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Abstract: Obese individuals without metabolic comorbidities are categorized as metabolically healthy
obese (MHO). MicroRNAs (miRNAs) may be implicated in MHO. This cross-sectional study explores
the link between circulating miRNAs and the main components of metabolic syndrome (MetS) in the
context of obesity. We also examine oxidative stress biomarkers in MHO vs. metabolically unhealthy
obesity (MUO). We analysed 3536 serum miRNAs in 20 middle-aged obese individuals: 10 MHO
and 10 MUO. A total of 159 miRNAs were differentially expressed, of which, 72 miRNAs (45.2%)
were higher and 87 miRNAs (54.7%) were lower in the MUO group. In addition, miRNAs related to
insulin signalling and lipid metabolism pathways were upregulated in the MUO group. Among these
miRNAs, hsa-miR-6796-5p and hsa-miR-4697-3p, which regulate oxidative stress, showed significant
correlations with glucose, triglycerides, HbA1c and HDLc. Our results provide evidence of a pattern
of differentially expressed miRNAs in obesity according to MetS, and identify those related to insulin
resistance and lipid metabolism pathways.

Keywords: obesity; metabolic syndrome; microRNAs; insulin resistance; atherogenic dyslipidaemia;
oxidative stress

1. Introduction

Obesity is characterized by numerous deleterious metabolic effects and increased
cardiovascular risk. However, in some individuals, these effects are negligible or not
present at all, and such cases are referred to as metabolically healthy obese (MHO). There
is no consensus regarding the definition of metabolically healthy obesity, but this subset
of obese subjects is usually characterized by a lower waist circumference, better physical
fitness, preserved insulin sensitivity, and a low prevalence of metabolic risk factors, despite
their high body mass index (BMI) [1,2].

Obesity is known to be the result of environmental and genetic factors. However, only
a small proportion of heritability—around 2%—is explained by the genes related to obesity,
which have been determined by genome-wide association studies [3], and many of the
findings regarding genes associated with high BMI have not been replicated in a reliable
manner [4]. Recent studies suggest that, in addition to genetic susceptibility, epigenetics
and gene–environment interaction also contribute to the appearance of obesity [5]. Unfor-
tunately, no research has specifically set out to decipher the main genes associated with the
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MHO phenotype. An increasing number of studies support the involvement of epigenetics,
including microRNAs (miRNAs), in different features of the metabolic syndrome [6–8].
Nevertheless, unravelling the molecular basis of obesity, and particularly that of the MHO
population, remains an important challenge.

miRNAs are small non-coding RNA sequences of around 22 bp that regulate gene
expression, and their main role is to repress the translation of specific mRNAs [9–11].
These molecules are involved in a multitude of physiological and pathological situations,
such as obesity and metabolic disorders [12,13]. miRNAs are critical for the regulation of
gene expression, and a mere few hundred are estimated to control 30–80% of the human
genome, each of which has multiple target genes and is regulated by multiple miRNAs.
Due to the complexity of gene–miRNA interaction, the critical role of miRNAs in MHO
subjects is still poorly understood [14].

In the present study, we applied high-throughput technology to screen more than
3500 human miRNAs in obese subjects subdivided into two groups—MHO vs. metaboli-
cally unhealthy obese (MUO)—in an attempt to determine the miRNAs that differentiate
these two conditions.

2. Materials and Methods
2.1. Subjects

A total of 20 patients between 18 and 70 years old with different grades of obesity
(BMI > 30 kg/m2) diagnosed for at least five years were recruited at the Outpatient’s Clinic
of the Endocrinology and Nutrition Department of University Hospital Dr. Peset in Valen-
cia, Spain. All patients had maintained a stable weight (±2 kg) over the three months prior
to the study. Patients were subdivided into two groups: metabolically healthy obese (MHO)
and metabolically unhealthy obese (MUO). MUO was defined when at least two of the
following features of metabolic syndrome (MetS) were present: triglyceride ≥ 150 mg/dL;
HDL cholesterol (HDLc) < 40 mg/dL for men and <50 mg/dL for women, or use of lipid-
lowering drugs; fasting glucose ≥ 100 mg/dL or anti-diabetic treatment; systolic (SBP)
and/or diastolic (DBP) blood pressure ≥ 130/85 mmHg, respectively; or use of antihyper-
tensive medication. Conversely, MHO was confirmed when all the aforementioned criteria
for MetS were absent. Waist circumference threshold was >102 cm for men and >88 cm for
women in both groups.

