary trees each with 10 inner branches and

uniformly distributed 20 mutations across those branches to create 10 clonal genotypes per

tree. We collated sets of 10 trees, corresponding to gene pairs observed in 10 patient samples,

and ran the standard independence tests along with the GeneAccord gene pair placement test.

The entire procedure was repeated 400 times.

As the mutations are interchangeable in their random placement in the trees, we are in the

null setting of no clonal enrichment. The standard tests, however, are very heavily confounded

and find significant results (at the 5% level) roughly half the time (Fig 6, top row). Not taking

Fig 4. Calibration of the exact gene pair placement test with Monte Carlo smoothing. Smoothing the exact gene pair placement test in Fig 3 by

adding noise to the rates, we observe good calibration and the desired uniform distribution of p-values under the null for the larger n.

https://doi.org/10.1371/journal.pcbi.1009036.g004
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the underlying tree structure into account, and treating the clonal genotypes as independent

observations, therefore leads to spurious co-occurrence and exclusivity patterns. GeneAccord’s

exact placement test remains properly calibrated, as evidenced with the Monte Carlo smooth-

ing, while there is a slight enrichment with the chi-squared approximation (Fig 6, bottom

row).

Gene pair occurrence testing

The GeneAccord gene pair placement test conditions on the set of patients exhibiting a gene

pair and their tree topologies. However, gene pairs with a predilection for clonal co-occurrence

or exclusivity may occur preferentially in more linear or more branched topologies. We there-

fore developed the GeneAccord gene pair occurrence test (Methods) to look at whether the set

of patients exhibiting mutations in a particular gene pair is indicative of clonal co-occurrence

or exclusivity. Testing in which patient set the pair of mutations occurs relies on the chi-

squared approximation, but by resampling (with replacement) the trees of the AML cohort

and placing genes uniformly among them under the null, we could observe that the approxi-

mation is on the conservative side (Fig A in S1 Supplement).

Combined gene pair clonal co-occurrence and exclusivity testing

Finally we jointly consider the set of patients in which the gene pair occur and the placement

of the gene pair within the tree topologies of those patients. For the combined test of the

patient set exhibiting mutations and the clonal exclusivity patterns within those patients we

could again develop an exact test (Methods). For the simulation based on resampling the AML

cohort and placing genes under the null, there are strong discrete effects and conservative p-

values for lower significance levels (Fig B in S1 Supplement).

Fig 5. Power of the exact gene pair placement test. The power of the exact placement test as we increase the effect

size Δ, which is the change in clonal exclusivity rate on the logit scale, for different sample sizes.

https://doi.org/10.1371/journal.pcbi.1009036.g005
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AML gene pairs

We ran the GeneAccord exact combined test on the cohort of 123 AML patient samples from

[12] whose evolutionary histories have been reconstructed with the single-cell phylogeny

method SCITE [39]. The results, summarised in Table 1, show 1 gene pair with significant evi-

dence of clonal co-occurrence and 8 with clonal exclusivity.

One clonally exclusive gene pair is between the two IDH genes, while 6 others involve the

genes FLT3, NRAS, KRAS and PTPN11, which affect the receptor tyrosine kinase (RTK)/Ras

GTPase (RAS)/MAP Kinase (MAPK) signalling pathways. Clonal exclusivity would align with

functional redundancy making the mutations interchangeable, though having several muta-

tions in parallel lineages is evolutionarily more complex than sharing a single mutation in an

ancestral clone. The significant clonal exclusivity of these gene pairs may then point to stron-

ger effects like cooperation across the clones or synthetic lethality where having co-occurring

mutations in the same lineage leads to strong decrease in viability of the tumour clone [40, 41].

We observe significant co-occurrence of NPM1, the most frequent mutation in the cohort,

with FLT3. There is a strong interplay between NPM1, FLT3 and age in terms of survival prog-

nosis [42], and proven biological cooperation in AML between the genes [43–45].

