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Various single nucleotide polymorphisms (SNPs) in the oxytocin receptor (OXTR) gene have been associated with behavioral traits,
autism spectrum disorder (ASD) and other diseases. The non-synonymous SNP rs4686302 results in the OXTR variant A218T and has
been linked to core characteristics of ASD, trait empathy and preterm birth. However, the molecular and intracellular mechanisms
underlying those associations are still elusive. Here, we uncovered the molecular and intracellular consequences of this mutation
that may affect the psychological or behavioral outcome of oxytocin (OXT)-treatment regimens in clinical studies, and provide a
mechanistic explanation for an altered receptor function. We created two monoclonal HEK293 cell lines, stably expressing either the
wild-type or A218T OXTR. We detected an increased OXTR protein stability, accompanied by a shift in Ca2+ dynamics and reduced
MAPK pathway activation in the A218T cells. Combined whole-genome and RNA sequencing analyses in OXT-treated cells revealed
7823 differentially regulated genes in A218T compared to wild-type cells, including 429 genes being associated with ASD.
Furthermore, computational modeling provided a molecular basis for the observed change in OXTR stability suggesting that the
OXTR mutation affects downstream events by altering receptor activation and signaling, in agreement with our in vitro results. In
summary, our study provides the cellular mechanism that links the OXTR rs4686302 SNP with genetic dysregulations associated
with aspects of ASD.
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INTRODUCTION
The neuropeptide oxytocin (OXT) regulates multiple social and
emotional behaviors, such as social bonding, reciprocal trust,
aggression, fear, and anxiety, both in animals and humans [1–3].
Extensive research in rodents revealed endogenous OXT release
from hypothalamic neurons within distinct brain regions in
response to reproductive [4, 5], stressful [6, 7] or social [8, 9]
stimuli, and its binding to intracerebral OXT receptors (OXTR). The
OXTR is a G protein-coupled receptor, which is abundantly
expressed in the brain [1]. By coupling to different G-proteins [10],
the OXTR is linked to multiple intraneuronal signaling cascades,
including Ca2+, protein kinase C and mitogen-activated protein
kinase (MAPK) kinase (MEK1/2) signaling [11, 12], the myocyte
enhancer factor 2A (MEF2A) [13], as well as mitochondrial
respiration [14]. Some of these pathways, e.g., MEF2A signaling
and mitochondrial functioning, have been associated with autism
spectrum disorder (ASD) [15–17].
Consequently, brain OXTRs are not only biological targets of

endogenous OXT, but potentially also for the treatment of
psychopathologies associated with emotional and social deficits
such as ASD [18–20]. For example, synthetic OXT, which can be

applied intranasally and penetrates brain tissue [21, 22] has been
shown to improve social deficits in autistic children [23, 24].
However, the therapeutic efficacy is highly variable across

individuals. The cause for this variability is still elusive, but
epigenetic modification of OXTR expression [25] or the existence
of single nucleotide polymorphisms (SNPs) in the OXTR are likely
to contribute [26]. Thus, uneven distribution of SNP alleles among
clinical trial cohorts could result in the observed variability;
consequently, the effect of the mutation on the gene and the
gene product is essential knowledge to adequately design clinical
studies. So far, the structural as well as functional consequences of
SNPs in the gene encoding the OXTR are not fully understood,
despite the fact that SNPs in the OXTR have already been
associated with a plethora of psychological traits in genome-wide
association studies (GWAS) [27, 28]. Although most of the
described disease-associated SNPs are intronic and/or synon-
ymous mutations [1], non-synonymous SNPs (nsSNPs), which are
likely to affect OXTR protein structure and function, have also
been associated with severe psychopathological conditions of
ASD. For example, the rs4686302 nsSNP has been associated with
deficits in social communication and cognition, as well as
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restricted and repetitive behaviors [29, 30], along with differences
in emotional empathy in a non-clinical Chinese cohort [31].
Another study investigated the association of the rs4686302
nsSNP with premature birth as well as reduced Cesarean section
prevalence, and found that this variant results in increased
contractility upon OXT stimulation in human myometrium
biopsies [32].
The nsSNP rs4686302 is located within the coding region of

