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Abstract

Oligodendrocyte precursor cells (OPCs) have remarkable properties: they represent

the most abundant cycling cell population in the adult normal brain and they manage to

achieve a uniform and constant density throughout the adult brain. This equilibrium is

obtained by the interplay of four processes: division, differentiation or death, migration

and active self-repulsion. They are also strongly suspected to be at the origin of gliomas,

when their equilibrium is disrupted. In this article, we present a model of the dynamics of

OPCs, first in a normal tissue. This model is based on a cellular automaton and its rules

are mimicking the ones that regulate the dynamics of real OPCs. The model is able to

reproduce the homeostasis of the cell population, with the maintenance of a constant and

uniform cell density and the healing of a lesion. We show that there exists a fair quantita-

tive agreement between the simulated and experimental parameters, such as the cell

velocity, the time taken to close a lesion, and the duration of the cell cycle. We present

three possible scenarios of disruption of the equilibrium: the appearance of an over-prolif-

erating cell, of a deadless/non-differentiating cell, or of a cell that lost any contact-inhibi-

tion. We show that the appearance of an over-proliferating cell is sufficient to trigger the

growth of a tumor that has low-grade glioma features: an invasive behaviour, a linear

radial growth of the tumor with a corresponding growth velocity of less than 2 mm per

year, as well a cell density at the center which exceeds the one in normal tissue by a factor

of less than two. The loss of contact inhibition leads to a more high-grade-like glioma.

The results of our model contribute to the body of evidence that identify OPCs as possible

cells of origin of gliomas.

Author summary

Gliomas are the most common brain tumors and result in more years of life lost than any

other tumor. Standard treatments only confer a limited improvement in overall survival,

underscoring the need for new therapies. Finding the type of cells at the origin of these

tumors could lead to the development of new drugs, specifically targeted towards these
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cells. The oligodendrocyte precursor cells are suspected to be these cells of origin, because

they continue to proliferate through all the adult life. In this article, we present a model of

the dynamics of these cells, first in the normal brain, and then we extrapolate our model

to the pathological situation. We study several scenarios where, from the normal situation,

a cell appears with one property different from those of the normal cells. We show that the

alteration of only one of the properties of these cells in the model can lead to the formation

of gliomas with different aggressiveness and very similar to real gliomas, reinforcing the

suspicion that the precursor cells are at the origin of gliomas.

Introduction

Contrary to a long-lasting belief, there exists a population of proliferating cells everywhere in

the mammalian adult brain [1, 2]. These cells are the oligodendrocyte precursor cells (OPCs)

and they differentiate into oligodendrocytes [3], but also in some circumstances to astro-

cytes. They can be found everywhere in the central nervous system, in the gray and white

matter [1], contrary to neurogenic areas that are mostly situated in the hippocampus, the

olfactory bulb and all along the lateral ventricule [4]. OPCs represent the most important

cycling population in the adult human normal brain [1]. In the mouse, recent studies

have revealed that their density is strikingly uniform throughout the brain and that this is

achieved through self-repulsion mediated by contact-inhibition [5]. OPCs constantly survey

their surroundings by actively extending and retracting filopodia. Growing filopodia retract

when they contact another filopodium, causing the cells to be equally spaced from one

another and to occupy non-overlapping domains. Their density is also remarkably constant

in time: the cells achieve the homeostasis of the normal brain tissue by balancing the differ-

entiation and death process by proliferation, which allows them to keep their density con-

stant on average.

Through this dynamical interplay between proliferation, differentiation and death, the

precursors can be very rapidly mobilised after a brain injury that has killed mature oligoden-

drocytes. The surrounding OPCs proliferate and migrate to the lesion area, where they differ-

entiate and replenish the injured area by new mature oligodendrocytes. This is indeed what

happens in the case of an acute (such as in traumatic or vascular accidents) demyelinisation

episode. The case of multiple sclerosis is more complex, since an active remyelinisation can be

performed in early lesions, but is completely inhibited in chronic ones. This disease is thus

characterized by the existence of large demyelinated areas that do not heal, leading to serious

disability for the patients [6].