Exclusion criteria were secondary obesity (Cushing’s syndrome, hypothyroidism),
pregnancy or lactation, severe diseases such as malignancies, renal or hepatic conditions,
psychiatric disorders, drug or alcohol use, chronic inflammation, cardiovascular disease
and insulin treatment.

The study was conducted according to the guidelines laid down in the Declaration of
Helsinki-based Ethical Principles for Medical Research and was approved by the Ethics
Committee of the University Hospital Dr. Peset (Ceic code: 35/16). Written informed
consent was obtained from all subjects.

Anthropometrical parameters, including weight (kg), height (m), BMI (kg/m2), waist
circumference (cm) and SBP and DBP (mmHg), were measured in all the participants.

2.2. Blood Sampling

Blood samples were obtained from the antecubital vein after 12h overnight fasting.
Tubes without anticoagulant (BD Vacutainer, Franklin Lakes, NJ, USA) were stored for
30 min at room temperature and centrifuged at 1500× g for 10 min at 4 ◦C, after which the
supernatant serum fraction was frozen at −80 ◦C for subsequent isolation of miRNA.

Biochemical determinations were carried out by the hospital’s Clinical Analysis Ser-
vice. To establish lipid profile, serum levels of total cholesterol (TC) and triglycerides
were measured by an enzymatic method, and HDL cholesterol (HDLc) was determined
by a direct method using a Beckman LX20 analyser (Beckman Corp., Pasadena, CA, USA).
The intraserial variation coefficient was <3.5% for all determinations. Levels of LDL choles-
terol (LDLc) were estimated using the Friedewald equation when triglycerides were below
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300 mg/dL. High-sensitive C-reactive protein (hsCRP) and apolipoprotein (Apo) AI and
B levels were measured with an immunonephelometric assay (the intra-assay variation
coefficient was <5.5%). Glucose and insulin were assessed by enzymatic and chemilumi-
nescent immunoassays, respectively. Insulin resistance index was calculated using the
homeostasis model of assessment (HOMA-IR = (fasting insulin (µU/mL) × fasting glucose
(mg/dL)/405)). Percentage of HbA1c was assessed with an automatic glycohaemoglobin
analyser (Arkray Inc., Kyoto, Japan).

2.3. miRNA Isolation and Microarray Analysis

Serum circulating miRNAs were isolated using the miRNeasy Serum/Plasma Kit
(Qiagen, Hilden, Alemania). Affymetrix miRNA 4.0 (Santa Clara, CA, USA) was employed
to study the differential expression of 3536 human miRNAs. Intensity backgrounds were
corrected by RMA and normalized by quantiles. The statistical error of the repeated
measured data was isolated for normalization, allowing multiple chips to be compared
and analysed together.

Differential gene expression assessment of all comparisons was carried out using
limma moderated t-statistics. A t-test statistic is reported for each gene, together with its
corresponding p-value.

Non-mature human miRNAs were excluded from downstream analyses. miRTarBase
7.0 (http://miRTarBase.cuhk.edu.cn/, accessed on 11 March 2021) [15] was employed to
search for experimentally validated target genes for the most up- and downregulated miR-
NAs. If none was found in this way, target prediction was based on TargetScanHuman 7.2
(http://www.targetscan.org/vert_72/, accessed on 11 March 2021) [16]. Biological path-
way assignment was performed manually using GO, KEGG, Biocarta and WikiPathways
(https://www.wikipathways.org, accessed on 11 March 2021) databases.

Heatmaps of correlation distance and average linkage of miRNA expression levels
were created in MUO and MHO subjects using the web tool Clustvis (https://bio.tools/
clustvis, accessed on 11 March 2021) [17].

