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AbstrAct
Objective To estimate age-specific risk equations for 
type 2 diabetes onset in young, middle-aged, and older 
US adults, and to compare the performance of simple 
equations based on readily available demographic 
information alone, against enhanced equations that require 
both demographic and clinical information (fasting plasma 
glucose, high-density lipoprotein, and triglyceride levels).
Research design and methods We estimated the 
probability of developing diabetes by age group using 
data from the Coronary Artery Risk Development in 
Young Adults (for ages 18–40 years), Atherosclerosis 
Risk in Communities (for ages 45–64 years), and the 
Cardiovascular Health Study (for ages 65 years and 
older). Simple and enhanced equations were estimated 
using logistic regression models, and performance was 
compared by age group. Thresholds based on these risk 
equations were evaluated using split-sample bootstraps 
and calibrating the constant of one age cohort to others.
Results Simple risk equations had an area under the 
receiver-operating curve (AUROC) of 0.72, 0.79, 0.75, 
and 0.69 for age groups 18–30, 28–40, 45–64, and 65 
and older, respectively. The corresponding AUROCs for 
enhanced equations were 0.75, 0.85, 0.85, and 0.81. Risk 
equations based on younger populations, when applied to 
older cohorts, underpredict diabetes incidence and risk. 
Conversely, risk equations based on older populations 
overpredict the likelihood of diabetes in younger cohorts.
Conclusions In general, risk equations are more 
successful in middle-aged adults than in young and old 
populations. The results demonstrate the importance of 
applying age-specific risk equations to identify target 
populations for intervention. While the predictive capacity 
of equations that include biomarkers is better than of those 
based solely on self-reported variables, biomarkers are 
more important in older populations than in younger ones.

IntROduCtIOn
Several risk equations have been developed to 
identify those at high risk of developing type 
2 diabetes1 2 using data from the Framingham 
Heart Study, the National Health and Nutri-
tion Examination Survey (NHANES), Coro-
nary Artery Risk Development in Young Adults 
(CARDIA), Atherosclerosis Risk in Communi-
ties (ARIC), the Cardiovascular Heart Study 
(CHS), and the San Antonio Heart Study for 
various follow-up periods (from 5 to 24 years), 

each using different estimation methods. The 
variables used to generate predicted probabil-
ities are common across many of these studies 
and include self-reported demographic infor-
mation, such as age, sex, race, medication use, 
family history of diabetes, body mass index 
(BMI) and/or waist circumference, smoking 
status, alcohol consumption, and food 
consumption. Enhanced risk equations also 
use clinical measures, such as systolic blood 
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significance of this study

What is already known about this subject?
 ► Most diabetes type 2 risk equations in the literature 
focus on predictions for people older than 45 years 
of age.

 ► The literature finds good levels of discrimination 
but high levels of discrimination often arise 
when studies are not able to exclude at baseline 
individuals with undiagnosed diabetes from the 
estimating sample.

What are the new findings?
 ► One size does not fit all when we want to identify 
what are the most important risk factors for type 2 
diabetes across different age groups. Relative and 
absolute risks vary by age.

 ► The predictive capacity of equations based on 
biomarkers is, on average, better than those based 
on self-reported variables but information from 
biomarkers are more important in older populations 
than in younger ones. We find no significant 
difference in the area under the receiver-operating 
curve between simple and enhanced equations in 
young adults.

How might these results change the focus of 
research or clinical practice?

 ► A screening strategy based on self-reported 
variables in younger populations would be as 
effective as one that requires collecting clinical 
samples. For older populations, there is a tradeoff 
between a simple model that can be applied to 
more people, and an enhanced model that would be 
more accurate, but would require costly laboratory 
tests.
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pressure, fasting plasma glucose (FPG), triglyceride, and 
high-density lipoprotein (HDL) cholesterol levels.

The development of simple yet accurate risk scores is 
important for risk stratification and prevention by clinical 
and public health interventions. Similarly, quantifying 
the absolute and relative risks for diabetes associated with 
combinations of key risk factors is essential for cost-effec-
tiveness modeling efforts. However, cohort studies in the 
USA have generally been limited to specific segments of 
the population age range. The most important sets of risk 
factors, as well as the relative and absolute risks, may vary 
considerably by age.