Fig 6. Comparison to standard exclusivity tests. Standard independence tests (top row: Fisher’s exact test, G-test and log odds ratio (OR) test, from

left to right) are heavily miscalibrated for data generated from placing mutations on lineage trees under the null. GeneAccord’s gene pair placement test

(bottom row: chi-squared approximation, exact test and with Monte Carlo smoothing, from left to right), apart from some enrichment with the chi-

squared approximation, shows proper calibration.

https://doi.org/10.1371/journal.pcbi.1009036.g006
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The combined test accounts for both the placement of mutations within the trees of patients

with both mutations in a gene pair and the occurrence of the mutations across the patient

cohort. When considering just the set of patients exhibiting each gene pair with the gene pair

occurrence test (Table A in S1 Supplement) we can test whether the gene pair is over enriched

in more linear or more branching trees compared to chance. Since the majority of the AML

cohort have linear trees, co-occurrence is less surprising under the null, but we do observe

some clonally exclusive pairs enriched in the more branched trees, particularly FLT3 and

NRAS which appear in 4 out of the 5 star trees in the cohort.

Considering just the placement of mutations within the patient trees exhibiting both muta-

tions with the gene pair placement test (Table B in S1 Supplement), we find 6 of the 8 clonally

exclusive pairs and the clonally co-occurring pair from the combined test (Table 1). Addition-

ally we also find significant clonal co-occurrence of the pair NPM1 and PTPN11 when looking

only at the placement of the mutations within patient trees, but this is not corroborated by the

gene pair occurrence test (Table A in S1 Supplement) and hence not significant for the com-

bined test. In general, the combined test merges the signals from the gene pair placement and

occurrence tests and increases the significance of the clonally exclusive pairs (Fig 7).

For comparison, if we run standard mutual exclusivity testing at the clone level and ignore

the phylogenies, then despite the enrichment of p-values under the null (Fig 6), only 5 gene

pairs would be considered significant (Table C in S1 Supplement). These include pairs found

by GeneAccord particularly FLT3 being clonally exclusive with NRAS and clonally co-

Table 1. GeneAccord combined results for the AML cohort [12]. Ranked list of the gene pairs tested with the GeneAccord exact combined test on the cohort of 123

AML patient samples. For each gene pair, the column nt is the total number of patients exhibiting both gene mutations, n the number of those patients whose trees are not

linear or star shaped and ncx the number of times the genes are clonally exclusive within those n trees. The columns nl and ns contain the number of linear and star trees. Δ
is the clonal exclusivity score indicating enrichment of clonal co-occurrence (positive) or clonal exclusivity (negative) with ±1 corresponding to hitting the numerical

optimisation bounds. LLR is the log-likelihood ratio statistic, p is the p-value and q the adjusted p-value after Benjamini-Hochberg correction. Only gene pairs with n> 3

are considered.