The oligodendrocyte precursor cells are suspected to be at the origin of some gliomas.

Gliomas account for almost 80% of primary malignant brain tumors, and they result in

more years of life lost than any other tumor [7]. Standard treatment only confers a modest

improvement in progression and overall survival [8], underscoring the pressing need for the

development of new therapies. Gliomas are classified with respect to their malignancy from

grade I to IV by the World Health Organization [9]. From grade II, gliomas are invasive,

and isolated glioma cells can be found beyond the MRI limits of signal abnormalities,

including T2-weighted and FLAIR sequences [10, 11]. This characteristic explains the sys-

tematic recurrences that are observed after oncological treatments. Diffuse low-grade glio-

mas, i.e. grade II gliomas, are primary brain tumours that affect young adults, contrary to

high-grade glioma that is more frequent in elderly people. At the beginning of their evolu-

tion, the low-grade gliomas grow slowly and continuously without angiogenesis [12].

Modeling OPCs and the genesis of gliomas
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During this phase, we have shown that the cell density in the tumor center is higher than in

the normal tissue, but stays moderate. The number of proliferating cells in the tissue also

remains low [11]. In [13] a diffusion-proliferation model has been used to estimate the date

of birth of low-grade gliomas, and a side result was an estimate of the proliferation coeffi-

cient around 1 yr−1. During this slow-growing phase, the mean radius of these tumours

measured on MR images increases linearly with time [14, 15]. After several years of growth,

and despite treatments (surgery, chemotherapy and radiotherapy), angiogenesis is suddenly

triggered and low-grade gliomas inexorably evolve into more aggressive forms (glioblas-

toma multiforme), impeding the social and professional life of the patients [16]. Clearly,

new therapeutic strategies are urgently needed. Identifying the cell of origin of gliomas (that

could be specific to each type of glioma) could constitute one of these new approaches, by

inducing the development of targeted drugs against a specific type of cells. Targeted drugs

could be expected to be more efficient against the tumor cells, but to have less side effects on

normal tissue than non-specific drugs.

Many gliomas express markers characteristic of oligodendrocyte progenitors and the fact

that OPCs remain widespread in the adult brain and still actively proliferate in the adult central

nervous system make them good candidates for the accumulation of mutations and thus glio-

magenesis [17–19]. The high ability of these progenitors to regulate their proliferation accord-

ing to exogeneous signals may play a role in their susceptibility to transformation. Indeed, in

vitro, it is possible to break the homeostasis by adding a growth factor (PDGF) and trigger

uncontrolled proliferation: in vivo, in rodents, overexpression of PDGF is often used to induce

gliomas [20]. This hypothesis is supported by several experiments with murine animals that

show that the OPCs can become highly proliferative and form a malignant tumour after reacti-

vation by inducing mutations [18, 21, 22].

In the domain of cancer research, mathematical models have been developed for decades to

help address the essential questions on tumor growth (for a review, see [23]). At the genetic

scale, in the pre-cancerous step, some models describe the dynamics of mutation accumulation

that lead to cancer [24, 25]. At the cellular scale, other models describe how mutations (or phe-

notypic changes) can disrupt the homeostasis of hierarchically organized tissues [26–29]. At

the tumor level, yet other models focus on the tumor growth dynamics after the appearance of

the first tumor cells, their interaction with the micro-environment and the influence of treat-

ments, with discrete [30, 31], continuous [32–34] and hybrid approaches [35–37].

The model we introduce here belongs to the class of models at the cellular level, and it

addresses the problem of the cell-of-origin. We focus on a very specific tumor (gliomas) and

a specific type of precursor cells (OPCs). The stem cells and progenitors density in hierar-

chically organized tissues such as hematopoietic system, epithelium or colonic crypts is reg-

ulated by a more differentiated downstream cell population [38], but this is not the case for

OPCs that regulate their density by themselves, through contact inhibition and a density-

dependent lifetime. To our knowledge, there is no mathematical model of the dynamics of

normal OPCs and the disruption of their homeostasis that leads to gliomas. We therefore

designed a specific and original model of the dynamics of these progenitor cells, based on

a cellular automaton including the main processes that the OPCs undergo, i.e. self-repul-

sion, proliferation, migration, differentiation/death. We show that our model is able to

reproduce the homeostasis and the repair process that characterize OPCs. In a second part

of the paper, we describe the possible genesis of a glioma, by modeling the appearance of an

over-proliferating cell, a non-proliferating cell or a cell that has lost its contact inhibition.