In this analysis, we assembled data from three major 
US epidemiological studies to develop diabetes risk 
equations and to estimate separate, age-specific risk 
equations. Our objectives were to (1) examine whether 
core risk factors and risk equations vary with age and (2) 
quantify the performance of simple risk equations, based 
on self-reported variables (age, sex, race, BMI, smoking 
status, family history, and binary indicators for high 
blood pressure and high cholesterol), and enhanced risk 
equations, which include added clinical variables (blood 
pressure, cholesterol, FPG, HDL, and triglycerides).

ReseaRCH desIgn and metHOds
data
Study data were obtained from three epidemiological 
studies: CARDIA, ARIC, and CHS. The CARDIA study, initi-
ated in 1985 to investigate lifestyle and other factors that 
influence the evolution of coronary heart disease (CHD) 
risk factors during young adulthood, recruited 5116 black 
and white women and men, aged 18–30 years, in four urban 
areas: Birmingham, Alabama; Chicago, Illinois; Minneap-
olis, Minnesota; and Oakland, California.3 Participants were 
followed for 20 years.

ARIC, initiated in 1987, was conducted in four commu-
nities (Washington County, Maryland; Forsyth County, 
North Carolina; Jackson, Mississippi; and Minneapolis, 
Minnesota) by randomly selecting a cohort of 15 792 
individuals aged 45–64 years. Participants were followed 
for 9 years. ARIC was designed to investigate the causes 
of atherosclerosis and its clinical outcomes, and the vari-
ation in cardiovascular risk factors, medical care, and 
disease by race and gender.

The CHS, initiated in 1989, enrolled 5888 men and 
women aged 65 years and older in four communities: 
Forsyth County, North Carolina; Sacramento County, 
California; Washington County, Maryland; and Pitts-
burgh, Pennsylvania. Eligible participants were sampled 
from Medicare eligibility lists in each area, and were 
followed for 7 years. The main objective of the CHS study 
was to identify factors related to the onset and course of 
CHD and stroke.

analysis samples and diabetes variable
Our dependent variable was the first incident/diagnosis 
of type two diabetes. Therefore, we excluded participants 

with a previous diagnosis of type two diabetes at the 
time of enrollment. Diabetes status was assessed using 
slightly different methods and at different follow-up 
intervals in the three studies. In CARDIA, diabetes status 
was defined by FPG measurements and/or self-report 
of taking oral diabetes medications with or without 
insulin injections. In ARIC, diabetes status, based on 
self-reporting of previous diagnosis and glucose values, 
was available at triennial follow-up encounters (year 3: 
1990–1992; year 6: 1993–1995; year 9: 1996–1998). In 
years 3 and 6, self-reported diabetes medication use was 
collected; in year 9, a 2-hour oral glucose tolerance test 
(OGTT) was also administered. In CHS, diabetes was 
defined annually by the new use of insulin or oral hypo-
glycemic medication and/or by FPG values. To create 
a uniform definition of diabetes across all datasets, we 
defined diabetes by reported physician diagnosis and/or 
FPG ≥7.0 mmol/L (126 mg/dL).

None of the three datasets included adults aged 31–44 
years; we therefore created a fourth date set by split-
ting CARDIA into two samples. Individuals recruited 
for CARDIA at age 18–30 years were aged 28–40 years 
at the 10-year follow-up. Thus, our new data set, which 
we will refer to as CARDIA-10, included CARDIA partici-
pants who had not developed diabetes by year 10 as a new 
sample baseline.

statistical analysis
To address the question of whether a particular set of 
variables would predict equally effectively across different 
age groups, we estimated simple and enhanced risk equa-
tions for four age groups (18–30, 28–40, 45–64, and 65 
and older) using the same sets of variables (self-reported 
variables for the simple equation and self-reported plus 
clinical data for the enhanced equation), and the same 
statistical method (logistic regression) to isolate the 
predictive power of individual coefficients for the like-
lihood of diabetes for each age group. The outcome 
variable in our models was the cumulative incidence of 
diabetes throughout the observational period for each 
sample (10 years in CARDIA and CARDIA-10, 9 years in 
ARIC, and 7 years in CHS).