Rank Gene pair nt n ncx nl ns Δ LLR p q

1 FLT3_NRAS 15 8 7 3 4 -2.906 26.048 0.00000029 0.0000061

2 NRAS_PTPN11 9 8 8 1 0 -3.880 24.056 0.0000012 0.000013

3 KRAS_NRAS 13 9 8 3 1 -2.642 19.289 0.0000090 0.000063

4 IDH1_IDH2 4 4 4 0 0 -1 14.577 0.00034 0.0014

5 KRAS_PTPN11 4 4 4 0 0 -1 14.577 0.00034 0.0014

6 FLT3_KRAS 7 4 4 2 1 -2.632 10.704 0.00086 0.0030

7 FLT3_PTPN11 8 7 5 1 0 -2.227 8.850 0.0021 0.0062

8 FLT3_NPM1 23 11 0 12 0 1 8.516 0.0081 0.021

9 PTPN11_WT1 5 5 3 0 0 -2.069 4.871 0.018 0.043

10 DNMT3A_FLT3 15 4 0 11 0 1 5.520 0.036 0.076

11 NPM1_PTPN11 11 8 0 3 0 1 4.041 0.087 0.17

12 DNMT3A_NPM1 18 5 1 13 0 1.250 2.053 0.16 0.28

13 KRAS_NPM1 7 5 0 2 0 1 2.569 0.23 0.37

14 IDH2_NRAS 10 6 3 4 0 -0.812 1.171 0.30 0.45

15 IDH2_NPM1 12 7 1 5 0 0.797 0.701 0.36 0.49

16 IDH2_PTPN11 4 4 0 0 0 1 1.468 0.37 0.49

17 DNMT3A_IDH2 11 4 1 7 0 0.699 0.520 0.55 0.68

18 NPM1_NRAS 18 11 2 7 0 0.468 0.413 0.63 0.73

19 FLT3_IDH1 5 4 1 1 0 -0.230 0.040 0.80 0.81

20 FLT3_IDH2 8 5 1 3 0 0.335 0.104 0.81 0.81

21 IDH1_NPM1 8 5 1 3 0 0.335 0.104 0.81 0.81

https://doi.org/10.1371/journal.pcbi.1009036.t001
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occurring with NPM1. Notably, the naïve test assigns significance to exclusivity between FLT3
and IDH2 while this pair fits well with random assignment across the patient cohort under the

null as indicated by the GeneAccord analysis, and if anything with a tendency to co-occur

clonally (Table 1). The pair of IDH1 and NPM1 picked up by the naïve testing is also unre-

markable when considering the patient tree topologies with GeneAccord.

Discussion

We have introduced GeneAccord as a novel statistical framework to systematically analyse the

subclonal mutation patterns in cohorts of tumour patients. We first considered the placement

of the mutations within the evolutionary histories of the patients exhibiting both mutations.

By introducing a null model of random mutation placement, we created a new exact test to

assess how unusual the subclonal patterns are across the cohort. We evaluated the calibration

and power of the test. For larger numbers of patient samples exhibiting the same pair of genes,

Fig 7. Significance of clonal co-occurrence or exclusivity of the three GeneAccord tests for the AML cohort. For the AML cohort, we plot the

significance of clonal co-occurrence or exclusivity by computing the log10 p-value and including the sign of the effect D

jDj
(positive indicating clonal co-

occurrence, negative indicating clonal exclusivity) for the three geneAccord tests: The x-axis depicts the placement test, the y-axis the occurrence test

and the colouring the combined test (red indicating clonal co-occurrence, blue indicating clonal exclusivity). The labels of the significant gene pairs of

the combined test, after Benjamini-Hochberg correction (Table 1), are also coloured.

https://doi.org/10.1371/journal.pcbi.1009036.g007
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the exact test becomes more computationally intensive, while utilising the asymptotic chi-

squared distribution becomes better calibrated and is computationally cheap. Such testing con-

ditions on the observed tumour phylogenies, so that linear and star shaped trees are not infor-

mative for the placement test. However, linear and star topologies may be favoured with

clonally co-occurring or exclusive gene pairs. To account for these signals we developed a gene

pair occurrence test for which patients exhibit both mutations. We then created a combined

test of both the occurrence of mutations across the cohort and the placement within the patient

trees carrying both mutations. This allows us to utilise all data to better uncover clonal co-

occurrence and exclusivity.

Though the combined test additionally utilises the signals of where a gene pair occurs across

the set of tumour phylogenies, the testing framework is conditioned on this set of trees. If all

the trees are linear (or all star-shaped) then all gene pairs are clonally co-occurring (or exclu-

sive) and hence interchangeable, which defines our null model. As such, GeneAccord relies on

there being a mixture of tree topologies in the cohort to be able to detect significant pairs. We

focussed on clonal co-occurrence and exclusivity at the gene level, but the method applies to

any marker that can be assigned to the clones in the architecture of each tumour, for example

to pathways by mapping from mutations to pathways [46] or from differentially expressed

genes to pathways.