exon 3 in the human OXTR gene, leading to an amino acid
exchange of alanine to threonine at position 218 (A218T) of the
OXTR protein. Intriguingly, in silico sequence-based predictions of
the functional significance of this variant did not identify it as
damaging [33], in contrast to the observed phenotype. Thus,
shedding light on the functional consequences of nsSNP
rs4686302 is crucial to assemble a comprehensive model of
molecular and intracellular effects that may ultimately affect
complex behavioral traits associated with ASD. Recently, the
crystal structure of the human OXTR has been solved [34],
opening up the avenue to assess such molecular effects in detail.
Here, we transduced HEK293 cells with an N-terminal FLAG-

tagged OXTR comprising either the reference wild-type (WT)
sequence or the rs4686302 nsSNP. Since the OXTR belongs to the
family of rhodopsin-like GPCRs that do not rely on a signal peptide
[35], but a signal anchor sequence represented by the first
transmembrane domain, the N-terminal tag does not interfere
with protein translation in the endoplasmic reticulum. By means of
FLAG tag-directed fluorescence-activated cell sorting (FACS), we
isolated single clones of OXTR-positive cells to create both WT and
SNP-containing monoclonal cell lines. To control for genomic
effects and to map the insertion site of the OXTR gene, we
conducted whole-genome sequencing. OXTR protein stability and
turnover have also been assessed by cycloheximide degradation
assay and compared between nsSNP and WT cells. Because OXTR
activation leads to Ca2+ release from intracellular stores [36, 37] as
well as Ca2+ influx from the extracellular space [12], we measured
stimulated intracellular Ca2+ levels in both cell lines using Ca2+

fluorescence imaging. Furthermore, we assessed the activation of
the MAPK pathway downstream of the OXTR by western blot, with
ERK1/2 being the proposed essential core factor for the anxiolytic
and anti-stress effects of OXT [38–40]. As both OXTR-activated
pathways signal to the nucleus to regulate gene transcription [41],
we also performed RNA sequencing in WT and SNP-containing
cells and identified multiple genes, which were found to be
differentially regulated by the presence of the SNP. The impact of
the mutation on the receptor structure and on downstream
intracellular events was finally investigated by molecular and
systems biology modeling. The computational results have been
validated by comparison with the aforementioned protein
degradation and Ca2+ imaging assays. Altogether, the combina-
tion of in vitro and in silico approaches used in this work allows to
analyze the molecular and cellular effects of the OXTR A218T
variant and opens the way for future rational drug design efforts.

MATERIAL AND METHODS
Cell culture
HEK293 cells (provided by Prof. Eugen Kerkhoff, University Hospital Regens-
burg) were cultured in DMEM (#D8437, Sigma Aldrich, Darmstadt,
Germany), supplemented with 10% heat-inactivated Gold fetal bovine
serum (#FBS-HI-11A, Capricorn, Germany), and penicillin/streptomycin
(#P4333, Sigma Aldrich) at 37 °C/5% CO2 until 80% confluency. Passaging
was performed at least once a week by gentle trypsinization. Cells were
tested for mycoplasma contamination on a regular basis.

Transduction of HEK293 cells with OXTR gene variants
For a stable integration of the OXTR variants in the genome, moloney
murine leukemia virus (MMLV) vectors were designed (VectorBuilder, Neu-
Isenburg, Germany), and HEK293 cells were transduced according to the

manufacturer’s protocol. The constructs contained the respective human
OXTR gene (transcript variant 1, accession number NM_000916.3) or the
SNP-containing variant (rs4686302) and an N-terminal 3xFLAG tag
conjugated to the gene.

Establishment of monoclonal cell lines expressing the OXTR
To reduce variability, we used monoclonal cell lines. For single cell sorting,
cells were stained with an anti-DDDDK tag antibody that recognizes the
3xFLAG tag, conjugated to phycoerythrin (ab72469, abcam, Cambridge,
UK) and sorted on a BD FACSAriaTM IIu high-speed cell sorter (Becton
Dickinson, Heidelberg, Germany).

Whole-genome sequencing
Two cell lines, expressing either the reference or the SNP-containing OXTR
gene, were chosen based on their expression levels of the OXTR protein
validated by 3xFLAG tag western blot. Further analysis, including the
genomic integration site of the constructs, whole-genome sequencing,
and subsequent bioinformatics analyses were performed by CeGaT GmbH
(Tübingen, Germany). For details, please see Tabs. S1–S4.