To test and compare the performance of the simple 
and enhanced models, we randomly selected 70% of each 
sample to develop the models, and used the remaining 
30% of individuals for validation. This bootstrap exer-
cise was repeated 1000 times for each of the four data-
sets to strengthen the validity and generalizability of our 
findings. We evaluated the diagnostic properties of the 
simple and enhanced models across the four datasets on 
the remaining 30% of the sample. Predictive capacity for 
each continuous factor was assessed using the area under 
the receiver-operating curve (AUROC). A model with 
no predictive power has an area equal to 0.5, whereas a 
perfect model has an area equal to 1. We also assessed 
sensitivity, specificity, and positive and negative predictive 
values (PPV and NPV). Because the risk equations were 
estimated over different time periods for the different 
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Table 1 Characteristics among participants of CARDIA, ARIC, and CHS at baseline included in the regression analyses

Characteristic

CARDIA
(n=4039, T=10)

CARDIA-10
(n=2813, T=10)

ARIC
(n=8875, T=9)

CHS
(n=3094, T=7)

Mean SD Mean SD Mean SD Mean SD

Age (years) 24.89 3.60 35.03 3.59 53.81 5.67 72.41 4.95

Black (=1) 48.58% 49.99% 44.80% 49.74% 17.12% 37.67% 3.88% 19.31%

Male (=1) 44.54% 49.71% 45.14% 49.77% 44.37% 49.69% 38.40% 48.64%

BMI 24.35 4.72 27.07 5.87 27.09 4.91 26.13 3.79

Smoker (=1) 13.02% 33.66% 13.76% 34.45% 21.90% 41.36% 51.39% 49.99%

High cholesterol (=1) 2.23% 14.76% 64.62% 47.82% 25.06% 43.34% 28.41% 45.11%

Parental history (=1) 13.52% 34.20% 20.84% 40.62% 24.60% 43.07% 35.36% 47.82%

SBP (mm Hg) 110.08 11.01 109.21 12.16 118.60 16.91 133.99 20.90

FPG (mg/dL) 81.66 8.26 86.52 11.18 98.44 9.13 99.49 9.37

HDL (mg/dL) 53.16 13.23 50.40 13.89 52.74 17.12 55.55 15.72

Triglycerides 72.36 47.16 89.36 68.28 124.39 75.24 135.73 64.48

Age groups: CARDIA: 18–30 years; CARDIA-10: 28–40 years; ARIC: 45–64 years; CHD: 65 years and older. (=1) indicates a binary variable. T 
indicates maximum follow-up time in the sample in terms of years. High cholesterol=1 if 240 mg/dL and above. BMI=(weight in kg)/(height in 
meters)2.
ARIC, Atherosclerosis Risk in Communities; BMI, body mass index; CARDIA, Coronary Artery Risk Development in Young Adults; CHS, 
Cardiovascular Heart Study; FPG, fasting plasma glucose; HDL, high-density lipoprotein cholesterol; SBP, systolic blood pressure.
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datasets, we computed 1-year probabilities to make the 
results more comparable.

To explore the consequences of using coefficients 
from one model to estimate the probability of devel-
oping diabetes for individuals from another dataset and 
thus a different age group (eg, using the risk equation 
estimated with ARIC data for those aged 45–64 years 
to estimate risk in the CHS population aged 65 years 
and older), we applied coefficients from one risk equa-
tion to data for different age groups. We did so using a 
constrained logistic regression where the intercept was 
allowed to vary (accounting for differences in the abso-
lute risk across age groups) but the coefficients for the 
other variables were constrained to be equal to the coef-
ficients from the original risk equation (maintaining the 
same OR as the original equation). Thus, we applied the 
ARIC equation to the CARDIA, CARDIA-10, CHS data, 
and so on. By allowing the intercept to be re-estimated, 
we controlled for differences in the absolute probability 
of diabetes across age groups, but the constrained coef-
ficients on the variables maintained the OR for the orig-
inal risk equation.

Results
The initial CARDIA sample consisted of 5116 individ-
uals aged 18–30 years. We excluded 78 with diabetes 
at baseline and 999 with incomplete data, leaving an 
analytic sample of 4039. At year 20, 3413 remained in the 
CARDIA sample, which represents our potential sample 
for the CARDIA-10 cohort. At years 10 and 20, we had 
information on self-reported diabetes status and FPG. We 
excluded those who had diabetes at year 10 (n=266) and 
used the covariates measured at year 10 as the baseline 

year. We excluded participants with incomplete infor-
mation on the variables of interest at year 10 (n=274). 
The final CARDIA-10 sample used for estimation was 
2873 people aged 28–40 years at baseline (ie, year 10 of 
CARDIA).