We detect pairs of genes or pathways that have an elevated or depressed rate of mutating in

different clonal lineages of the same tumour. There are several possible biological explanations

for such mutational patterns. For clonally exclusive gene pairs occurring in separate co-exist-

ing clones, the two clones could have complementing phenotypes and cooperate or mutually

benefit each other, for instance, by sharing diffusible factors. Another possibility is that the two

genes of a clonally exclusive pair are synthetically lethal and that both genes being mutated in

the same cell would lead to a disadvantageous, and maybe even lethal, phenotype. The two

clones may also be the result of parallel convergent evolution where both clones exhibit the

same phenotype by different mutations. The specific subclonal mutation pattern may also

depend on the evolutionary subtype [9]. In order to gain a better understanding of possible

reasons for the clonally exclusive pattern, it is important to examine the biological functions of

these genes and pathways in more detail. A definite proof of such interactions then requires

future experimental studies in vitro or in vivo. Here, we have developed and applied a new

computational approach to identify such gene (or pathway) pairs that are unlikely to be gener-

ated by random chance alone. As such, the GeneAccord method will be useful in finding and

prioritising candidate cooperative tumour clones in cancer patient cohorts.

While many cancer-related mutually exclusive gene pairs have been previously identified

across cohorts at a bulk or consensus level, finding such pairs within a single tumour and its

clonal architecture has received less attention. Especially with the high resolution of multi-

region bulk and single-cell sequencing we can now better reconstruct the evolution histories of

tumours for downstream analyses as performed here. As the panels used for high-throughput

single-cell sequencing increase in size and coverage we can expect more detailed tumour phy-

logenies and better clonal resolution to provide more power to detect clonal exclusivity pat-

terns. As a future extension we could integrate our testing with evolutionary modelling to

extract additional signals of subclonal cooperation. Currently we focused on testing genes pair-

wise, and another possible extension would be to consider larger sets of genes and detect more

generalised (higher order) clonal exclusivity patterns.

Looking ahead, combined single-cell sequencing of the exome and transcriptome [47] will

allow the assignment of differentially expressed genes to specific clones. Alternatively, match-

ing multi-omic profiling of the different cells from the same sample, for example, through

matching expression profiles and copy number states [48] on evolutionary trees [49], would
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provide a transcriptomic profile for each clone. This would enable a GeneAccord analysis on

the transcriptomic level. Therefore, with single-cell data, one could perform a combined analy-

sis using various omics layers including differentially expressed genes, as well as copy number

and epigenetic changes. This would allow for a more holistic portrait of the subclonal alter-

ation profiles and potentially reveal more synergies between clones that could inform the

design of future treatments.

Methods

GeneAccord overview

The input data to the GeneAccord algorithm are the mutated gene-to-clone assignments from

a cohort of cancer patients. These are obtained by running phylogenetic tree inference meth-

ods, for example on single-cell sequencing data. We utilised the trees inferred by SCITE [39]

for the cohort of 123 AML patient samples [12].

In general, there is uncertainty in the tree structure learned from sequencing data. There-

fore, our algorithm was designed to allow as input multiple gene-to-clone assignments per

patient, for example by sampling from the posterior distribution of trees. The tree inference

designates point mutations to individual clones, while mutations can then be mapped to genes

or pathways using existing pathway databases. Our statistical framework can be applied on the

gene level, or on the pathway level to detect clonally exclusive pairs of pathways. We focus on

the gene case here.

Likelihood ratio gene pair placement test

To test if gene pairs have a different rate of clonal exclusivity compared to typical genes, we

first compute the background rate of clonal exclusivity for each patient i

ri ¼
# gene pairs on different branches

# gene pairs
ð1Þ

When we have a sample of trees for the patient, we average this rate across the trees. Then for

each gene pair (j, k), we look at the clonal exclusivity of gene j and gene k among the patient

samples that possess both somewhere in their trees. For each patient i, we compute

Oðj;kÞi ¼
# trees with gene j and gene k clonally exclusive

# trees
ð2Þ

When we have a single tree for patient i, this quantity will be either 0 or 1. Under the null

model that genes are placed randomly on the trees for each patient, the likelihood that a gene

pair will be exclusive is ri while the likelihood of co-occurrence is (1 − ri). The log-likelihood of

the observed exclusivity patterns of the gene pair is then

lðj;kÞ0 ¼
Xn

i¼1

½Oðj;kÞi logðriÞ þ ð1 � Oðj;kÞi Þ logð1 � riÞ� ð3Þ

where the sum is only over patients with both genes present, with n denoting the number of