Protein isolation and western blot
Protein extraction and western blotting was performed as previously
described in Meyer et al. [13]. Due to a lack of specific OXTR antibodies
[42], we detected OXTR expression via the 3xFLAG tag. Specific antibodies
for anti-DDDDK (ab49763, abcam, Cambridge, UK), ERK1/2 (9102, Cell
Signaling Technology, Frankfurt am Main, Germany) and pERK1/2 (4370,
Cell Signaling Technology) revealed expression levels of the OXTR, and
total and phosphorylated ERK1/2, respectively. The total protein loading
was controlled by the “Stain-Free” method from Bio-Rad (Feldkirchen,
Germany). Uncropped images of western blots are provided in Fig. S1. All
protein quantifications by western blot were replicated at least 3 times.

Flow cytometry
For analysis of cell surface expression of the OXTR, cells were stained with
anti-DDDDK tag antibody conjugated to phycoerythrin (ab72469, abcam,
Cambridge, UK) and DAPI (Sigma-Aldrich, Munich, Germany) to exclude
dead cells. Data were acquired on a BD FACSCelesta™ (Becton Dickinson,
Heidelberg, Germany) and analyzed with FlowJo® v9.9.6 (Treestar Inc.,
Ashland, OR, USA).

Cycloheximide protein degradation assay
The turnover of the OXTR protein was determined using cycloheximide
(CHX)-mediated inhibition of de novo protein synthesis. Cells were seeded
and treated with 20 μg/ml CHX (Sigma, Taufkirchen, Germany) for 0–24 h.
Proteins were isolated with RIPA, and western blot analysis was performed.
The expression of 3xFLAG was analyzed in whole cell lysates.

Cytosolic Ca2+ imaging with Fura-2-AM
The basal cytosolic Ca2+ amount and the OXT-induced cellular Ca2+

response were assessed using the ratiometric Ca2+ indicator Fura-2-AM.
Solutions (Ringer ± Ca2+) and OXT (final concentration 100 nM) were
applied with a perfusion system. Regions of interest were drawn over
selected cells in the visual field using the Zen imaging software (ZEISS) and
FIJI/ImageJ. Ca2+ traces were plotted with the Origin Software (OriginLab,
version 9.7.0.188) evaluating the basal cytosolic Ca2+, area under the curve,
amplitude, as well as full width at half maximum.

Molecular modeling
Both monomeric and homodimeric forms of OXTR may be present at the
OXTR expression levels in the HEK293 cellular lines studied here [43].
Therefore, both forms were modeled.
Our structural models of WT and A218T OXTR monomeric proteins were

based on the X-ray structure of the OXTR A218T variant monomer (PDB code
6TPK) [34], which corresponds to an inactive state. We used SwissModel [44]
to revert eight thermo-stabilizing mutations present in the crystallographic
construct [34] and replace the fusion protein by the sequence of the human
OXTR intracellular loops (UniProtID P30559). The residue at position 218 was
modeled as either alanine or threonine using the Rotamers tool [45] in the
UCSF Chimera program [46]. Models of the WT and A218T monomeric
proteins in an intermediate and in the active states were either generated
with SwissModel [44] or obtained from GPCRdb [47] (Tab. S5). The change in
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folding free energy (ΔΔGfold) of the OXTR monomer upon the mutation was
evaluated by analyzing our A218T models with the mCSM-membrane [48],
DynaMut [49], DynaMut2 [50], and PremPS [51] servers. The corresponding
change in vibrational entropy (ΔΔSvib) was estimated using DynaMut [49].
ΔΔGfold and ΔΔSvib are correlated, in a qualitative way, with changes in
monomer stability and flexibility upon mutation, respectively [52–54]. For
details, please see Tab. S7.
The OXTR/OXTR homodimer models were built using a structural

superposition strategy similar to that in reference [55]. Several dimer
interfaces are possible in class A GPCRs [56, 57], such as the OXTR [55, 58].
Here, we focused on the TM5/TM5’ dimer, for which the A218T variant is
expected to have a more significant effect. We compiled all the
experimental structures of GPCR dimers with a TM5 interface (Tab. S6)
available in the DIMERBOW database [56]. Then, we superimposed our
OXTR A218T monomer model onto each of the monomers of the
experimental dimeric structures by using the MatchMaker tool [59] in the
UCSF Chimera program [46]. The thus-generated A218T OXTR/OXTR dimer
models were used to build the corresponding WT OXTR-OXTR dimer
models by reverting in silico the Thr218 mutation back to Ala using the
Rotamers tool [45]. The different homodimer models were ranked based
on the OXTR/OXTR binding free energy (ΔGbind) evaluated using the
PRODIGY webserver [60, 61]. We then estimated the change in OXTR/OXTR
binding energy upon mutation (ΔΔGbind), using the SAAMBE-3D [62],
MutaBind2 [63], and mCSM-PPI2 [64] servers. All free energy and entropy
calculations reported here are highly approximate and used for qualitative
comparisons only (Tabs. S7–S10).