In ARIC, 15 792 individuals, aged 45–64 years were 
recruited at baseline. We used baseline explanatory vari-
ables as predictors of the cumulative incidence rate of 
diabetes at year 9. We excluded 1163 individuals with 
diabetes at baseline, 2080 with missing data for the explan-
atory variables at baseline, and 3674 with missing data for 
the dependent variable at year 9 follow-up, leaving a final 
sample of 8875 individuals.

Our starting CHS sample was 5888 individuals aged 65 
years or older. We used 7-year follow-up for the purpose 
of this analysis because that is the latest data in which 
laboratory values were included in the public use dataset. 
By year 7, the sample consisted of 4100 participants with 
laboratory information on FPG. We excluded 501 persons 
with diabetes at baseline. Our final dataset, excluding 
individuals without a complete set of covariates, was 3094.

Table 1 shows the baseline characteristics of study 
participants. Data are presented as means and SD, unless 
otherwise noted.

Tables 2 and 3 show the results of the simple and 
enhanced models. BMI was the only variable with signif-
icant predictive power in both simple and enhanced 
equations across all age groups. Parental history had 
predictive power for younger cohorts in the simple and 
enhanced models, but less predictive importance for 
the oldest cohort. In the enhanced models, FPG and 
triglycerides had the best predictive power (see online 
supplementary appendix A-1).

https://dx.doi.org/10.1136/bmjdrc-2017-000447


4 BMJ Open Diab Res Care 2017;5:e000447. doi:10.1136/bmjdrc-2017-000447

Table 2 ORs and diagnostic accuracy for type 2 diabetes over T years—simple model

CARDIA (10 years) CARDIA-10 (10 years) ARIC (9 years) CHS (7 years)

ORs

  Age group† 1.343* 1.242 1.078 0.848

  Black (=1) 0.947 1.408* 1.323*** 1.265

  Male (=1) 0.384*** 1.380* 1.575*** 1.512**

  BMI 1.087*** 1.143*** 1.138*** 1.144***

  Parental history (=1) 1.661*** 2.357*** 1.871*** 1.324

  Smoker (=1) 0.878 0.987 1.357*** 1.198

  High SBP (>140 mm Hg=1) 3.846** 1.094 1.472*** 1.887***

  High cholesterol (>240 mg/dL=1) 1.539 1.388* 1.002 0.948

  Observations   4039   2813   8875   3094

Diabetes (N)   171   188   836   150

Diagnostic statistics

  AUROC (95% CI) 0.72 (0.69–0.76) 0.79 (0.76–0.83) 0.75 (0.73–0.77) 0.69 (0.65–0.73)

  PPV 50.00% 31.25% 34.92% 0.00%

  NPV 95.79% 93.46% 90.76% 95.15%

  Cumulative probability 4.23% 6.68% 9.42% 4.85%

  1-year probability‡ 0.44% 0.73% 1.04% 0.53%

 *** p<0.01, ** p<0.05, * p<0.1
†For CARDIA age (25–30)==1, CARDIA-10 age (35–40)=1, ARIC age (55–64)==1, CHS age (75+)==1.
‡Supplementary appendix A-6 shows how to compute annual probabilities using the Logit model.
T represents the maximum time in the sample. For CARDIA and CARDIA-10, T=10 years. For ARIC, T=9; and for CHD, T=7.
For PPV and NPV the cut-off used is 5.
Supplementary appendix A-5a shows non-exponentiated coefficients.
BMI=(weight in kg)/(height in meters)2.
PPV, p×sensitivity/(p×sensitivity+(1 p)(1−specificity)), where p is the prevalence.
NPV, specificity×(1 p)/(p×(1−sensitivity)+(1 p)×specificity).
ARIC, Atherosclerosis Risk in Communities; AUROC, area under the receiver-operating curve; CARDIA, Coronary Artery Risk Development in 
Young Adults; CHS, Cardiovascular Heart Study; BMI, body mass index; NPV, negative predictive value; PPV, positive predictive value; SBP, 
systolic blood pressure.
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As expected, we found that AUROCs were higher for 
the enhanced models than for the simple models (tables 2 
and 3). The simple and enhanced models show different 
levels of predictive power across age groups. AUROCs 
for simple risk equations were 0.72 for CARDIA; 0.79 for 
CARDIA-10; 0.75 for ARIC; and 0.69 for CHS. However, 
AUROCs for enhanced equations were 0.75 for CARDIA; 
0.85 for CARDIA-10; 0.85 for ARIC; and 0.81 for CHS. 
Statistically significant differences between simple and 
enhanced models were present only for older age cohorts 
(ARIC and CHS).