Venn diagram was constructed with the on-line resource http://bioinformatics.psb.
ugent.be (last accessed on 11 March 2021).

2.4. miRNA Target Prediction and Encyclopaedia of Genes and Genomes (KEGG) Pathway Analyses

In silico target prediction of miRNA was performed using the miRBD database [18].
We selected the datasets by considering a target score value > 80. KEGG pathway analyses
were carried out with GlueGo+CluePediaCytoscape plugin [19,20].

2.5. miRNAs qPCR Validation

Three upregulated miRNAs from the screening study were chosen for validation
based on the following criteria: levels of expression in the microarray, and biological and
statistical significance.

For validation, RNA was converted into cDNA using the TaqMan Advanced miRNA
cDNA Synthesis Kit (Thermo Fisher Scientific, Waltham, MA, USA) following the manufac-
turer’s instructions. The expression levels of hsa-mir4697-3p, hsa-mir-588, hsa-mir-6796-5p
and the spike-in control cel-miR-39 were assessed by qPCR with specific Taqman hydrolysis
probes (Thermo Fisher Scientific) in a 7500 Fast Real-Time PCR System (Applied Biosys-
tems, Foster City, CA, USA). Relative gene expression was obtained using the 2−∆∆CT
method with ExpressionSuite software (Applied Biosystems).

2.6. Data Analysis

Statistical analysis was performed with the SPSS program version 17.0 (last accessed
on 28 December 2020). Data are expressed as the mean and standard deviation in tables and
standard error of the mean (SEM) in figures. An unpaired student’s t-test was used to com-
pare variables between MHO vs.MUO groups. Bivariate correlation amongthe expression
levels of individual miRNA and each ofthe anthropometric and biochemical determina-
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tions wasmeasured using Spearman’s correlation coefficient by JMP PRO 14.1. software,
and a heatmap was generated with GraphPad Prism version 7.0 for Windows (GraphPad
Software, San Diego, CA, USA, www.graphpad.com, last accessed on 28 December 2020).
All differences were considered significant when p < 0.05.

3. Results
3.1. Characteristics of the Study Cohort

A total of 10 MHO and 10 MUO subjects were analysed. MUO subjects presented
higher BMI, waist circumference and blood pressure than their MHO counterparts (p < 0.05
in all cases; Table 1). Lipid profile showed typical features of atherogenic dyslipidaemia
in MUO subjects, with higher triglyceride levels and lower HDLc levels than in the MHO
group (p < 0.001). ApoA1 levels were lower in MUO subjects (p < 0.01) and Apo B
levels were higher in comparison to MHO (p < 0.05). As expected, the MUO group
displayed higher glucose (p < 0.001), HbA1c (p < 0.01), insulin and HOMA-IR levels
(p < 0.01), indicating hyperglycaemia and insulin resistance. hsCRP levels were similar in
both groups.

Table 1. Clinical and metabolic variables in metabolically healthy obese and metabolically unhealthy
obese individuals.