Systems biology modeling
Our mathematical model of the OXT-mediated Ca2+ release from the
endoplasmic reticulum integrates a previous model for the serotonin 2A
receptor [65] with a kinetic model for intracellular Ca2+ oscillations [66]
(see Supplementary Material for details). Simulation parameters are
described in Tab. S11, the reaction equations and parameters for each of
the signaling cascade steps are described in Tab. S12 and S13.
Our model was developed under the PySB framework [67] and

integrated using the SciPy ODE numerical integrator [68]. The results were
analyzed using NumPy [69], SciPy [68] and scikit-learn [70] libraries. All
simulations and analysis codes were written and run in a Jupyter notebook
[71] (see https://github.com/rribeiro-sci/OXTR.git).

RNA sequencing and gene ontology analysis
The transcriptome of three samples of each OXTR cell line (WT and A218T
mutant) in response to stimulation with 100 nM OXT for 1 h was analyzed
by RNA Sequencing and Gene Ontology (GO) [72, 73] annotation of
differentially regulated genes (SRA SAMN21439292, SAMN21439293,
CeGaT GmbH, Tübingen, Germany).
The list of genes associated with ASD was downloaded from the SFARI

database [74] (https://gene.sfari.org/autdb/GS_Home.do) and compared to
the list of differentially regulated genes obtained from the transcriptome
analysis. Additionally, genes were categorized according to the gene
scoring module of SFARI. Genes scored as category 1 show high
confidence, i.e. they have been clearly implicated in ASD and meet the
most rigorous threshold of genome-wide significance. Category 2
represents strong candidates that are uniquely implicated by GWAS
reaching genome-wide significance and most likely with a functional
effect. Category 3 contains genes with suggestive evidence of ASD
correlation from significant, yet unreplicated, studies.

Statistical analysis
Data were analyzed either by t-test or two-way ANOVA followed by Tukey
post hoc test (Sigma Plot, version 13.0, Systat Software). The variance
between groups was similar, and statistical significance was accepted at p
< 0.05. Due to the large number of genes in the RNA sequencing data set,
Benjamini–Hochberg multiple-testing correction was used for controlling
false discovery rate (padj, adjusted p value). In Ca2+ imaging experiments, n
represents number of cells/traces, in western blots, n represents number of
cell lysates. Data are presented as mean ± standard error of the mean.

RESULTS
The molecular and cellular consequences of cellular expression of
the OXTR nsSNP rs4686302 were assessed using a combination of
molecular biology techniques complemented with computational

modeling. First, HEK293 cells (which do not express the OXTR
endogenously) were transduced with a construct containing
either the WT or OXTR A218T variant, combined with an
N-terminal 3xFLAG tag (Fig. 1a). Next, positively transduced cells
were sorted to establish two monoclonal cell lines. Whole-genome
sequencing revealed that the WT OXTR construct was inserted on
chromosome 8 within the MYC gene (see Tab. S1), whereas the
A218T mutant OXTR construct was inserted twice on chromosome
6 at two positions (see Tab. S1), which are located within the
NUDT3 and USP45 gene, respectively. For each insertion site, we
extracted ten genes upstream and downstream of the location
and analyzed potential insertion-induced dysregulations. These
genes (see Tab. S2) were not considered for further analysis.
The double gene insertion in the OXTR A218T cell line resulted

in a 1.36-fold upregulation of the OXTR transcript, which was
confirmed by RNA sequencing, and a 1.78-fold upregulation of the
protein in whole cell lysates compared to the OXTR WT-expressing
cells (Fig. 1b, c and Tab. S3, S4). Whole cell lysates include vesicular
OXTR [75] and potentially even nuclear OXTR [76]. However, the
functionally most important fraction is the cell surface-bound
OXTR, whose level was determined by flow cytometry. Both cell
lines showed only a low expression level of the OXTR in the
membrane, which was slightly higher in the A218T compared to
the WT cells (Fig. 1d).
The stability of the OXTR variants was analyzed by the CHX

chase assay (Fig. 1e). 3xFLAG levels were quantified after
treatment with CHX as percentage of the initial FLAG protein
level (0 min of CHX treatment). We revealed a significantly
reduced protein degradation turnover, i.e. higher stability, of the
OXTR A218T variant compared with WT (Fig. 1f).
Subsequent analyses of MAPK pathway activation, i.e. of basal

and OXT-induced phosphorylation of ERK1/2, were performed by
western blot in both OXTR WT and mutant cells (Fig. 1g, h) [40].
We found a significantly reduced MAPK activation in the
A218T cells as reflected by both pERK1 (Fig. 1g) and pERK2
(Fig. 1h) levels after 60 min OXT stimulation.
Additionally, in vitro evaluation of cellular Ca2+ responses using

