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Abstract
Heterocyst differentiation in cyanobacteria filaments is one of the simplest examples of cel-

lular differentiation and pattern formation in multicellular organisms. Despite of the many ex-

perimental studies addressing the evolution and sustainment of heterocyst patterns and the

knowledge of the genetic circuit underlying the behavior of single cyanobacterium under ni-

trogen deprivation, there is still a theoretical gap connecting these two macroscopic and mi-

croscopic processes. As an attempt to shed light on this issue, here we explore heterocyst

differentiation under the paradigm of systems biology. This framework allows us to formu-

late the essential dynamical ingredients of the genetic circuit of a single cyanobacterium

into a set of differential equations describing the time evolution of the concentrations of the

relevant molecular products. As a result, we are able to study the behavior of a single cya-

nobacterium under different external conditions, emulating nitrogen deprivation, and simu-

late the dynamics of cyanobacteria filaments by coupling their respective genetic circuits via

molecular diffusion. These two ingredients allow us to understand the principles by which

heterocyst patterns can be generated and sustained. In particular, our results point out that,

by including both diffusion and noisy external conditions in the computational model, it is

possible to reproduce the main features of the formation and sustainment of heterocyst pat-

terns in cyanobacteria filaments as observed experimentally. Finally, we discuss the validity

and possible improvements of the model.

Author Summary

Cyanobacteria filaments are paradigmatic examples of prokaryotic cellular differentiation
and cooperative pattern formation. When a cyanobacteria filament is deprived of com-
bined nitrogen, some vegetative cells differentiate into heterocysts, which are terminally
differentiated nitrogen-fixing cells. Interestingly, most cells do not differentiate, but re-
main in their initial vegetative state. The coexistence of heterocysts and vegetative cells is
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essential for the survival of the filament since (i) heterocysts lose their photosynthetic ca-
pacity so they need vegetative cells around to be provided with a source of fixed carbon
and (ii) cell division, i.e. reproduction, is only accomplished by vegetative cells. From such
a paradigmatic example it is clear that differentiation processes are the result of the inter-
play of complex regulatory networks acting inside the cell and external stimuli, coming
from both the adjacent cells and the environment. In this article we present an integrative
approach that combines the study of internal regulatory processes, diffusion, and noisy en-
vironments in order to capture the key mechanisms leading to the differentiation of vege-
tative cyanobacteria into heterocysts and the subsequent pattern formation.

Introduction
The formation of multicellular organisms from the assembly of single-celled ones constitutes
one of the most striking and complex problems tackled by biology. The most salient feature
that characterizes multicellular organisms is the presence of different cell types, in such a way
that the organism associates a different function to each cell type. In each of these cellular
types, only a subset of the genes that constitute the genome of the organism (genotype) are ex-
pressed, which identify the function and morphology of the cell (phenotype). The development
of specialized cells involves differentiation processes, which lead to alterations in gene expres-
sion producing different phenotypes from a given genotype. These processes are highly dynam-
ical, directed by complex regulatory networks involving cell-to-cell interactions, and often
triggered by external stimuli. As a result of the differentiation processes a rich cooperative pat-
tern involving different cell types is established, increasing the complexity and adaptability of
the organism. Due to the large number of scales involved, ranging from protein binding to dif-
fusion of specific elements throughout the organism, a correct mathematical modeling of dif-
ferentiation processes and their associated pattern formation demands an integrative approach
combining tools from statistical mechanics and the theory of dynamical systems (see [1, 2] for
instance).

A landmark process of (prokaryotic) cellular differentiation and cooperative pattern forma-
tion is the heterocyst differentiation in cyanobacteria filaments [3, 4]. Cyanobacteria are one of
the first organisms that developed multicellularity some (2–3) billion years ago [5]. These bac-
teria perform oxygenic photosynthesis releasing oxygen to the environment. However, nitroge-
nase, the enzyme that performs nitrogen fixation, is deactivated by oxygen so that nitrogen
fixation cannot occur in its presence [6]. Cyanobacteria solve the incompatibility of incorporat-
ing both oxygenic photosynthesis and nitrogen fixation by separating these processes (i) tem-
porally, such as in the unicellular Cyanothece sp. strain ATCC 51142, which presents
photosynthetic activity during the day and fixes nitrogen during the night [7], or (ii) spatially,
by the generation of non-photosynthetic nitrogen-fixing cells distributed along the filament
and acting as nitrogen suppliers.