MHO MUO p-Value

n (% men) 10 (20) 10 (30) ns

Age (years) 44.2 ± 10.5 45.8 ± 6.5 ns

BMI (kg/m2) 38.1 ± 2.86 42.9 ± 4.37 <0.05

Waist (cm) 115.3 ± 11.6 129.4 ± 11.8 <0.05

Systolic BP (mm Hg) 122 ± 10 142 ± 14 <0.01

Diastolic BP (mm Hg) 76 ± 6 89 ± 11 <0.05

Total cholesterol (mg/dL) 178 ± 29 194 ± 25 ns

LDLc (mg/dL) 108 ± 23 115 ± 21 ns

HDLc (mg/dL) 55 ± 7.7 35 ± 3.3 <0.001

Triglycerides (mg/dL) 70.5 (47.0–102.0) 225 (186–244) <0.001

Apo AI (mg/dL) 164 ± 18 134 ± 15 <0.01

Apo B (mg/dL) 89 ± 20 114 ± 19 0.05

Glucose (mg/dL) 87.1 ± 8.4 107.2 ± 8.1 <0.001

Insulin (µU/mL) 13.5 ± 6.9 27.3 ± 16.4 <0.05

HOMA-IR 2.85 ± 1.29 7.16 ± 4.12 <0.01

HbA1c (%) 5.22 ± 0.37 5.91 ± 0.40 <0.01

hsCRP (mg/L) 4.57 (2.83–11.17) 5.33 (2.27–11.78) ns
MHO: metabolically healthy obese; MUO: metabolically unhealthy obese; BMI:body mass index; BP: blood pres-
sure; LDLc: low density lipoprotein cholesterol; HDLc: high density lipoprotein cholesterol; Apo: apolipoprotein;
HOMA-IR: homeostasis model of assessment of insulin resistance index; HbA1c: glycosylated haemoglobin;
hsCRP: High-sensitive C-reactive protein; ns: non-significant.

3.2. Evaluation of Differentially Expressed miRNA

Our data indicated that, among the 3536 miRNAs studied, 159 were differentially
expressed between the two groups, of which 72 were upregulated and 87 were downreg-
ulated in the serum of MUO versus MHO subjects (Figure 1; (dark dots) p-value < 0.05).
Table 2 shows the top 5 up- and downregulated miRNAs and their predicted target genes.

www.graphpad.com
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Figure 1. Volcano plot representing differentially expressed miRNA in MHO and MUO groups. Black dots indicate
significantly different levels of miRNAs in MUO vs. MHO. Red dots are the 3 miRNAs chosen for validation. Empty dots
are the top 5 up- and downregulated miRNAs.

Table 2. Top 5 up- and downregulated miRNAs in MUO vs. MHO subjects.

Direction Name Target Gene Fold Change p-Value

Up hsa-miR-4532 POU3F1 1.39 0.0002
hsa-miR-548d-1 PPARA * 1.23 0.0008
hsa-miR-3157-3p OR11A1 1.36 0.0012

hsa-miR-137 CDK6 * 1.41 0.0014
hsa-miR-6798-3p PEBP1 1.29 0.0020

Down hsa-miR-5047 TFRC 0.79 0.0007
hsa-miR-4508 BOK 0.66 0.0011
hsa-miR-1181 STAT3 * 0.83 0.0018
hsa-miR-126 CRK * 0.72 0.0027

hsa-miR-5090 WNK2 0.81 0.0033
* Experimentally validated target (by reporter assay/Western blot/qPCR) [15,16].

3.3. Heatmap

This heatmap indicates that MUO and MHO subjects could be differentiated by the
expression of dysregulated miRNAs (Figure 2). The vertical dendrogram shows a clustering
in MUO vs. MHO patients.
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Figure 2. Hierarchical clustering of samples (MHO and MUO, n=10 in each group) based on summarized intensity values
of the 159 differentially expressed circulating miRNAs. Log2 intensity values are shown in the bar scale. Rows are centred;
unit variance scaling has been applied to rows. Both rows and columns are clustered using correlation distance and average
linkage. 20 rows, 156 columns. Annotations on the heatmap show clustering of the samples.

3.4. Pathway Enrichment

Differential miRNAs in MUO vs. MHO were manually assigned to different biological
processes, and it was observed that most processes corresponded with a similar percentage
of up- and downregulated miRNAs (Figure 3A). A more pronounced upregulation of
miRNAs was related to several pathways in the MUO group, specifically insulin signalling
and lipid metabolism pathways.
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with the terms. The percentage of genes per term is labelled in the bar. (C) Overview chart with the enriched functional
groups including specific terms for target genes.