When a tumor develops, we compare its characteristics to histological samples of human

low-grade gliomas.

Modeling OPCs and the genesis of gliomas
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Material and methods

The model

Our automaton model consists in a collection of cells which evolve according to a given set of

rules. Each cell is modelled by a sphere. The center of the sphere represents the cell soma

(modelled as a point), and the sphere models all the filopodia and extensions around it, see

Fig 1(a). The cell radius is the same for all cells in a given simulation and its value, typically

R = 50 μm, stays constant during the simulation. The three-dimensional space is continuous,

Fig 1. Model of an OPC and illustration of the proliferation/migration rules. (a) Schematic drawing of an OPC where the cell center and the filipodia are visible.

The cell is modeled by a 100 μm diameter sphere, represented by a dashed line drawn around the cell extensions. (b) A cell without overlap with other cells keeps

moving with a constant velocity in the same direction. The direction of the motion changes only when the cell has overlaps with other cells. (c) The cell undergoes

mitosis: a new cell is created and its center is placed at the distance R from the center of the first cell. (d) The two cells move in opposite direction in order to reduce the

overlapping. After separation, they keep moving in the same direction, at a constant velocity.

https://doi.org/10.1371/journal.pcbi.1005977.g001
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i.e. the position of a cell in space is a triplet of real numbers, the coordinates of the center

of the sphere. In order to avoid border issues, we choose periodic boundary conditions. At

each iteration, the cells are updated, one after the other, in a random order in order to avoid

undesirable correlations. At each iteration, each cell can participate in three different pro-

cesses: proliferation, migration, differentiation/death (described in what follows). To be able

to track individual cells easily, a number is attributed to each cell and stays the same for the

whole life of the cell.

Proliferation. First, the cell has to choose, with a probability 0.5, whether it enters the pro-

liferation process or if it moves. We choose to model the proliferation process as a poissonian

process. If it enters the proliferation process, the cell has a probability 2λ to proliferate at each

iteration. At each iteration, for each cell, a random number r is picked. If r< 2λ, then the cell

divides and a new cell is created; otherwise, the cell does not divide. If the cell divides, a ran-

dom direction is chosen. The position of the point given by this direction, at a distance R of

the center of the cell, gives the position of the center of the newly created cell. If the distances

between the center of this new cell and each of the cells that overlap the first one are all larger

than 2R, only then the new cell is indeed created. This condition is necessary so that the newly

created cell is not placed over other cells. This rule models the saturation of proliferation at

high density: if the cells are already overlapping, they should not be able to proliferate more.

This rule is in agreement with the experimental evidence that oligodendrocyte precursors

closely regulate their numbers through interactions between adjacent precursors [39].

The proliferation of a cell is represented in Fig 1: in (b), the cell is alone. Then, in (c), a new

cell is created with its center at a distance R of the center of the first cell. There is overlapping

between the two cells so they move away from each other (d). This process of migration is

explained in the next paragraph.

Migration. If the cell chooses to enter the migration process, it will move over a constant

distance (typically a few percent of R) per iteration, in a direction conditioned by the different

overlapping situations the cell experiences. To model the repulsion between two cells by con-

tact inhibition, we introduce a migration-repulsion rule, so that a cell the extensions of which

overlap with the extensions of another cell, will move away, in order to reduce these overlaps.