In the presence of combined nitrogen (such as nitrate, nitrite, ammonium or urea), most cy-
anobacteria (Anabaena PCC strain 7120 being the most representative example) form long fil-
aments of photosynthetic vegetative cells. However, in the absence of combined nitrogen (cN),
a subset of the vegetative cells differentiate into heterocysts, which are terminally differentiated
nitrogen-fixing cells. By differentiating, heterocysts lose their photosynthetic capacity, so they
require an external source of fixed carbon [8, 9]. To this aim, each forming heterocyst sends a
signal, by means of the production of some substance that diffuses along the filament, to pre-
vent the differentiation of its neighboring cells. A cooperative pattern is thus established:
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heterocysts provide cN to the filament while vegetative cells supply fixed carbon. As a result,
heterocysts appear interspersed with around 10 vegetative cells, depending on the species,
forming a semi-regular pattern that remains approximately constant regardless of cell division
[10, 11]. The resulting pattern forms one of the simplest and most primitive examples of a mul-
ticellular organism as a product of the interdependence between heterocysts and vegetative
cells. Interestingly, an isolated cyanobacterium does not differentiate but it first divides so that
one of the descendants differentiates. This latter mechanism is crucial since (i) a sole heterocyst
would lack a source of fixed carbon and (ii) it would not reproduce as it is a terminally differen-
tiated cell [12].

Let us briefly review the previous studies on the mathematical modeling of heterocyst pat-
tern formation. In references [13, 14] Rutenberg and coworkers analyzed a model to explain
heterocyst patterns by means of the study of cN diffusion along a cyanobacterial filament. On
the other hand, Gerdtzen et al. [15] modeled cyanobacterial filaments based on a time-discrete
dynamical system incorporating the main interactions between the most important proteins
that take part in heterocyst formation.

In this work, we develop a simple mathematical model by incorporating the recent experi-
mental results on the genetic regulatory network of cyanobacteria into the theoretical machin-
ery of system biology.

Our model connects the diffusion of combined nitrogen along the filament with the dynam-
ical properties of the underlying genetic circuit of each single cyanobacterium, capturing both
the development of heterocyst patterns and their maintenance. Furthermore, our model shows
that noise plays an important role in the onset of differentiation by enabling the development
of the characteristic heterocyst patterns for a wide range of model parameters. This reveals that
cyanobacteria filaments have developed an efficient response to the noisy conditions that char-
acterize the natural environment.

The work is structured as follows. First we present the main actors of the basic regulatory
network and the different dynamical interactions that take place during the differentiation pro-
cess. Then we develop a mathematical model for the unicellular reaction to nitrogen depriva-
tion. Although a single cell model cannot provide a complete understanding of heterocyst
formation, we analyze the main features that arise from the dynamical behavior of the system
to gain insight about cell dynamics under different external conditions.

Finally, we round off the paper by introducing the spatial model consisting of a filament of
cyanobacteria, each one characterized by the dynamical circuit developed previously, that in-
teract by means of protein diffusion.

Results

Description of the main genes and their basic genetic circuit
Heterocyst development begins with sensing combined-nitrogen (cN) limitation and ends with
nitrogen fixation in mature heterocysts. This process is usually completed after 20 hours at 30�C
[9]. In Fig. 1 we show a basic scheme of the genetic circuit including the most relevant elements
and their respective interactions. Here we explain the main features of this genetic circuit.

The process is initiated with the accumulation of 2-oxoglutarate (2-OG) as a consequence
of cN deprivation [9, 16]. 2-OG interacts with ammonium through the GS/GOGAT cycle
[17–19] (see Fig. 2). Under cN starvation, the GS/GOGAT cycle breaks down, leading to the ac-
cumulation of 2-OG inside the cell [9]. In its turn, 2-OG stimulates the DNA-binding activity
of NtcA, an important transcription factor for heterocyst development [18, 20, 21]. Further-
more, the transcription of the genes targeted by NtcA does not start in the absence of 2-OG
[22, 23].

Modeling and Simulation of Heterocyst Pattern Formation

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004129 March 27, 2015 3 / 18



NtcA presents autoregulation [22, 24, 25] and indirectly activates the key gene that controls
cell differentiation and pattern formation: hetR [26–28]. To bind DNA, NtcA needs to homodi-
merize [29, 30]. In conclusion, the accumulation of 2-OG is the factor that triggers differentia-
tion. In agreement with this idea, artificial increased levels of 2-OG result in heterocyst
development even in the presence of ammonium [16, 18, 31].

The next step in heterocyst development is the activation of hetR. Remarkably, null mutants
of hetR do not produce heterocysts whereas an overexpression of hetR leads to an increased
heterocyst frequency [27, 32, 33]. The transcription of hetR is induced by NtcA through the ac-
tion of an intermediate, nrrA [28]. The DNA-binding activity of HetR requires its homodimer-
ization [34, 35]. Multiple transcription factors related to heterocyst formation are
up-regulated by HetR, including hetR itself [35], ntcA [36] and patS [35].