3.5. In Silico Analysis of Potential miRNA Target Genes

To explore the potential roles of the top ten upregulated miRNAs, we performed
a target gene analysis using the bioinformatics analysis tool miRDB. These algorithms
generated a total of 4389 predicted affected genes for the top ten upregulated miRNAs.
We selected target genes with a target score >80 to assure higher confidence in the pre-
diction (total predicted genes 1.177). After removing duplicates and triplicates, we sub-
mitted a final list of 1.104 predicted target genes to KEGG pathway analysis using a
GlueGo+CluePediaCytoscape plugin (cytoscape.org, accessed on 11 March 2020). The genes
predicted to be targets of the miRNAs were significantly enriched for 53 terms that con-
stituted five categories of functional networks: regulation of metabolic processes, neuro-
genesis, regulation of primary metabolic processes, positive regulation of cellular process
and cellular response to endogenous stimulus. The results are shown in Figure 3B,C and
detailed in Table S1.

3.6. Validation of a Subgroup of miRNAs

Since we had observed high ROS production in MUO in a previous study [21], among
the MUO-upregulated miRNAs involved in insulin signalling and lipid metabolism path-
ways we identified those that are also associated with modulation of oxidative stress.
In this way, three miRNAs were selected for further validation by RT-PCR: hsa-miR-588,
hsa-miR-6796-5p and hsa-miR-4697-3p (red dots in Figure 1). Their normalized expres-
sion in the microarray is shown in Figure 4A. We subsequently confirmed that hsa-miR-
6796-5p and hsa-miR-4697-3p were upregulated in the MUO vs. MHO group (p < 0.05)
(Figure 4B–D).Experimentally validated targets of these 3 miRNAs are included in Table S2.
No significant correlations were found among the expression of these 3 miRNAs (data
not shown).

cytoscape.org
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Figure 4. Validation of 3 miRNA array-predicted changes by quantitative RT-PCR (qPCR). (A) Microarray expression of the
three selected miRNAs in MHO and MUO subjects. (B–D) Quantitative miRNA expression analysis of (A) hsa-mir-4697-3p
(B) hsa-mir-588 and (C) hsa-mir-6796-5p was carried out using TaqMan probes by qPCR. * p < 0.05, ** p < 0.01.

Figure 5A shows that a total of 40, 10, 28 and 6 processes related to lipid metabolism, ox-
idative stress, insulin signalling and glucose homeostasis are target ofthese three upregulated
miRNAs (complete list of processes in Table S3). Interestingly, the Venn diagram (Figure 5B)
shows three processes that were commonly affected (R-HSA-1430728_metabolism; R-HSA-
1257604_PIP3 activates AKT signalling; and R-HSA-556833_metabolism of lipids) by the
validated miRNAs. It could suggest a strong regulation of these metabolic pathways.
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Figure 5. (A) Pie charts showing the numbers of affected metabolic processes by each validated miRNA in each main
pathway (lipid metabolism, oxidative stress, insulin signalling, and glucose homeostasis). (B) Venn diagram of unique
and shared processes by each validated miRNA. The different miRNAs are coded by colour. Analysis performed at
https://reactome.org, (accessed on 11 March 2020) with the target genes for each miRNA according to miRcarta v1.1 (details
in Table S3).

3.7. Correlation Studies

Among the three validated miRNAs, hsa-miR-4697-3p was positively correlated with
glucose and triglycerides and negatively correlated with HDLc (p < 0.05). A positive corre-
lation was observed between hsa-miR-6796-5p and insulin (p < 0.01), glucose, triglycerides,

https://reactome.org
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A1c, BMI and waist circumference (p < 0.05 for all). However, in the case of hs-miR-588,
we detected a significant negative correlation only with insulin (p < 0.01) (Figure 6).

In terms of the most significant correlations observed, the biochemical parameters of
metabolic function that showed the closest association with the different up- and downreg-
ulated miRNAs were glucose, triglycerides, HbA1c, and HDLc (Figure 6).
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4. Discussion

This study provides a detailed profile of serum-circulating miRNAs associated with
obesity according to metabolic condition. As expected, a remarkable alteration was ob-
served in the biochemical metabolic profile of our MUO population, and this profile was
accompanied by substantial differences in the pattern of miRNA expression, including
72 upregulated and 87 downregulated miRNAs in the serum of MUO vs.MHO subjects.
In addition, an upregulation of miRNAs related to insulin signalling and lipid metabolism
pathways was evident in the MUO group. Two miRNAs involved in the insulin signalling
pathway and also related to oxidative stress—hsa-miR-6796-5p and hsa-miR-4697-3p—
were upregulated in the same group. Correlation studies revealed a relationship between
miRNA expression and markers of metabolic profile in the obese population; namely,
insulin, glucose and triglycerides.