patient samples with both genes. For the alternative model, we allow the clonal exclusivity

rates to differ for the gene pair. To ensure that the shifted rates are between 0 and 1, we per-

form the shift in the logit space and define the shifted rate r0i ¼ r0iðDpÞ by

logitðr0iÞ ¼ logitðriÞ � Dp ; logitðxÞ ¼ log
x

1 � x

� �

ð4Þ
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where the sign of the shift Δp is chosen so that positive values indicate co-occurrence and nega-

tive values indicate clonal exclusivity. Then we maximise the log-likelihood of the alternative

over Δp

lðj;kÞ1 ¼ max
Dp

Xn

i¼1

½Oðj;kÞi logðr0iÞ þ ð1 � Oðj;kÞi Þ logð1 � r0iÞ� ð5Þ

where the dependence on Δp is through the r0 and the maximisation is performed numerically

(with the optimize function in R). For computational reasons, we restrict Δp to a range of ±10

since after the logit transformations the r0 will essentially be 0 or 1 and further increasing or

decreasing Δ to ±1 will hardly affect the maximal log-likelihood numerically. As a test statistic

we employ the log-likelihood ratio (LLR)

LLRp ¼ 2ðlðj;kÞ1 � lðj;kÞ0 Þ ð6Þ

The factor of 2 is included so that for larger n the LLR statistic will follow a w2
1

distribution. For

linear trees all gene pairs are in the same lineage and with none being clonally exclusive ri = 0.

The logit transform maps to -1 which is unaffected by the shift of Δp and the transformed rate

r0i will also be 0. Similarly, for star trees with every gene in its own lineage and ri = 1, the shifted

rates are unchanged. These topologies therefore do not contribute to the LLR statistic for the

gene pair placement test, and patients with such uninformative trees are removed from the

test.

Exact placement test

To be able to use GeneAccord for less common gene pairs we devise an exact test for smaller n.

When the gene pair is observed in n patient samples, there are 2n different possible binary

clonal exclusivity patterns. If we store the binary pattern in a vector b, the probability of it aris-

ing under the null is

PðbÞ ¼
Yn

i¼1

½ribi þ ð1 � riÞð1 � biÞ� ð7Þ

For each binary vector, we compute its LLR statistic. The p-value is the sum of the probabilities

of the binary vectors with a LLR statistic larger than the observed statistic. In the p-value we

also include half the probabilities of binary vectors with identical LLR statistics. This is neces-

sary to obtain calibration of the p-values, which we demonstrate with Monte Carlo smoothing.

Monte Carlo smoothing

To better check the calibration of the exact test we wish to introduce some smoothing into the

p-value distribution. Rather than enumerating all binary vectors, we could simply sample

them proportionally to their probabilities and obtain a Monte Carlo estimate of the p-value. In

the limit of an infinite sample size this reduces to the value from the exact test, with the same

discrete effects. To smooth these effects we add some noise to the values of r for each Monte

Carlo sample by sampling them from a beta distribution with parameters νr and ν(1 − r). The

parameter ν corresponds to the amount of overdispersion or noise in the sampled rates with

the limit ν!1 being noiseless. From the Monte Carlo samples, the p-value is the proportion

of samples with a larger LLR statistic (the probability of being equal is 0). As we take the limit ν
!1 the median of a beta distribution approaches the mean, so that half the Monte Carlo

samples which would have the same LLR in the exact test will be more extreme, and half less
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extreme. In the exact test we therefore count binary vectors with the same discrete LLR statistic

with weight half.

Computational cost

After the data pre-processing, computing the LLR statistic involves optimising the log-likeli-

hood numerically while each likelihood computation is linear in n, the number of patient sam-

ples. For the chi-squared approximation we perform a single optimisation so for each gene

pair considered the cost is O(n). The exact test involves optimising 2n log-likelihoods leading

to a cost of O(n2n). The Monte Carlo smoothed version optimises for each Monte Carlo sam-

ple, so with M samples the cost is O(nM).