The up-regulatory loop of NtcA and HetR is essential for heterocyst differentiation [36–39].
However, the action of NtcA and HetR alone cannot explain pattern formation. Another tran-
scription factor, PatS, inhibits the DNA-binding activity of HetR [8, 35, 40, 41]. This inhibitory
behavior is essential for the communication with adjacent cells and thus to achieve the ob-
served patterns of vegetative cells and heterocysts in cyanobacteria filaments (see Fig. 3). Fur-
thermore, patS is strongly expressed in differentiating cells and mature heterocysts due to its

Fig 1. Main components and interactions involved in the reaction to combined nitrogen deprivation in
cyanobacteria.Rectangular boxes represent genes (ntcA, hetR and patS) while rounded boxes and circles
represent transcription factors (NtcA, HetR and PatS) and smaller molecules (2-OG and cN) respectively.
Normal-tipped and flat-tipped arrows stand for up-regulating and down-regulating processes respectively.
Dashed lines stand for indirect or imperfectly understood interactions. The accumulation of 2-OG enhances
the DNA-binding activity of NtcA, which in turn up-regulates the transcription of ntcA and hetR. HetR activates
ntcA and hetR (composing the central NtcA-HetR autoregulatory loop), the inhibitor patS and other genes
that lead to nitrogen fixation and the morphological changes involved in heterocyst differentiation. 2-OG and
cN levels are linked through the GS/GOGAT cycle (see Fig. 2).

doi:10.1371/journal.pcbi.1004129.g001
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upregulation by HetR [8]. A filament without patS develops multiple contiguous heterocysts
(about a 30% of all cells as compared to the usual 10% in the wild-type filament). On the other
hand, an over-expression of patS suppresses heterocyst differentiation [9]. Moreover, the addi-
tion to the growth medium of a synthetic peptide composed of the last five residues (RGSGR)
of PatS (PatS5) inhibits heterocyst development, suggesting that PatS5 may be a diffusive ma-
ture form of PatS that stops the differentiation of the rest of vegetative cells of the filament

Fig 2. GS/GOGAT cycle. 2-OG and cN indirectly interact through the GS/GOGAT cycle. Glutamine is
transformed into glutamate by means of 2-OG through the 2-OG amidotransferase (GOGAT) while cN
converts glutamate into glutamine through the glutamine synthetase (GS). The importance of the cycle in
heterocyst differentiation is twofold. From one side, it constitutes the early one-cell sensor to nitrogen
starvation: the absence of cN breaks the cycle down and 2-OG starts to accumulate, whose action leads to
the cascade of processes that provoke the differentiation (see Fig. 1). Additionally, later during the
differentiation, it processes the cN created by the heterocysts decreasing the levels of 2-OG. The latter is
crucial for the formation of the heterocyst pattern (see Fig. 3).

doi:10.1371/journal.pcbi.1004129.g002

Fig 3. Diffusion scheme. Schematic representation of the diffusion processes that sustain the heterocyst
pattern. Heterocysts produce cN and PatS. cN diffuses along the filament where, due to the action of the GS/
GOGAT cycle (see Fig. 2), decreases the levels of 2-OG breaking the autoregulatory core NtcA-HetR. Early
during the differentiation, PatS (or other derivative of it, see the text) diffuses along the filament inhibiting
HetR. Both processes combined prevent the differentiation of the rest of vegetative cells and explain the
formation of the pattern.

doi:10.1371/journal.pcbi.1004129.g003
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[40]. A similar protein carrying the RGSGR pentapeptide, with a similar effect as that of PatS,
is HetN [42]. A chain lacking both PatS and HetN leads to a lethal phenotype in which all cells
differentiate [43].

The last stages of heterocyst development cause the physiological changes of the cell aimed
at creating an anaerobic environment that sustains nitrogen fixation. To this end, two new
membrane layers are biosynthesized to decrease the entry of oxygen into the cell [44]. The
morphogenesis of these two layers is controlled by two family of genes, hep and hgl, that are in-
directly up-regulated by HetR [35]. After these morphological changes the genes in charge of
nitrogen fixation, nif genes, are expressed. These genes encode, among others, the enzyme ni-
trogenase, which ultimately performs nitrogen fixation.

The fixed nitrogen of the new heterocysts acts as an inhibitor of the differentiation together
with PatS and HetN [45]. Thus, the diffusion of these inhibitors from heterocysts along the fila-
ment plays a key role in pattern maintenance (see Fig. 3). As a result of the differentiation het-
erocysts produce fixed nitrogen from N2 of the atmosphere and they interchange this nitrogen
with the oxygen derivatives produced by the vegetative cells, in an illustration of the coopera-
tive behavior between cell types in a multicellular organism.

Regulatory equations
In this section we translate the genetic circuit previously described into a set of differential
equations, for which we follow the derivation in [46–48]. Details are left to supplementary in-
formation (S1 text). To simplify notation, constants related to NtcA, HetR, PatS and cN are de-
noted with the letters a, r, s, and n respectively.