Online supplementary appendix A-2 shows the perfor-
mance of the simple and enhanced equations in iden-
tifying people that developed diabetes by quintiles of 
predicted risk thresholds using the split sample approach 
as a test of internal validity. At the top quintile, few individ-
uals would be above the predicted value cut-off, and thus 
the sensitivity is low and specificity is high. PPV and NPV 
depend on the prevalence of diabetes in each sample. In 
younger cohorts, where the prevalence of diabetes is rela-
tively low, PPV is low and NPV is high. In older cohorts, as 
the prevalence increase so does the PPV.

Table 4 shows the extent to which the coefficients 
in each of the models change predictions in the other 
datasets, by testing what happens when the equation 
estimated with one dataset was used to estimate the 
probability of developing diabetes for individuals of an 
age group from another dataset. We report constrained 
regressions, forcing all coefficients excluding the 
constant term to be the same as in the source equations, 
and thus allowing for the calibration of the constant 
term. We report the AUROC and forecasted 1-year 
probabilities. All constant terms (analogous to the base-
line hazard rate) in the target and source datasets are 
statistically different. The further away, in terms of age, 
the underlying cohort is from the coefficients of the 
risk model used for constrained regression in the test 
dataset, the more imprecise the results are compared 
with the results originating from the same underlying 
coefficients and data. Irrespective of whether the cali-
bration is done using the simple or the enhanced 
model, equations based on younger age groups when 
applied to older cohorts underpredict diabetes inci-
dence. Conversely, risk equations based on older 

https://dx.doi.org/10.1136/bmjdrc-2017-000447
https://dx.doi.org/10.1136/bmjdrc-2017-000447
https://dx.doi.org/10.1136/bmjdrc-2017-000447
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Table 3 ORs and diagnostic accuracy for type 2 diabetes over T years—enhanced model

CARDIA (10 years) CARDIA-10 (10 years) ARIC (9 years) CHS (7 years)

ORs

  Age group† 1.320 0.981 0.898 0.911

  Black (=1) 1.174*** 1.554** 1.898*** 1.772

  Male (=1) 0.292*** 0.650** 0.795** 1.104

  Parental history (=1) 1.736*** 2.219*** 1.670*** 1.304

  SBP (mm Hg) 0.995 1.020*** 1.006** 1.005**

  Smoker (=1) 0.918 0.943 1.230** 1.169

  BMI 1.059*** 1.079*** 1.091*** 1.055**

  FPG (mg/dL) 1.034*** 1.080*** 1.116*** 1.114***

  HDL (mg/dL) 0.990 0.980** 0.975*** 0.986

  Triglycerides (mg/dL) 1.005 1.002* 1.002*** 1.004***

  Observations   4039   2813   8875   3094

Diagnostic statistics

Diabetes (N)   171   188   836   150

  AUROC (C.I.) 0.75 (0.71–0.78) 0.85 (0.82–0.88) 0.85 (0.84–0.86) 0.81 (0.77–0.85)

  PPV 62.04% 73.47% 56.02% 50.00%

  NPV 57.26% 94.50% 91.88% 95.24%

  Cumulative probability 4.23% 6.68% 9.42% 4.85%

  1-year probability‡ 0.44% 0.88% 1.13% 0.53%

 *** p<0.01, ** p<0.05, * p<0.1
†For CARDIA age (25–30)==1, CARDIA-10 age (35–40)==1, ARIC age (55–64)==1, CHS age (75+)==1.
‡Supplementary appendix A-6 shows how to compute annual probabilities using the Logit model.
T represents the maximum time in the sample. For CARDIA and CARDIA-10, T=10 years. For ARIC, T=9; and for CHD, T=7.
For PPV and NPV the cut-off used is 5.
Supplementary appendix A-5b shows non-exponentiated coefficients.
BMI=(weight in kg)/(height in meters)2.
PPV, p×sensitivity/(p×sensitivity+(1 p)(1−specificity)), where p is the prevalence.
NPV, specificity×(1 p)/(p×(1−sensitivity)+(1 p)×specificity).
ARIC, Atherosclerosis Risk in Communities; AUROC, area under the receiver-operating curve; CARDIA, Coronary Artery Risk Development 
in Young Adults; CHS, Cardiovascular Heart Study; BMI, body mass index; FPG, fasting plasma glucose; HDL, high-density lipoprotein 
cholesterol; NPV, negative predictive value; PPV, positive predictive value; SBP, systolic blood pressure.
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age cohorts overpredict the likelihood of diabetes in 
younger cohorts.