A particular subset of obese patients without metabolic alterations has been cate-
gorized within the concept of MHO; however, there are not well-established diagnostic
criteria for this classification. In this sense, miRNA studies could provide new insight
into the relevance of miRNA regulation in the development of obesity-related metabolic
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disorders. Among the 159 miRNAs that showed significant differences between MUO
and MHO subjects, circulating levels of 72 miRNAs (45.2%) were higher and those of 87
miRNAs (54.7%) were lower in the MUO group. These account for nearly 5% of the miRNA
species profiled in the assay, which suggests that the overall miRNA balance is disrupted
more in MUO than in MHO. The noticeable difference in expressed miRNAs reflects a sig-
nificant change in miRNA-dependent intercellular signalling [9]. In line with these results,
Choy et al. reported that the levels of 65 of the 374 circulating miRNAs they had profiled
were elevated in insulin-resistant obese subjects, and miR-192-5p, miR-194-5p, miR-486-5p,
miR-150, miR-378a-3p, miR-550a-3p, miR-16-5p, and miR-140-3p have previously been
reported to be associated with insulin resistance [22].

In the present study, the non-targeted profiling of circulating miRNAs and predicted
functional pathways points to the involvement of several of these miRNAs in the regulation
of cell growth, differentiation and cell adhesion. Our initial pathway analysis revealed
similar numbers of up- and downregulated genes for a given pathway. This observation,
and the fact that miRNAs can target genes that either positively or negatively regulate
the same pathway, adds complexity to our analysis. We have focused on pathways in
which upregulated miRNAs predominate over downregulated ones. Interestingly, miRNAs
related to insulin signalling and lipid metabolism were particularly pronounced in the
MUO group.

Several miRNAs are reported to play regulatory roles in many biologic processes
related with obesity, including insulin resistance, lipid metabolism and adipocyte differ-
entiation [13,23,24]. Doumatey et al. have recently shown that circulating miR-374a-5p is
upregulated in MHO vs.MUO subjects and is associated with the TG/HDL ratio. In addi-
tion, this miRNA may modulate the expression of CCL2, a pro-inflammatory biomarker
found upstream in the pathway that leads to dyslipidaemia in obesity. Therefore, by regu-
lating CCL2 expression, miR-347a-5p may modulate inflammation and alter lipid profile in
obesity [25]. Interestingly, miR-126, one of the top downregulated miRNAs in this study,
has previously been related to the regulation of adipose tissue inflammation in human obe-
sity, since it also targets CCL2, inhibiting its expression and release from adipose tissue [26].
Thus, the downregulation of miR-126 in MUO patients may contribute to their underlying
inflammatory state, partly due to a lack of repression of CCL2 production in adipose tissue.

Obesity, insulin resistance and dyslipidaemia have a strong connection with type
2 diabetes, and several miRNAs influence these clinical outcomes. When we analysed
the miRNAs that were differentially expressed in obese patients, miR-6822-3p, miR-23a,
miR-4439, miR-512-5p, miR-6796-5p, miR-8088, miR-3622b, and miR-4532 were found to
be significantly correlated with metabolic parameters associated with insulin resistance.
In this context, Ma et al. reported that levels of circulating miR-150 and miR-16-3p are
correlated with the insulin sensitivity index when measured by the euglycemic clamp
experiment [27], and miR-378a has been shown to be directly involved in energy and fat
metabolism [28]. Several of these upregulated circulating miRNAs, including miR-150-5p,
16-5p, 192-5p, 451a, 486-5p, and 770-5p, are reported to be expressed in patients with type
2 diabetes [29].