We start by looking at the transcription of ntcA, which is regulated by HetR and NtcA. We
assume that the probability that NtcA binds the promoter in the absence of 2-OG can be ne-
glected. Taking into account that both HetR and NtcA dimerize to bind DNA we find:

va ¼ La þ
vaak

a
a½ 2-OG �½NtcA�2 þ vrak

r
a½HetR�2 þ vara k

a
ak

r
a½ 2-OG �½NtcA�2½HetR�2

ð1þ ka
a½ 2-OG �½NtcA�2Þð1þ kr

a½HetR�2Þ ; ð1Þ

where vameasures the production rate of NtcA in units of concentration per time, vaa , v
a
r and

vaar are the rates when only NtcA, only HetR or both are bound to DNA respectively, and ka
� are

the inverse of the effective dissociation constants of the compounds that bind DNA. La, the so-
called leak term, measures the basal production of ntcA in the absence of regulation. Subscripts
and superscripts identify the binding site and the transcription factor for which the constants
are given respectively.

Similarly we can obtain the transcription velocity for HetR. We assume that hetR is regulated
by NtcA by means of a usual Hill function, yet the real process presents an intermediate, nrrA.
To do so, we take into account that nrrA concentration relaxes rapidly to a limiting value. Fur-
thermore, PatS affects the auto-regulatory loop of HetR. It has been suggested that PatS binds the
binding site of HetR in the promoter of hetR preventing HetR binding [35]. These facts, along
with the influence of 2-OG levels, provide with an expression for the transcription velocity:

vr ¼ Lr þ
vark

a
r ½ 2-OG �½NtcA�2ð1þ ks

r½PatS�Þ þ vrrk
r
r½HetR�2 þ varr k

a
rk

r
r½ 2-OG �½NtcA�2½HetR�2

1þ ka
r ½ 2-OG �½NtcA�2

� �
1þ kr

r½HetR�2 þ ks
r½PatS�

� �
ð2Þ

HetR regulates most processes of the genetic circuit. It governs, among others, the transcrip-
tion of ntcA, patS, hep, hgl and nif genes that lead to most of structural changes of the cell and
to nitrogen fixation.
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The inhibitor PatS is regulated by HetR, and we assume no other influence. For simplicity,
we implicitly include the effect of HetN in PatS, as their action is expected to be equivalent (see
the previous section). This gives the simple transcription velocity:

vs ¼ Ls þ
vrsk

r
s ½HetR�2

1þ kr
s ½HetR�2 ð3Þ

Finally, we have to relate nitrogenase concentration [Ni] to that of combined Nitrogen [cN],
both regulated by HetR and the levels of 2-OG [2-OG]. Let us begin by examining nitrogenase
concentration, which is directly controlled by nif genes. Although this is not a direct process,
we can assume, as we did for the NtcA-regulation of hetR, that nif genes are functionally gov-
erned by [HetR] following a typical Hill function. The nitrogenase production rate is given by:

d½Ni�
dt
¼ LNi þ

vrNik
r
Ni½HetR�2

1þ kr
Ni½HetR�2 � dNi½Ni�: ð4Þ

where δNi represents the degradation rate of nitrogenase. We can effectively account for the lag
introduced by intermediate processes not taken into account explicitly in the model by increas-
ing the value of δNi so that [Ni] relaxes more slowly. Assuming that nitrogenase produces fixed
nitrogen at a constant rate, we arrive at the equation that governs cN levels in cyanobacteria:

d½cN�
dt
¼ L0n þ v0n½Ni� � d0n½cN�; ð5Þ

where L0n represents the flux of cN from the exterior of the cell. Assuming that the levels of cN
relax rapidly we solve Eq. (5) for the steady state. Substituting in Eq. (4) we find:

d½cN�
dt
¼ Ln þ

vrnk
r
n½HetR�2

1þ kr
n½HetR�2 � dn½cN� ; ð6Þ

where

Ln ¼
1

d0n
v0nLNi þ dNiL

0
n

� �
; vrn ¼

v0n
d0n

vrNi; dn ¼ dNi; kr
n ¼ kr

Ni: ð7Þ

To get a closed system of equations, we shall investigate the relation between cN and 2-OG.
Both are related by means of the GS/GOGAT cycle (Fig. 2). Assuming the cycle is in equilibri-
um and reactions are grounded on the law of mass action, the following two conditions must
be satisfied:

½glutamate� ¼ k ½glutamine�½ 2-OG �; ½glutamine� ¼ k!½glutamate�½cN�; ð8Þ

which lead to the relation:

2-OG½ � ¼ 1

k k!½cN�
: ð9Þ

However, this expression does not behave properly for small concentrations of cN, which
are expected under cN deprivation: 2-OG levels would increase without limit. In fact, 2-OG
production is controlled by some processes that are not considered in this work and so its value
must be limited. We can effectively include such a limiting value by means of a translation on
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[cN] in Eq. (9)