For each dataset, we show the corresponding predicted 
probability of developing diabetes, and compare these 
with the probability of developing diabetes using the equa-
tion in which they were developed (ie, using the target 
data). The graphs in online supplementary appendix 
A-3 illustrate how one can overpredict or underpredict 
using the wrong equation, by plotting the information 
presented in table 4 across the entire distribution. Cali-
bration of the constant term across cohorts helps resolve 
some of the unaccounted discrepancies across cohorts. 
Even with calibration however, older cohorts typically 
overpredict, while younger cohorts underpredict, irre-
spective of the set of covariates used.

dIsCussIOn
Our goal was to generate simple and enhanced age 
group-specific risk equations to predict the probability of 
developing type two diabetes, and to determine the extent 

to which patient characteristics matter differently across 
age groups. Often, risk factors are selected from many 
potential covariates based on the strength of association 
with the outcomes in a study sample. This study shows 
which variables matter in predicting the risk of diabetes 
and how their importance varies depending on age. Based 
on the rules by Hosmer and Lemeshow4 for interpreting 
AUROC values, we find that simple equations have an 
acceptable level of discrimination (0.7≤AUROC<0.8), 
while enhanced equations have very good discrimina-
tion (0.8≤AUROC) except for the youngest (18–30) age 
group, which is in the acceptable range. Overall, we find 
that risk equations have better predictability in middle-
aged adults than in young and older populations. Thus, 
it is not surprising that most risk equations published in 
the literature focus on predictions for people older than 
45 years.

Our study shows that predictions vary markedly and 
significantly when coefficients derived from one age 
group are used to predict non-adjacent age groups. This 

https://dx.doi.org/10.1136/bmjdrc-2017-000447
https://dx.doi.org/10.1136/bmjdrc-2017-000447
https://dx.doi.org/10.1136/bmjdrc-2017-000447
https://dx.doi.org/10.1136/bmjdrc-2017-000447
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Table 4 Annual predicted values from constrained regressions across simple and enhanced models

Test dataset
Source of constrained 
coefficients AUROC (calibrated constant)

1-year probability (calibrated 
constant) (%)

CARDIA simple CARDIA 0.72 (0.69–0.76) 0.44

CARDIA-10 0.63 (0.58–0.68) 0.45

ARIC 0.61 (0.56–0.66) 0.49

CHS 0.60 (0.55–0.65) 0.63

CARDIA-10 simple CARDIA-10 0.79 (0.76–0.83) 0.73

CARDIA 0.74 (0.70–0.77) 0.72

ARIC 0.78 (0.74–0.82) 0.80

CHS 0.78 (0.74–0.81) 1.03

ARIC simple ARIC 0.75 (0.73–0.77) 1.04

CARDIA 0.73 (0.72–0.75) 1.01

CARDIA-10 0.75 (0.73–0.76) 1.05

CHS 0.75 (0.73–0.76) 1.47

CHS simple CHS 0.69 (0.65–0.73) 0.72

CARDIA 0.59 (0.54–0.63) 0.50

CARDIA-10 0.69 (0.64–0.73) 0.50

ARIC 0.69 (0.65–0.73) 0.56

CARDIA enhanced CARDIA 0.75 (0.71–0.78) 0.44

CARDIA-10 0.66 (0.61–0.70) 0.46

ARIC 0.65 (0.60–0.70) 0.53

CHS 0.62 (0.57–0.67) 0.66

CARDIA- 10 enhanced CARDIA-10 0.85 (0.82–0.88) 0.88

CARDIA 0.83 (0.80–0.86) 0.92

ARIC 0.84 (0.81–0.87) 0.97

CHS 0.83 (0.80–0.86) 1.20

ARIC enhanced ARIC 0.85 (0.84–0.86) 1.13

CARDIA 0.84 (0.82–0.85) 1.10

CARDIA-10 0.85 (0.83–0.86) 1.14

CHS 0.85 (0.83–0.86) 1.56

CHS enhanced CHS 0.81 (0.77–0.85) 0.75

CARDIA 0.77 (0.73–0.82) 0.53

CARDIA-10 0.81 (0.77–0.85) 0.53

ARIC 0.81 (0.77–0.85) 0.59
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suggests that the covariates have different predictive 
power of future risk of diabetes for different age groups. 
For example, while risk increases with age, age has a 
lower predictive power in older cohorts than in younger 
cohorts. Race, sex, and parental history are stronger 
predictors for younger age groups. Younger males are 
significantly less likely to develop diabetes than younger 
women, while this relationship does not hold true for 
older men and older women. This initial difference 
may be driven by the risk of gestational diabetes among 
women. BMI is the most consistent statistically significant 
indicator for diabetes across age groups and for both 
simple and enhanced equations. However, BMI matters 
more in the simple model than in the enhanced model. 