If extensions of cell 1 overlap the extensions of cell 2 (i.e. if the distance between the positions

of the two cells is smaller than 2R), cell 1 will move along the line defined by the position of the

two cell centers, away from the other cell, at constant velocity. In Fig 1(d), after the prolifera-

tion and the separation of the two cells, they still move in the direction they had before the sep-

aration. The fact that cells keep moving when they are isolated is a way to reproduce migrating

behaviours seen experimentally, for instance when cells migrate to replenish a lesion or during

development [5, 40].

Differentiation/Death. In [5], either death or differentiation is characterised by the

decrease (progressive in the case of differentiation, abrupt in the case of death) of the expres-

sion of NG2, the shrinkage ending with the disappearance of the cell domain. We thus model

the two phenomena together with a unique rule. This process is modelled by implementing a

lifetime clock [41]. The simplest way to conceive this lifetime clock for a cell would have been

to trigger it at the time of division that gave birth to the cell. However, we must take into

account the experimental observations that at high cell density, the differentiation of OPCs

occurs earlier [42, 43]. This density-dependent mechanism is also compatible with the scenario

where the cells limit their own growth by consuming the available mitogens such as PDGF

[19, 44]. Therefore, in our model, we decided that the clock is not triggered just after a division,

but starts when the cell just had interactions with other cells, and more precisely, when at

least one overlap with another cell is created. On the contrary, when a cell stops having any

overlap with any other cell, the lifetime clock is reset to its initial value. In this scenario, the

Modeling OPCs and the genesis of gliomas
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cells differentiate earlier at high density, which is biologically realistic. When the lifetime clock

of a cell reaches the lifetime threshold, the cell disappears (which experimentally could corre-

spond to differentiation or death).

Ethics statement

The data on human biopsies we are using have already been published elsewhere, and we show

in this article a new presentation of the data.

Clinical data and histology

The clinical data have been presented in details in [11]. Briefly, we searched the database of a

previously published study performed in the Sainte-Anne Hospital in Paris (France) and

focused on patients in whom a low-grade glioma was newly diagnosed by MRI-based serial ste-

reotactic biopsies according to the Talairach stereotactic method between January 1992 and

December 2001. These patients gave their informed consent for storage of the surgical samples

for further analyses. We retrospectively selected nine cases of untreated adult patients. We ana-

lyzed 44 biopsy samples. After surgery, the biopsy samples were fixed in formalin-zinc and

individually embedded in paraffin. Serial sections were cut at 6 μm. Sections used for immuno-

histochemistry were microwaved in citrate buffer (pH = 6) for antigen retrieval (Micro Med-

Micro MEDT, Hacker instruments, Winnsboro, SC) at 98deg C for 30 minutes. Ki-67 (MIB-1)

immunostaining revealed MIB-1 positive cells (i.e., cycling cells).

Results

In the initial state, one cell is placed at random in space, its lifetime clock set to zero. There

is plenty of room for proliferation, so cells divide and the cell density increases. When one

cell happens to have one or more overlap with other cells, its lifetime clock is triggered and

increases at each following iteration. When the clock reaches the lifetime threshold, the cell

disappears. With this model, the different characteristics of OPC dynamics could be recreated.

Maintaining a constant density

When starting with a small number of cells, after a transient state characterized by the appear-

ance of damped oscillations, the cell number stabilises, see Fig 2(b). As in experiments, in our

model the cell density reaches a constant value. The equilibrium is a dynamical one since there

is still proliferation and differentiation. When a cell disappears, a neighboring cell will move

and proliferate in order to fill the gap and to maintain a constant density. The cell density at

equilibrium depends on the value of the lifetime threshold and on the value of the proliferation

coefficient as will be explained later with a simplified model.

Oscillations in the transient state

The characteristic time of the sharp increase in density at the beginning of each simulation

(due to proliferation) is 1/λ. As the density increases, the overlapping between cells increases.

This has two consequences: first, the rate of proliferation decreases and, second, many lifetime

clocks are triggered. After being triggered, the clocks are increased by a unit at each iteration,

and when a clock reaches the lifetime threshold, its cell disappears, see Fig 2(a). The interplay

between proliferation and delayed differentiation leads to oscillations before the cell density

reaches a steady state. The period of the oscillations and the coefficient of attenuation depend

on the lifetime threshold and on the proliferation coefficient.