2-OG½ � ¼ 1

k 2-OG þ k k!½cN�
; ð10Þ

which reaches the maximum value [2-OG]max = 1/κ2-OG at [cN] = 0.
Finally we introduce the differential equations governing cyanobacterial reaction to nitro-

gen deprivation. They represent the temporal variation of the most important factors of the ge-
netic circuit, namely NtcA, HetR, PatS and cN. Using the production rates (1), (2), (3), (6) and
introducing degradation rates constants, δ�, we find:

dqa
dt
¼ la þ

ba
ag

a
aq

2
a þ br

ag
r
aq

2
r ð1þ qnÞ þ bar

a g
a
aq

2
ag

r
aq

2
r

ð1þ qn þ gaaq2aÞð1þ graq2r Þ
� daqa;

dqr
dt
¼ lr þ

ba
r q

2
að1þ qsÞ þ br

rq
2
r ð1þ qnÞ þ bar

r q
2
aq

2
r

ð1þ qn þ q2aÞð1þ qs þ q2r Þ
� qr;

dqs
dt
¼ ls þ

br
sg

r
sq

2
r

1þ grsq2r
� dsqs;

dqn
dt
¼ ln þ

br
ng

r
nq

2
r

1þ grnq2r
� dnqn;

ð11Þ

where we have introduced the dimensionless variables:

qa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ka
r

k 2-OG

s
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

�a

½NtcA�; qr ¼
ffiffiffiffiffi
kr
r

p|ffl{zffl}
�r

½HetR�; qs ¼ ks
r|{z}
�s

½PatS�;

qn ¼
k k!
k 2-OG|fflfflfflffl{zfflfflfflffl}

�n

½cN�; t ¼ drt; ð12Þ

and the constants

l� ¼
L���
dr

; b�� ¼
v����
dr

; g�� ¼
k��
k�r

; d� ¼
d�
dr
: ð13Þ

Let us finally stress that this is a deterministicmodel for a single cyanobacterium. The study
of the cyanobacterial filament is left to the final section. We show that the main modification
will be adding diffusion processes for the inhibitors PatS and cN through the chain. An impor-
tant ingredient in pattern formation, noise, will be also added to the equations.

Unicellular dynamics
In this section we analyze the dynamical system (11) for a set of constants (Table 1) that exhibit
both the dynamical and the structural properties of heterocyst differentiation. Following the
usual practice in the analysis of dynamical systems, we study the basic properties of equations
(11), such as fixed points and linear stability analysis, to analyze the key features leading to
heterocyst differentiation.

Taking into account the difference between the relaxation times of the constituents of the
model, given by the inverses of d� (see Table 1), we can interpret it as composed of two tempo-
rally separated systems: a rapid one, formed by HetR and NtcA, showing fast dynamics that re-
laxes to its steady state almost instantaneously and a slow one, composed of PatS and cN,
whose evolution is dictated by the values of HetR and NctA in their instantaneous equilibrium.
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This corresponds to an adiabatic elimination technique [49] that helps in reducing the com-
plexity of the dynamical system by splitting it into two simpler interdependent subsystems.

First, we look at the fixed points of qa and qr for each pair of values of qs and qn

faðqs; qnÞ ¼
dqa
dt
¼ 0; frðqs; qnÞ ¼

dqr
dt
¼ 0: ð14Þ

The numerical solution to this problem is sketched in Fig. 4. We find three different
branches of solutions that coexist in some regions. The fixed points on the lower and upper
branches are always stable (blue region in Fig. 4I) and those lying on the middle branch (red

Table 1. Parameters for Eq. (11) that reproduce heterocyst formation under noisy conditions and
pattern formation when PatS and cN diffuse along a filament of cyanobacteria.

Constants

la = 0.2 lr = 0.01 ls = 0.0001 ln = 0

da = 0.7 ds = 0.05 dn = 0.01 ba
a ¼ 4

br
a ¼ 4 bar

a ¼ 8 ba
r ¼ 1 br

r ¼ 1

bar
a ¼ 3 br

s ¼ 0:385 br
n ¼ 0:06 gaa ¼ 3

gra ¼ 2:4 grs ¼ 1:2 grn ¼ 2:75

doi:10.1371/journal.pcbi.1004129.t001

Fig 4. Adiabatic elimination of the fast variables qr and qa. Due to the fast dynamics that HetR and NtcA exhibit, we can approach the treatment of the
system by adopting a point of view that follows the slower variables qs and qn. From this viewpoint, the time-evolution of the pair (qs(t), qn(t)) is considered by
assuming that qr and qa instantaneously relax to an equilibrium, which corresponds to a sink (q�r , q