Alpha budgeting

For gene pairs mutated in only a handful of patient samples, depending on the background

clonal exclusivity rates for those patients, it may never be possible to get a significant p-value

below 5% regardless of the observed clonal exclusivity patterns in the data. For each gene pair

we therefore compute, from the set of patient samples possessing both mutations, the mini-

mum possible p-value. If the minimum is greater than 5%, the gene pair is removed before the

testing with GeneAccord so as not to affect multiple testing corrections.

Gene pair occurrence test

In the GeneAccord gene pair placement test, we condition on the set of patient samples that

exhibit the gene pair under consideration. In a linear (star) tree all gene pairs are clonally co-

occurring (exclusive) under the null and cannot change under the alternative so that these

topologies are uninformative for the test. To enrich GeneAccord, we can additionally consider

whether these topologies are over or under-enriched and hence whether the set of tumour

samples themselves is indicative of clonal co-occurrence or exclusivity. For this we develop the

following gene pair occurrence test.

Under the null model that all gene pairs are alike and interchangeable, the probability a

gene pair occurs in a specific patient is proportional to the number of gene pairs it possesses.

Let wi be the number of gene pairs of patient i. Then the probability a set S of patients exhibits

the gene pair is

PS
0
¼

1

Z

Y

i2S
wi ; Z ¼

XjS
0 j¼jSj

S0

Y

i2S0
wi ð8Þ

where we condition on the size of the set and normalise over all possible patient sets of that

size (this is the non-central hypergeometric distribution in the Fisher rather than Wallenius

sense; [50]). Although for a dataset with N patients, evaluating the normalising constant Z

involves
N
jSj

� �

possible sets, with dynamic programming we compute Z in O(N|S|) time.

As an alternative, we might expect gene pairs with a propensity for clonal co-occurrence

(exclusivity) to prefer topologies with fewer (more) branches so we allow the weight of a

patient to depend on its clonal exclusivity rate

w0i ¼ 2wi½rð1 � riÞ þ ð1 � rÞri� ; logitðrÞ ¼ Do ð9Þ

This formula gives a relative weight of ρ to locations in the tree of clonal co-occurrence and a

relative weight of (1 − ρ) to clonally exclusive placements of the gene pair. With the logit trans-

formation, Δo measures the degree of clonal co-occurrence (positive) or exclusivity (negative)
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analogously to the GeneAccord placement test. For the alternative we numerically maximise

the probability of selecting the observed patients

PS
1
¼ max

Do

1

Z0
Y

i2S
w0i ; Z0 ¼

XjS
0 j¼jSj

S0

Y

i2S0
w0i ð10Þ

to obtain the LLR test statistic

LLRo ¼ 2ðlog PS
1
� log PS

0
Þ ð11Þ

To enumerate and maximise all
N
jSj

� �

possible patient sets to obtain an exact test is compu-

tationally prohibitive, so here we rely on the w2
1

approximation for the distribution of the LLR

statistic for larger |S|.

Combined test

Since the GeneAccord gene pair placement and occurrence tests are independent under the

null, the p-values from each can be combined with Fisher’s method to obtain a joint p-value.

To better account for consistent signals, we instead compute the joint probability of the gene

pair (j, k) occurring in the selected patient set S and their clonal exclusivity patterns. The joint

log-likelihood can be written as

X

i2S

log w0i
� �

þ Oðj;kÞi log
ð1 � rÞri

rð1 � riÞ þ ð1 � rÞri

� ��

þ 1 � Oðj;kÞi

� �
log

rð1 � riÞ
rð1 � riÞ þ ð1 � rÞri

� ��

� log ðZ0Þ
ð12Þ

and if we equate the two shift parameters Δ = Δp = Δo we have the relationship

ð1 � rÞri
rð1 � riÞ þ ð1 � rÞri

¼ r0i ;
rð1 � riÞ

rð1 � riÞ þ ð1 � rÞri
¼ ð1 � r0iÞ ð13Þ

so that the joint log-likelihood simply reduces to combining the log-likelihoods of the place-

ment and occurrence tests.