Modeling OPCs and the genesis of gliomas
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A simplified model

In order to study these oscillations, we introduce a simplified version of the model, aiming

at keeping only the characteristic features that lead to oscillations in the model, but also in

order to facilitate the derivation of the mean field approximation. In this case, the three

dimensional space is discretised into sites. Each cell occupies only one site (the cells are

point-wise in this version). At each iteration, each cell can undergo either proliferation or

differentiation/death. The proliferation rule is the same as in the full model. Since cells are

point-wise, overlaps are not possible anymore. Therefore, the density-dependent differentia-

tion rule becomes: if one or more neighboring sites of the cell are occupied, the lifetime clock

is triggered.

We can calculate the mean field approximation of this simplified model. We first

define w(t) the mean cell density that corresponds to the density of occupied sites in the

Fig 2. Evolution of the cell density versus time for cells with a fixed lifetime clock threshold. The proliferation parameter is λ = 0.05 per iteration and the lifetime

threshold is D = 400 iterations. (a) The cells are represented by spheres whose color is correlated to the value of their lifetime clock: blue cells have been created recently

and have a low lifetime clock, whereas red cells are close to the lifetime threshold. (b) Cell number versus time (average over 10 simulations, the error bars are smaller

than the thickness of the line).

https://doi.org/10.1371/journal.pcbi.1005977.g002
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automaton. We also define c(t) the density of sites full of cells that haven’t triggered their

clock yet. There is no cell motion in this simplified model. We show that the temporal evolu-

tion of the two cell densities c(t) and w(t) satisfies respectively Eqs (1) and (2), where D is

the lifetime threshold, λ is the proliferation coefficient, and τ is the time calibration parame-

ter, see S1 Appendix:

dcðtÞ
dt
¼ lwðtÞ½ð1 � wðtÞ� � twðtÞcðtÞ ð1Þ

dwðtÞ
dt
¼ lwðtÞ½ð1 � wðtÞ� � twðt � DÞcðt � DÞ ð2Þ

The study of the steady state is detailed in S1 Appendix. To summarise, we show that in the

approximation D� 1

l
� 1 the steady state is:

w1 � 1 �
1

lD
�

t

lD2
ð3Þ

and

c1 �
t

D
�

t

lD2
ð4Þ

The study of stability is also developed in S1 Appendix. We show that the period T of the

damped oscillations is given by the following expression:

T ¼
D

1 �
1

lD
ð5Þ

When λD� 1, we can further reduce the expression of the period to: T� D. In S1 Fig, the

period T either calculated with the analytical expression (plain line), measured in simulations

with the simplified cellular automaton with point-wise cells or measured in simulations with

the cellular automaton with spheres, is plotted as a function of lifetime threshold D and as a

function of the proliferation coefficient λ.

Increasing the damping coefficient

In [45, 46], the authors report that after a lesion, the cell density in the lesion increases, displays

an overshoot and then reaches its equilibrium value, without any sustained oscillations. In our

model, as we showed before, if the cells have a fixed value of the lifetime duration, the system

that has been brought far form equilibrium by a lesion for exemple, comes back to equilibrium,

with several oscillations. One possible simple way to increase the damping coefficient of the

oscillations is to broaden the distribution of lifetime thresholds. We thus choose the lifetime

threshold of each cell D in a shifted exponential distribution of lifetimes:

D ¼ D0 � D1 ln ð1 � rÞ

where r is a random number uniformly between 0 and 1 and D0 and D1 are two parameters

that characterize respectively the minimum lifetime threshold and the width of the

distribution.

Modeling OPCs and the genesis of gliomas
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Comparison with experimental data: Choice of parameters, time and space

scale calibration

Since there is no underlying spatial network in the sphere model, the spatial length that will serve

as a reference is the radius of a cell, which, experimentally [5], has been found to be around 50

μm. The total volume we consider in the simulations is the volume of a cube of 20-30 cell radii.