�
a) for the fixed pair (qs(t), qn(t)). Depending on the region of

the (qs, qn)-plane, there are three fixed points (two sinks corresponding to the highest and the lowest concentrations respectively and a saddle in the middle)
or one (a sink) for qr and qa (I and II). There are two one-sink regions that are separated from the two-sink region by saddle-node bifurcations (A-F). Sinks and
saddles are represented by filled and unfilled circles respectively and arrows indicate the flow of the dynamics. We can then imagine the dynamics of qs and
qn as evolving either in the bottom or in the top branch of I. In the two-sink region, both branches are plausible and the history of the dynamics determine the
solution (hysteresis effect): a dynamics in a branch will continue in it until experiencing a bifurcation in the (qr, qa) plane (see Fig. 5 for examples).

doi:10.1371/journal.pcbi.1004129.g004
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region) are saddles. Transitions between the regions with one and three fixed points corre-
spond to saddle-node bifurcations in which the middle branch of solutions coalesce with the
lower and the upper one respectively. The basins of attraction of both stable fixed points are
separated by the stable manifold of the saddle point (Fig. 4II).

In the bistable region the system behaves as a switch that can be either OFF in a vegetative
state (lower branch, with a small production of HetR and NtcA) or ON in a heterocyst state
(upper branch, with a high production of HetR and NtcA). A sufficient large perturbation may
result in the system crossing the manifold of the saddle and falling into the other stable branch
of solutions. The distance between the saddle and the nodes determines the size of the pertur-
bation needed to activate or inactivate the system.

With (14) solved, we can apply the solution to calculate the effective field sensed by the (qs,
qn) pair. In the regions showing bistability the field takes two very different forms, one corre-
sponding to the values of the lower branch and another corresponding to those of the upper
one (Fig. 5). We expect a hysteresis effect: if initially the dynamics lies on a particular branch it
will remain on it unless a fluctuation or a bifurcation makes the system jump to the
other branch.

In the presence of cN (Fig. 5A) we find only one stable fixed point that corresponds to a veg-
etative state (lower branch). The upper branch is completely unstable: any dynamics lying on it
will fall down to the lower branch and eventually be attracted to the vegetative sink. The steady
state is very robust against perturbations since it is far from the bifurcation region and there is
a significant distance to the saddle in the qr − qa plane.

By reducing the flow of cN from the exterior of the cell (ln = 0) we find that a stable fixed
point appears in the upper branch, a heterocyst state, while the vegetative state gets closer to

Fig 5. States of a cyanobacteriumwhen subjected to different conditions of nitrogen and diffusion.When the cell is provided of cN (ln = 0.03), there is
only one stable fixed point (A) in the bottom branch, which corresponds to a state in which the production of both HetR and PatS is minimum (vegetative
state). When subjected to nitrogen deprivation (ln = 0), there are two stable fixed points (B and C) each one in a different branch. The first point (B) is a
vegetative state in which there exists an equilibrium between a small production of HetR, PatS and cN. The same kind of equilibrium is present in the second
fixed point (C) but in this case the production of all TFs and cN is high (heterocyst steady state). When the cell is exposed to nitrogen stress its trajectory
evolves from A to the steady state B and thus it remains vegetative. Assuming some diffusion of cN and PatS from the cell (ls = −0.2 and ln = −0.002), the only
stable state (D) corresponds to a heterocyst state with high levels of production of HetR, cN and PatS, being the latter transported to the surroundings of
the cell.

doi:10.1371/journal.pcbi.1004129.g005
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the bifurcation region, thus becoming more susceptible to perturbations that can make the sys-
tem reach the upper branch. In the absence of cN, the cyanobacterium would evolve from state
A to state B in the lower branch until a perturbation pushes it to the upper branch, eventually
becoming an heterocyst due to the field acting on that branch (Fig. 5B and C).

Diffusion protects cells in the neighborhood of the newly formed heterocyst to initiate the
differentiation: as heterocysts are producers of cN and PatS, the vegetative fixed point of the
cells in its neighborhood will move towards an A-like state, thus becoming more stable to per-
turbations. The heterocyst fixed point also becomes more stable due to diffusion, since its pro-
duction of inhibitors is distributed among other cells (see Fig. 5D).

Strains of cyanobacteria. Heterocyst patterns
In the previous section, we introduced a single cell model for the cyanobacteria reaction to ni-
trogen-limiting conditions. There we have shown that, for a specific range of parameters, the
model exhibits features that would lead to heterocyst development under noisy conditions.
Nevertheless, the model should be extended to cyanobacteria chains to account for heterocyst
development since, as previously noted, isolated cyanobacteria do not become heterocysts by
themselves; the action of the chain is needed to generate heterocysts.