Fura-2 Ca2+ imaging (Fig. 2a, b) revealed reduced basal cytosolic
Ca2+ levels in A218T cells compared to WT, both in the presence
and absence of extracellular Ca2+ (Fig. 2c). However, the
amplitude of the OXT-induced Ca2+ signal was higher in
A218T cells compared with WT cells incubated in Ca2+-free Ringer
(Fig. 2d). The area under the curve revealed a cell line-specific
effect showing a higher increase in the cytosolic Ca2+ concentra-
tion upon OXT stimulation in A218T compared to WT cells (Fig. 2e).
The full width at half maximum, which reflects the kinetics of the
OXT-induced Ca2+ response, also differed significantly between
the two cell lines irrespective of the bathing solution, indicating a
prolonged OXT-induced Ca2+ response in the A218T cells (Fig. 2f).
To provide a rationale for the increased stability and the

differential OXTR-mediated Ca2+ responses in the A218T variant,
we resorted to in silico methods. OXTR can exist as monomer and
homodimer [43, 55]; therefore, the effect of the mutation was
investigated for both forms. The X-ray structure of OXTR A218T
[34] was solved in its monomeric form and shows that the side
chain of T218, located in the transmembrane helix 5 (TM5),
establishes intrahelical interactions with Ile214 and Leu222 (see
Figs. 3 and S2). In contrast, in our model of the monomeric OXTR
WT, the A218 side chain does not form any interactions (Figs. 3
and S2). The additional intramolecular interactions present in the
A218T variant may stabilize the monomeric receptor, as also
suggested by a change in folding free energy predicted by several
web servers (see Tab. S7).
To assess the effect of the A218T variant on the OXTR/OXTR

homodimer, we focused on the TM5/TM5’ interface, where residue
218 is located. In our top-ranked models of the WT OXTR
homodimer (Figs. 3 and S3), A218 does not form any inter-
molecular interactions across the protein/protein interface.

M. Meyer et al.

909

Molecular Psychiatry (2022) 27:907 – 917

https://github.com/rribeiro-sci/OTR.git
https://gene.sfari.org/autdb/GS_Home.do


Instead, in the mutant homodimer, T218 forms hydrophobic
interactions with residues of the adjacent monomer in two out of
the top three dimer models (Figs. 3 and S3). The additional
intermolecular interactions in the T218A variant may be associated
with an increase in dimer stability, as indicated by the change in
OXTR-OXTR binding free energy predicted with several web

servers (see Tabs. S8–S10). Therefore, our modeling predicts that
the mutant A218T OXTR is more stable, in line with the
experimental in vitro data presented in Fig. 1d. Nonetheless, our
calculations only provide a (qualitative) estimation of thermo-
dynamics stabilities, which differ from the experimental readout
related to protein degradation.

b
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The change in intrahelical interactions at the OXTR monomer
level is also predicted to result in a decrease in protein flexibility in
the A218T variant compared to WT (Tab. S7). This is in line with
previous computational studies showing that the presence of Ser
or Thr in TM helices affects their dynamics [77]. Nonetheless, it
should be noted that the calculations presented here account only
in a very simplified way for the contribution of protein dynamics
(see Supplementary Material). Molecular dynamics simulations, in
combination with energetic analyses, would be needed to
estimate more accurately the mutational effects on protein
stability and flexibility [78–80].
Taken together, the effects of the A218T variant on both

stability and flexibility of monomeric and dimeric OXTRs (Tabs. S7
and S10), albeit small, may affect the participation of the TM5 helix
in receptor activation [81–84]. In turn, this may impact the
subsequent OXTR-mediated signaling pathways. Here, we
explored this possibility by building a mathematical model of
the OXTR-dependent effects on the intracellular Ca2+ concentra-
tion (in Ca2+-free Ringer’s solution). Importantly, such model
integrates the previous molecular modeling data in the parameter
that implicitly depends on receptor activation: the kinetic constant
(kf_coupling_wt and kf_coupling_mut for the WT and A218T
variant, respectively, Tab. S11) describing the binding between the
receptor and its cognate G-protein (see reaction 3 in Tab. S12). By
changing this single parameter on passing from WT to A218T (see
kf_coupling_wt and kf_coupling_mut in Tab. S11), the in silico
model (Fig. 2g) turns out to reproduce the experimental Ca2+