LLRc ¼ LLRp þ LLRo ; D ¼ Dp ¼ Do ð14Þ

When we maximise and compute the difference in log-likelihoods to obtain the LLR statistic,

the weights of the selected patients in S actually cancel. For a given cohort, the LLR is then

determined by the number of trees where the gene pair is clonally exclusive (or co-occurring)

including the linear and star trees. Since this number can range from 0 to the total number of

patients exhibiting the gene pair, we again enumerate all possibilities and compute their proba-

bility under the null to obtain an exact p-value.

AML cohort processing

In the AML cohort [12], we start with the trees inferred with SCITE [39] and filtered out any

clones with a frequency below 1%. Since most patient samples only exhibit a few mutations

amongst the panel of 30 genes selected, the majority of trees are linear. Of the 123 patient sam-

ples, 3 have a single mutation and no gene pairs, leaving 120 samples. Among these there are

80 linear trees, 5 star trees and 35 which are informative for the GeneAccord gene pair
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placement test. We then consider gene pairs which were both present in at least 4 patient trees

among those 35, leading to a set of 21 gene pairs. These 21 gene pairs are analysed over the full

cohort of 120 samples with the combined GeneAccord test (Table 1).

Supporting information

S1 Supplement. Supplementary material. Calibration plots of the GeneAccord gene pair

occurrence test and the GeneAccord combined test of clonal co-occurrence or exclusivity.

Tables of the results of the GeneAccord gene pair occurrence test, the GeneAccord gene pair

placement test and naïve exclusivity testing on the AML cohort. Fig A. Calibration of the

gene pair occurrence test. For gene pairs simulated under the null to occur in n patients the

test for which patients exhibit the mutations has some degree of miscalibration with the chi-

squared approximation, but is conservative for significant p-values. The simulation is based on

resampling the AML trees. Fig B. Calibration of the combined GeneAccord test. For the sim-

ulation based on resampling the AML trees and placing genes uniformly across them (as in Fig

A) we consider gene pairs occurring in n patients. The exact test combines the signals from the

gene pair occurrence amongst patients with the placement of the mutations within those

patients. The test has strong discrete effects, but conservative p-values at lower significance lev-

els. Table A. GeneAccord gene pair occurrence test results for the AML cohort. Ranked list

of the gene pairs tested with the GeneAccord gene pair occurrence chi-squared test on the

cohort of 123 AML patient samples. For each gene pair, the column nt is the total number of

patients exhibiting both gene mutations. The column n contains the number of those patients

whose trees are not linear or star shaped while nl and ns contain the number of linear and star

trees. Δo is the clonal exclusivity score indicating enrichment of clonal co-occurrence (positive)

or clonal exclusivity (negative) with ±1 corresponding to hitting the numerical optimisation

bounds. LLR is the log-likelihood ratio statistic, p is the p-value and q the adjusted p-value

after Benjamini-Hochberg correction. Only gene pairs with n> 3 are considered. Table B.

GeneAccord gene pair placement test results for the AML cohort. Ranked list of the gene

pairs tested with the GeneAccord exact placement test on the cohort of 123 AML patient sam-

ples. For each gene pair, the column n is the number of patients exhibiting both gene muta-

tions, ncx the number of times the genes are clonally exclusive. Linear and star trees which are

not informative for the test are excluded. Δp is the clonal exclusivity score indicating enrich-

ment of clonal co-occurrence (positive) or clonal exclusivity (negative) with ±1 correspond-

ing to hitting the numerical optimisation bounds. LLR is the log-likelihood ratio statistic, p is

the p-value and q the adjusted p-value after Benjamini-Hochberg correction. Only gene pairs

with n> 3 are included. Table C. Naïve exclusivity testing on the clones the AML cohort.

Ranked list of the gene pairs tested with standard exclusivity testing on the 492 clones in the

cohort of 123 AML patient samples. For testing we compute the log odds ratio and use the nor-

mal approximation. For each gene pair, the column z is the z-score indicating enrichment of

clonal co-occurrence (positive) or clonal exclusivity (negative), p is the p-value and q the

adjusted p-value after Benjamini-Hochberg correction. Only gene pairs tested with GeneAc-

cord are considered.
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