In this section, we extend the previous results and consider a chain of vegetative cells facing
nitrogen deprivation. The main modification is the introduction of diffusion of PatS and cN
along the cyanobacteria chain. For this purpose we add to Eq. (12) the discrete version of the
diffusion equation:

dCi

dt
¼ DC Ciþ1 þ Ci�1 � 2Ci

� �
: ð15Þ

where DC is called the diffusion constant of the element C. Now, it is straightforward to intro-
duce PatS and cN diffusion into the equations. The dynamics of cell i is characterized by the
following set of equations:
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which constitutes the model for a cyanobacteria filament. To account for environment variabil-

ity we add white noise, Gi, �(t), of the same amplitude, hGi, �(t)Gi, �(t0)i = ξδ(t − t0), for all the
components of the system. Based on these equations, we investigate the conditions that lead to
a heterocyst pattern. It is easy to notice that they correspond to an activator-inhibitor system of
cells coupled in a reaction-diffusion scheme [50]. This kind of system produces regular pattern
formation [51–53]. Turing (linear stability) analysis of equations (16) (see S2 text) provides in-
sight on the periodicity of patterns. It is interesting to show that the minimum periodicity ob-
served in such analysis is larger than 1, which means that a single bacteria is unable
to differentiate.

We performed the direct integration of equations (16) for chains of 200 cyanobacteria. We
used a Runge-Kutta method for the numerical integration of stochastic differential equations
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(see Methods) [54]. All simulations were performed with periodic boundary conditions, i.e.
emulating a circular filament, for simplicity. We have also tested the more realistic no flux
boundary conditions and find no change in gene dynamics and heterocyst patterns in the inte-
rior of the filament. This shows that the effect of boundary conditions is highly localized
around the borders. In simulations with no flux boundary conditions no heterocysts were
found in the border, which is in good agreement with experimental observations [55]. The
level of noise that best reproduces heterocyst pattern is ξ = 0.001 for the set of parameters of
Table 1. Importantly, isolated cells do not initiate differentiation with this level of noise, in
agreement with the results from the linear stability analysis. Diffusion constants have been set
to Ds = 0.1 and Dn = 0.2. Heterocysts patterns develop for different levels of noise and diffusion
constants, but the model parameters, which characterize cell response to nitrogen deprivation,
should change accordingly. This correlation between noise, diffusion and model parameters
supports the idea that cyanobacteria have evolved towards a better response to the normal lev-
els of noise in their environment.

In Fig. 6 we show the dynamics that the 4 variables exhibit when the filament is deprived of
cN. We observe that the filament concentrations relax to the constant protein levels of the veg-
etative state we showed in the previous chapter. Then, due to the coupled action of noise and
diffusion, some cells start to differentiate. As new forming heterocysts appear, their production
and exportation of inhibitors to the surrounding cells make the latter more stable to perturba-
tions stopping their differentiation. The model reproduces very well the initial peak that both
NtcA and HetR present experimentally [35, 56]. PatS increases more slowly to its steady value
reducing the levels of NtcA and HetR and, finally, cN is generated by heterocysts stabilizing
the pattern.

Fig. 7 shows the evolution of the profile for a 200 cells chain of cyanobacteria. We observe
that heterocysts progressively appear in those regions in which other heterocysts do not have
effect (i.e. those vegetative cells that are not supplied of sufficient cN and PatS). Finally, a semi-
regular pattern is generated. PatS and cN diffuse along the filament exhibiting smooth varia-
tions between vegetative cells and heterocysts, while HetR and NtcA present very abrupt
variations between cell types.

Finally, in Fig. 7B we show the time-evolution of the histogram for the distance between two
consecutive heterocysts. It should be stressed that although initially some close heterocysts ap-
pear, they are eliminated by the non-linear action of the system during the differentiation pro-
cess. Close heterocysts compete for the same region of action (the same vegetative cells that
consume their PatS and cN) and then they cannot reach the optimal heterocyst state, which is
stable to slight perturbations. Finally, one of them falls down from the upper branch becoming
a vegetative cell. This behavior is typically observed experimentally [4, 9]. The final histogram
can be nicely fitted by a Γ-distribution, implying Poisson-distributed wait times for the under-
lying noise driven process.

Discussion
The study of cell differentiation and its underlying mechanisms constitutes one of most in-
triguing problems in biology. This phenomenon is the basis for multicellular organism and pat-
tern formation. The approach presented here deals with a simple system, heterocyst formation
in cyanobacteria filaments, yet complex enough to capture the main ingredients of some of the
mechanisms for cell differentiation and pattern formation under external driving. The knowl-
edge of the basic regulatory genes and their corresponding interactions allows for a detailed de-
scription of cell dynamics. We have derived the evolution equations of the involved genes
based on the statistical mechanics of their corresponding regulatory processes. This allows us
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to obtain a detailed description of the continuous time dynamics of the main regulatory pro-
teins, in contrast to other discrete approximations based in boolean dynamics [15]. This kind
of analysis has been shown to describe successfully other time dependent phenomena concern-
ing cyanobacteria such as their circadian cycles [57]. The analysis of the unicellular dynamics
has revealed that the two cellular stable states, vegetative and heterocyst cells, appear as attrac-
tors of the non-linear dynamics of the regulatory equations. However, the study of many cou-
pled cells is needed as cyanobacteria do not differentiate when isolated.