concentration curves (Fig. 2c), including the maximal amplitude
(Fig. 2h), the area under the curve and the full width at half
maximum (Fig. 2i, j). Thus, within its limitations (see Supplemen-
tary Material), our approach further supports the change in
receptor activation caused by the mutation as a key factor for the
observed changes in intracellular Ca2+ concentrations.
The aforementioned changes in Ca2+ dynamics and MAPK

pathway in the OXTR mutant cells are likely to affect gene
expression. Indeed, RNA sequencing analyses revealed a con-
siderable cohort of differentially regulated genes in OXT-
stimulated A218T versus WT cells. When filtered by corrected
significance padj < 0.05, a total of 7823 genes were differentially
regulated with the top 100 differentially expressed genes being
listed in a heatmap (Fig. 4). Out of these genes, 429 have been
identified as ASD risk genes after comparison with the database
provided by SFARI. Additionally, classification of the filtered genes
according to the gene scoring module in SFARI showed that 107
differentially expressed genes fall in category 1 of the ASD scoring,
of which the 50 most frequently reported are listed in Tab. 1.
In order to identify the underlying biological functions, in which

the differentially expressed genes are implicated, we performed a
gene set testing. The GO analysis was conducted for the
differentially expressed genes between OXTR WT and A218T cell
lines with a log2FoldChange cutoff of 1.5. The analysis was done
using either only the upregulated genes or only the

downregulated genes, or both upregulated and downregulated
genes together, as summarized in Tab. S3. We were able to
identify Ca2+ and MAPK signaling GO terms, which validates the
in vitro/in silico results obtained in this study. In addition, other
terms that were previously associated with the OXTR [13, 14], such
as cellular morphology and connectivity, or mitochondrial
functioning, were selected from the dataset and assigned in the
Supplementary Material (see Tab. S4).

DISCUSSION
In this study, we evaluated the functional relevance and cellular
consequences of a specific genetic variation in the OXTR gene, the
nsSNP rs4686302 (Fig. 1a). In humans, this A218T mutation of the
OXTR has been associated with cognition deficits, differences in
emotional empathy, and preterm birth [29–31, 33]. Our approach,
using MMLVs to permanently integrate the OXTR gene into the
HEK293 genome, provided monoclonal cell lines with stable
receptor expression levels. Using whole-genome sequencing, we
mapped the integration site(s) of the OXTR (Tab. S1) and identified
a set of unintendedly disrupted adjacent genes that were
excluded from further analyses (Tab. S2). The double insertion of
the OXTR A218T construct resulted in a higher level of mRNA
(Fig. 1b) and total cellular protein, compared to the WT OXTR cells
(Fig. 1c). Additionally, we found that there is a discrete difference
in the cell surface expression of the OXTR between the two cell
lines (Fig. 1d). Such minor increases in surface expression could be
functionally relevant, as gene duplications have already been
associated with diagnosed ASD. For instance, a case study
associated an OXTR gene duplication with pervasive develop-
mental disorder, especially obesity and behavioral issues [85].
The nsSNP rs4686302 is located within the coding sequence of

Exon 3 and leads to an alanine/threonine amino acid exchange.
We found that the A218T mutation has a stabilizing effect on the
receptor protein. Using CHX protein degradation assays, we
showed that the OXTR A218T variant exhibits significantly longer
half-life kinetics (Fig. 1f) suggesting an increased protein stability.
In support, molecular modeling indicated that the A218T mutation
stabilizes the OXTR monomeric structure relative to WT (Tab. S7)
by forming additional stabilizing intramolecular interactions
(Figs. 3 and S2). The A218T mutation may further stabilize the
protein in the homodimeric state (Tab. S10) by establishing
intermolecular interactions across the OXTR/OXTR interface (Figs. 3
and S3).
Comparison of the downstream signaling cascades between the

two cell lines revealed a more pronounced OXT-induced increase
in intracellular Ca2+ levels in OXTR A218T relative to WT cells.
Moreover, the kinetic profile of the Ca2+ response indicated a
prolonged signal duration in mutant cells.
Our calculations further suggest that the A218T mutation,

located in TM5 (Fig. 3), is associated with decreased flexibility of
this helix, which is likely to affect receptor activation and, hence,