In the automaton, time is measured as a number of iterations. In order to compare the sim-

ulation results with the experimental ones, a calibration of the time scale is necessary by defin-

ing the duration of one iteration in a physical time unit. We have chosen one iteration of the

automaton to represent 1 h.

Two parameters have to be fixed in the simulations: the proliferation coefficient and the

lifetime threshold parameter. For the choice of these parameters, we have a first constraint on

the lifetime threshold. The latter must be larger than the duration of the cell cycle so that the

cells have time to proliferate several times before dying (λD� 1). This condition allows to

reach the cell density observed in experiments.

In order to fine-tune the values of the time-related parameters we review what is experi-

mentally known, in rodents. Both [45] and [46] present results of the order of magnitude of

the time necessary to close a lesion. In these articles, toxin-induced focal lesions are caused in

rat brain with ethidium bromide. This drug is cytotoxic and kills all nucleated cell types, creat-

ing a lesion of around 500 μm diameter. Right after the lesion, the cells at the border proliferate

more and migrate. The cell density inside the lesion increases sharply, overshoots the normal

density, reaches a maximum after ten days and finally goes back to normality after 15-30 days.

As the time to return to equilibrium is close to the value of the mean lifetime threshold (in the

case λD� 1), it means that the value of D0 should be close to 20 days. The second temporal

order of magnitude can be found in [5], where the cycle duration of the OPCs was measured

in vivo in mice at around 20 days.

We found that the parameters λ = 0.05 h−1, D0 = 25 days and D1 = D0/2 are a very good

compromise between the different constraints. We will now present the results of the simula-

tions that can be compared with the experimental data. The simulation presented at first is the

no-lesion case.

In the simulations, we start with one cell so we first have to wait for the system to reach its

equilibrium point. In Fig 3(a), the total cell density in space is represented. The first remark is

that the oscillations are highly damped (as expected) when the total cell density converges

towards its equilibrium value at the beginning of the simulation for times t< 80 days. At equi-

librium, in the total volume of simulation (a cube of 1 mm3) there are around 2000 cells, mean-

ing that the cell density is equal to 2000 cells per mm3, see Fig 3(a). In experiments, 160 cells

were counted in a volume of 0.06 mm3, so the experimental density is approximately equal to

2700 cell/mm3 [5]. The two values agree well.

Also, in the equilibrium state, other variables have the same order of magnitude as in

experiments:

• The mean cell velocity: the mean velocity of cells measured over 40 days in simulations is

equal to 0.13 (±0.03) μm/iteration, or 3.16 (±0.07) μm/day, which is close to the experimental

mean velocity of 2.3 μm/day.

• The fraction of proliferating cells: the number of proliferating cells is also very close to the

experimental result. We find that in the simulations, 1.6% of the cells proliferate each day,

(see Fig 3(a) where the dashed blue curve represents the proliferating cells), which is similar

to the 1.5% per day measured experimentally. Actually, most of the cells differentiate or die

before dividing even once.

Modeling OPCs and the genesis of gliomas
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• The mean time between two divisions, i.e. the mean duration of cell cycle, measured during

40 days at equilibrium, is equal to 12 days ±0.5 in the simulations, also close to the experi-

mental result of 20 days.

We also simulated the repopulation after a lesion killed all the cells in an area. At time

t = 125 days after the beginning of the simulation, a lesion of 500 μm diameter is induced see

Fig 3(c). In the total cell density (see Fig 3(b)), the lesion is materialized by a peak in the dying/

differentiating cells (dashed blue curve), followed by another peak in the proliferating curve

(plain blue curve) when the cells at the border of the lesion begin to replenish the empty space

(see also S1 Video). The cell density inside the area of the initial lesion overshoots and goes