Fig 6. Time evolution of molecular concentrations. Time evolution of the main components of the differentiation in heterocysts (green) and vegetative
cells (blue). Averages along the filament are also presented (black). Heterocysts, due to the early diffusion, evolve toward steady states of the type D of Fig. 5
characterized by high levels of HetR and NtcA while vegetative cells present very low concentrations of them (A and B). The levels of PatS and cN in
vegetative cells depend on their distance to close heterocysts: C and D show the concentrations of PatS and cN in a heterocyst and in its first two
neighbouring vegetative cells, which clearly highlight the effect of diffusion along the filament.

doi:10.1371/journal.pcbi.1004129.g006
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The model is rounded off by coupling a number of cells in a one-dimensional array so that
combined nitrogen and PatS can diffuse along the cellular chain. We have shown that one im-
portant ingredient affecting the dynamical behavior of the chain is noise, which plays a key role
in onset of the pattern formation, i.e., the transition from the initial chain of vegetative cells to
the steady state in which heterocysts coexist with vegetative cyanobacteria. Thus, the appear-
ance of differentiation is, in our model, a pure stochastic event. The cooperative character of
the filament is clear from the amount of noise needed to start the differentiation process which
appears significantly smaller than that needed in isolated cells. The source of noise as well as its
biological consequences is, nowadays a current topic of research [58]. In fact, at its initial state,
differentiation of cells appears randomly along the filament, but shortly after its onset a charac-
teristic distribution of heterocyst emerges. This distribution can be compared with the experi-
mental one with a fairly good agreement [41].

Although the model presented here integrates both the internal cell dynamics and the cou-
pling between cells via diffusion, there exist other ingredients that can be also incorporated.
One issue that have not been considered in this work is the replication of vegetative cells. This
effect has been taken into account in [14]. Although this improvement is relevant, it only af-
fects, in our approach, to the mean separation between heterocysts, by opening a gap in the Γ-
function shape of Fig. 7B and thus approaching better to the experimental distribution.

Other improvements to the approach presented here will come from the availability of more
experimental data. Unlike other approaches [13] in which comparison is done (globally) with
heterocyst distributions, our work would allow for a qualitative comparison of each component
involved in the differentiation (see Fig. 6). Unfortunately, there is not enough experimental
data to make a detailed fit so to extract reliable parameters. The availability of such data is ex-
tremely important both for having a better set of model parameters and to validate new models.
A complete understanding of the mechanism that derive in phenotypic differentiation is the
first step for a modular comprehension of the whole cell [59].

Fig 7. Heterocyst pattern. Time-evolution of the pattern of heterocysts (A) and of the probability distribution of the distance between consecutive
heterocysts (B). Green and blue curves represent the concentration profiles of HetR and PatS (NtcA and cN are not presented since their behavior along the
filament is comparable to that of HetR and PatS, see Fig. 6 to see the similarities). Small perturbations along the filament of vegetative cells (initially in the
steady state B of Fig. 5) are amplified due to diffusion processes in a demonstration of Turing’s theory [51]. New heterocysts appear in regions that are not
dominated by the action of other heterocysts. Finally, the competition between nearby differentiating cells ceases the differentiation of some of them, as
observed in B: consecutive heterocysts, which are created by strong perturbations, finally disapear due to the aforementioned competition. The final pattern
presents localized levels of HetR (heterocysts) and a diffusive-like behavior of PatS, as expected.

doi:10.1371/journal.pcbi.1004129.g007
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Methods
To reproduce the dynamics of Eq. (16) we make use of the integration scheme proposed in
[54]. Eq. (16) is a set of stochastic differential equations (SDE) so its numerical integration re-
quires generating a statistical representative trajectory for a discrete set of time-values. A SDE
of the form

_x ¼ f ðxÞ þ GðtÞ; ð17Þ
where G(t) is a Gaussian white noise with

hGðtÞi ¼ 0; and; hGðtÞGðt0Þi ¼ xdðt0 � tÞ;
can be integrated through a Runge-Kutta integration algorithm by adding a particular Gauss-
ian signal at each stage of the scheme. This algorithm coincides with the usual Runge-Kutta
scheme for ξ = 0. In this work we have employed a 3O4S2G algorithm, which is correct up to 3th

order, is developed in 4 stages and uses 2 independent Gaussian random variables.

Supporting Information
S1 Text. Regulatory equations: a statistical mechanics approach.
(PDF)
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