Fig. 1 Inherent properties and intracellular effects of the wild-type (WT) and A218T oxytocin receptor (OXTR). a Gene and protein
sequence of WT and A218T OXTR. b Relative mRNA expression levels of the OXTR in A218T compared to WT cells analyzed by RNA
sequencing. *padj < 0.001. c T-test revealed a significantly increased protein expression of the 3xFLAG tag in the whole cell lysate of A218T
compared to WT cells. n= 6. *p= 0.005. d Flow cytometric determination of the surface expression level of the OXTR in WT and A218T cells.
Values inside the flow cytometry plots represent the percentage of cells above and beyond a set threshold. Colored values under the
histogram plot show the mean fluorescence intensity (MFI). FSC-A: forward scatter area. e Scheme of cycloheximide (CHX) inhibition effect on
protein translation. The schematic art pieces used in this figure were provided by Servier Medical Art (https://smart.servier.com) licensed
under a Creative Commons Attribution 3.0 Unported License. f Quantification of 3xFLAG levels after CHX treatment as percentage of the initial
protein level (0 min of CHX treatment). Two-way ANOVA revealed a significant effect between the cell lines in the protein stability evaluated
by CHX assay. n= 4 and 6 for each data point. *p (cell line)= 0.002. *p (treatment) < 0.001. g, h Quantification of western blot results showing
relative phosphorylation level of ERK1 and ERK2 in the OXTR WT and A218T cell line after stimulation with 100 nM oxytocin (OXT) for 1 h.
Direct comparison of the cell lines revealed that the OXTR A218T cells show a lower phosphorylation level than the OXTR WT cells
independent of the treatment (Vehicle= gray bars/OXT= blue bars). *p < 0.049. n= 10 per group. b, c, f, g, h Data are shown as mean ± SEM.
Band intensity was normalized by whole lane staining using the “Stain-Free” method (© Bio-Rad).
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the response of OXTR-triggered intracellular signaling pathways.
Indeed, mathematical modeling suggests that altered activation
kinetics of the receptor affects intracellular Ca2+ concentrations in
a manner compatible with the in vitro results. However, it remains
to be clarified, whether the elevated OXT-induced Ca2+ levels in

OXTR A218T cells affect cellular viability or induce, when
prolonged, cytotoxicity [86]. Interestingly, WT and A218T cells
also differed with respect to the Ca2+ source they mainly rely on:
whereas influx from the extracellular space dominates in OXTR
WT cells, release from intracellular Ca2+ stores seems to be the

b
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a

d
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Fig. 3 Comparison of the local environment of residue 218 in wild-type (WT) and mutant (MUT) models based on the crystal structure of
the OXTR A218T variant (PDB code 6TPK). a, b Monomeric forms (inactive state). No interactions, hydrogen bonds (HBs) and hydrophobic
interactions (HPs) involving the residue are indicated by a cross, a violet arrow, and a green arrow, respectively. The counterpart homology
models of the active and intermediate states are shown in the Supplementary Information (Fig. S2). c, d Top homodimeric models with a TM5
interface based on the experimental structure of the μ-opioid receptor dimer (PDB code 4DKL). The residue in position 218 is shown as
spheres and residues surrounding it within 5.5 Å as sticks. The other OXTR/OXTR models are shown in the SI (Fig. S3).

Fig. 2 Intracellular Ca2+ dynamics in the oxytocin receptor (OXTR) wild-type (WT) and A218T variant in vitro and in silico. a, b
Representative Ca2+-traces of OXTR WT or A218T cells upon stimulation with 100 nM oxytocin (OXT) in Ca2+-containing (gray line) or
Ca2+-free (blue line) Ringer’s solution. Ca2+ levels were analyzed as fluorescence ratio at 510 nm after excitation at 340 and 380 nm. c Basal
cytosolic Ca2+ levels of OXTR WT and A218T cells reflected by Fura-2 340 nm/380 nm ratios under both conditions. *p < 0.001. d Mean
amplitude of OXT-induced Ca2+-signals in Ca2+-free and Ca2+-containing Ringer’s solution in WT and mutant cells. *p < 0.001. Interaction
between cell line and treatment (± Ca2+) *p= 0.01. e Mean area under the curve calculated as integral over time above baseline in OXTR
A218T compared to OXTR WT cells under both conditions. *p < 0.001. f Two-way ANOVA revealed a main effect between the cell lines
regarding the full width at half maximum (FWHM). *p= 0.02. g Graphical representation of the simulation curves of Ca2+ concentration upon
stimulation with OXT in Ca2+-free Ringer’s solution. h Maximal amplitude of OXT-induced Ca2+ simulation curves’ peaks of OXTR WT and
OXTR A218T. ∗ ratio= 1.13. i Area under simulation’s curves of OXTR WT and A218T. ∗ ratio= 1.10. j FWHM of the OXT-induced Ca2+