On average, a one unit increase in BMI increases the 
distal probability of diabetes by 10% across studies (see 
online supplementary appendix figure A-1). Biomarkers 
have much narrower confidence intervals. SBP and HDL 
matter only for the middle age group. Triglycerides and 
FPG are statistically significant across all age groups, but 
they matter marginally more for older cohorts than for 
younger ones in correctly predicting the likelihood of 
diabetes.

Online supplementary appendix table A-4 summarizes 
results from 19 previous studies Fourteen of these studies 
use logit models, and five use a proportional hazard 
model. All studies measuring current prevalence used 
non-clinical data only, while studies measuring future risk 
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tended to include information on biomarkers. Approx-
imately half of the studies found an acceptable level of 
discrimination (0.7≤AUROC<0.8), while the remaining 
reported very good discrimination (0.8≤AUROC). FIND-
RISC5 and the Diabetes Risk Calculator6 had the highest 
combined sensitivity and specificity, with AUROCs of 0.86 
and 0.85, respectively. Cabrera de León et al7 achieved an 
AUROC of 0.84 for men and 0.87 for women. The high 
values in the discrimination ability of the Diabetes Risk 
Calculator and Cabrera de León et al are likely due to 
sample selection; these studies included individuals with 
undiagnosed diabetes and prediabetes. Previous models 
in the literature using the same data sources as our study 
(CARDIA,8 ARIC,9 10 and CHS11) achieved comparable 
sensitivity and specificity to ours, despite these previous 
models including additional variables (physical activity 
and diet) that we did not include because they were not 
uniformly coded across studies.

Enhanced risk equations provide better discrimination 
than simple risk equations, but the benefit of enhanced 
equations is less in younger cohorts, and there was no 
significant difference in the AUROC between simple and 
enhanced in young adults. This implies that screening 
strategy based on sex, family history, race, and BMI in 
younger populations would be nearly as effective as 
one that requires collecting clinical samples. For older 
cohorts, there is a tradeoff between a simple model 
that could be used by more people, and an enhanced 
risk equation that would be more accurate, but would 
require costly laboratory tests. It is important to note that 
the simple and enhanced models did not differ signifi-
cantly in terms of cumulative predictions; therefore, at 
the population level, a less expensive model performs 
as well as the more costly model. At the individual level, 
however, the costlier model will significantly increase the 
sensitivity of the estimates.

Four limitations related to the data are important to 
highlight. First, all three surveys experienced loss during 
follow-up. Individuals exited the sample as a result of 
death, relocation, or loss of interest in the study. CARDIA 
had a follow-up rate of 80%; CARDIA-10 84%, ARIC 75%, 
and CHS 61%. Loss to follow-up could bias estimates, if 
it is correlated with the likelihood of having diabetes 
and individual characteristics. Second, the surveys do 
not define diabetes through OGTT, but through self-re-
ported questionnaires and FPG; however, this is also 
a benefit as it more closely reflects common practice. 
Third, because the surveys used are not nationally repre-
sentative, it is possible that the differences we attributed 
to age reflect, in part, geographical variations. Fourth, 
the surveys began in the 1980s and 1990s, and may not 
reflect current population characteristics and treatment 
approaches. However, they may reflect the underlying 
natural history of diabetes progression in the absence of 
formal interventions to prevent diabetes.

In summary, we found that risk equations have better 
predictability in middle-aged adults than in young 
and old populations. While the predictive capacity of 

equations based on biomarkers is, on average, better than 
those based solely on self-reported variables, information 
from biomarkers are more reliable and important in 
older populations than in younger ones. This variability 
emphasizes the importance of using age-specific risk 
equations when assessing the need to screen for type two 
diabetes to improve accuracy of individual-level predic-
tions. Using age-specific risk equations may be especially 
important for the development of practical risk stratifica-
tion tools, as well as to provide more precise parameters 
for cost-effectiveness analyses.
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