Oxidative stress and inflammation are related to obesity, but the effect of metabolic dis-
turbances on these parameters and their relationship with miRNAs is unknown. In obese
and overweight individuals MetS displays differences in terms of chronic inflammation,
nitro-oxidative stress and insulin resistance [21,30–32]. Several miRNAs seem to be associ-
ated with the downregulation of pro-inflammatory markers linked to insulin resistance.
For instance, miR-126, miR-132, miR-146, miR-155, and miR-221 have emerged as im-
portant transcriptional regulators of some inflammation-related mediators [33]. The two
miRNAs we identified in the MUO group—and which were validated by qPCR, miR-6796-
5p and miR-4697-3p—were assigned prostaglandin-endoperoxide synthase (COX-2) and
glutathione peroxidase 7 (GPX7) as predicted target genes, respectively. These are key
enzymes in the generation and scavenging of reactive oxygen species; for this reason, these
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miRNAs should be explored in more detail, as they seem to be implicated in the metabolic
status of obesity.

It is known that metabolic disorders and/or obesity are a high-risk factor for car-
cinogenesis. In this context, we identified important tumour suppressors or oncomiRs
among our top five up- and down- regulated miRNAs. miR-548 has been implicated in the
regulation of gene expression related to endometriosis and ovarian cancer [34]. In this con-
text, several tumour suppressor pathways act on or are activated by the signal transducer
and activator of transcription (STAT)3 signalling, including miR-1181 [35]. Additionally,
miR-126 inactivates the PI3K/AKT pathway in the carcinogenesis process [36]. Increasing
evidence supports that, as a new tumour suppressor gene, miR-126 plays a role in the
development and metastasis of various types of cancer, such as lung cancer, liver cancer,
melanoma and colorectal cancer [37].

Moreover, a critical role of miR-137 has previously been described in the pathophysi-
ology of cancer, specifically in glioma [38]. Conversely, downregulation of miR-137 amelio-
rates high glucose-induced injury in HUVECs by overexpression of AMPKα1, leading to
increased cellular reductive reactions and decreased oxidative stress [39].

Regarding the rest of our top modulated miRNAs, no studies have implicated miR-
4532, miR-6798-3p, miR-3157-39, miR-5047, miR-4508 or miR-5090 in human disease.

A strength of this study is that we selected two phenotypes of obese individuals clearly
differentiated according to the presence of three or four comorbidities associated with MetS.
In addition, the subjects were of a similar age and both sexes were represented equally.

On the other hand, we should point out some limitations to our work. First of all, it
is possible that we have overlooked the expression of relevant miRNAs due to the small
sample size of this non-targeted profiling study. However, qPCR validation of the 3 selected
miRNAs further supported their upregulation in the MUO condition. In addition, the
relationship between these circulating miRNAs and metabolic alterations is supported by
the roles of many of their target genes in obesity and lipid metabolism (Figure 5; Table S3).
In this sense, our findings need to be confirmed in specific populations in order to exclude
potential bias. Finally, our analysis of target pathways and genes was limited to prediction
analysis; consequently, future studies addressing the mechanisms of action of the miRNAs
we have identified are necessary before our findings can be translated to clinical practice.

In summary, our data suggest that the miRNAs that regulate insulin signalling, lipid
profile and oxidative stress, and which we have identified in our population, play an
essential role in protecting against metabolic disease in obesity. These miRNAs are also
correlated with clinical and biochemical markers of metabolic dysfunction—chiefly, insulin
resistance. Our findings encourage the targeted research of serum miRNAs as clinically
relevant biomarkers in the treatment of metabolic disease in obesity. Furthermore, our
study points to serum miRNA profiling as a promising tool with which to accurately
classify obese subjects as MHO or MUO, thus improving the diagnosis and early treatment
of these patients.

Supplementary Materials: The following are available online at https://www.mdpi.com/2227-905
9/9/3/321/s1, Table S1: Enriched GO terms and target genes for the top ten upregulated miRNAs,
Table S2: Experimentally validated targets of hsa-mir4697-3p, hsa-mir-588 and hsa-mir-6796-5p, Table
S3: Processes associated with main metabolism pathways and target genes for each of the validated
miRNAs.
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