simulation’s curves of OXTR WT and OXTR A218T. ∗ ratio= 1.07. c–f Bars show mean+ SEM in presence (gray bars) or absence (blue bars) of
extracellular Ca2+. Two-way ANOVA with sample size for graphs: n (OXTR WT+ /−Ca2+)= 91/96, n (OXTR A218T+ /−Ca2+)= 63/89.
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Fig. 4 Heatmap of the top 100 differentially expressed genes in the oxytocin receptor (OXTR) A218T variant compared to OXTR wild-type
(WT) cells. Color-coded values represent the log2FoldChange expression after normalization of the biological replicates in each cell line.
Genes (rows) and cell lines (columns) were clustered hierarchically according to similarity between expression levels.
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main source in OTXR A218T cells. Since several Ca2+-gated
membrane channels of the OXTR A218T cell line are down-
regulated (Fig. 4 and Tab. 1), using intracellular Ca2+ sources
might have compensatory reasons. Particularly noteworthy in this
context is the downregulation of the receptor potential canonical
6 (TRPC6) channel, accompanied by a similar, but less pronounced,
downregulation of the related TRPC3. TRPC3 forms a complex with
TRPC6 [87], and disruption of TRPC6 expression and protein
function has been associated with ASD [88]. Moreover, activation
of the TRPC6 channel promotes dendritic growth via the CAMKIV/
CREB pathway [89], a pathway known to be coupled to the OXTR
[39] and to OXT-induced neurite growth regulation [13, 14].
Furthermore, a link between TRP channel activation and the OXT
system has previously been described [12].
Moreover, the alpha 1C subunit of the voltage-gated L-type

calcium channel (CACNA1C), which is among the most prominent
ASD-associated genes, was found to be downregulated by a factor
of 2.17 in OXTR A218T cells (Table 1). Thus, the reduced Ca2+

permeability may explain the lower basal levels of cytosolic Ca2+

in OXTR A218T cells. The observed differences in Ca2+ dynamics
might play an important role in maintaining downstream signal
specificity, e.g. in the MAPK cascade. Indeed, stimulation with OXT
resulted in a less pronounced MAPK pathway activation in OXTR
A218T compared with WT cells. Since the anxiolytic effect of the
OXT is mediated via phosphorylation of ERK1/2 [38, 40], we
hypothesize that the attenuated phosphorylation level in OXTR
A218T cells accounts, to some extent, for comorbid anxiety found
in some cases of ASD.
Furthermore, the diminished activity of the ERK1/2 pathway

impacts transcriptional regulation by downstream transcription
factors. We have mapped changes in the transcriptome of OXTR
WT versus OXTR A218T by means of RNA sequencing. As both cell
lines derived from the same mother-cell line, changes in the
transcriptome can be traced back to the induced genomic
alterations. The transcriptome analysis revealed a large cohort of
significantly regulated genes in OXT-stimulated OXTR A218T
compared to WT cells. When filtered by corrected significance
padj < 0.05, 7823 genes were found to be differentially regulated,
of which 429 have been associated with ASD risk, providing a
potential molecular link between the A218T variant and a
psychopathological phenotype.

CONCLUSIONS
Various SNPs in the OXTR, including the A218T mutation, have
been associated with psychological traits and psychopathologies.
Our in vitro and in silico results provide a starting point to
understand the molecular, intracellular and functional conse-
quences of an expression of the OXTR A218T variant, which has
been associated with ASD symptoms. The expression of the
variant turns out to result in (i) enhanced receptor stability,
possibly by forming additional intra- and intermolecular interac-
tions, (ii) altered intracellular Ca2+ dynamics, likely by affecting
receptor activation, and (iii) other downstream effects including
changes in MAPK activation and expression of several ASD-related
target genes. Thus, allosteric ligands that reverse the observed
effects of the A281T mutation on the receptor’s activation may
provide a potential therapeutic strategy for ASD patients bearing
the nsSNP rs4686302.
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