Fig 3. Evolution of the cell density, with and without a lesion. The graphs in (a) display the temporal evolution of the cell density (up) and the density per day of

proliferating (bottom, blue curve) and differentiating (bottom, red curve) cells, when starting the simulation with one cell. In (b), a lesion is made at time t = 125 days:

all the cells inside a sphere of 250 μm radius centered at the center of space, are killed (see (c)). The graphs in (b) display the temporal evolution of the cell number (up)

and the numbers of proliferating (bottom, blue plain curve) and disappearing (bottom, blue dashed curve) cells per day inside the sphere corresponding to the initial

lesion, see (c) (average over 20 simulations, the error bars are not represented to avoid overloading the figure but they can be estimated from the amplitude of the

fluctuations). In (c) and (d), the color of the cells is correlated with the value of their lifetime clock (with a maximum lifetime threshold of 1000 h). In (c) and (d), in

order to be able to see the lesion, only a 200 μm thick slice centered at the origin is represented. In (c), the system is represented just after the 250 μm radius lesion. (d)

The lesion is filled up after 33 days of evolution by the migration and the proliferation of the cells at the border of the lesion. The newly formed cells or migrating cells

that have reset their clock by loosing their contact with the neighboring cells inside the perimeter of the lesion appear in blue.

https://doi.org/10.1371/journal.pcbi.1005977.g003
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back to its equilibrium value with further oscillations 40 days after the induction of the lesion,

see Fig 3(b). This duration is compatible with the experimental estimates. Fig 3 shows the sys-

tem of cells at the time of the lesion (c) and after 6 days of evolution (d), when the empty space

of the lesion has been filled by new cells (appearing in blue on the figure, meaning that their

lifetime clock is low), created by the proliferation and the migration of the cells at the border

of the lesion. This behaviour mimics very well what happens in the experiments, where the

induction of proliferation and migration of cells around a lesion has been also observed [5].

Going to glioma

In this section, we explored the possibility that in our simulations, the appearance of a cell with

only one different property than the existing cells could lead to the formation of a glioma. We

compared the results of the simulations in each cases with the properties of real low-grade glio-

mas: a) there is a limited increase in the total and in the proliferating cell density in the tumor;

b) the radius of the tumor increases linearly, with a low velocity and c) the tumor is invasive

with diffuse boundaries. Concerning the first point, we had the opportunity to have access to

stereotactic biopsies from different spots of the same human tumor and we showed that in the

center of the tumor, the cell density was higher than that of the surrounding normal tissue, but

only by a factor close to 2 [11] (up to a factor of three larger in some cases, but on average 34

samples, a factor of 1.7), see Fig 4(a).

We studied three possible scenarios for the genesis of a glioma: the appearance of either an

immortal cell, or a contact-inhibition free or an over proliferating cell, that transmits its abnor-

mal property to its daughter cells. In the simulations, this abnormal original cell corresponds

to a given number fixed at the beginning of the simulation (for exemple the 2000th cell). We

vary only one parameter at a time. The first scenario that we studied is the acquisition of a life-

time advantage by the abnormal original cell: its lifetime clock threshold is longer than the

duration of simulations, so that the cell cannot die during the simulation. All its other proper-

ties are maintained the same (proliferation, migration, contact inhibition). All its daughter

cells keep the same property. Therefore, normal dying cells are progressively replaced by these

immortal cells. A tumor forms and the cell density inside the tumor reaches a new equilibrium

at a larger value than in the normal case, see Fig 5(a). This is in good agreement with Eq (3)

that tells us that the cell density at equilibrium increases with the lifetime. However, since the

new cells do not die, the density of proliferating cells decreases down to zero, see Fig 5(b). This

feature is not consistent with the histological samples and the experimental observations on

low-grade gliomas (see Fig 4(a) and 4(b), and in [11]) where the proliferation inside the tumor

is low but higher than in the normal tissue.

The second scenario that we studied is the bypass of the saturation of the proliferation rule.

This rule stipulates that a cell 1 can proliferate only if the distances between the newly created

cell and all the cells that overlap cell 1 are larger than the cell radius R. The abnormal original

cell and its daughters are thus not limited in their proliferation, so the cell density increases

very fast, see Fig 5(c) and 5(d). A tumor forms again but in contrast with the previous scenario,

no new equilibrium of the cell density inside the tumor is reached. The cell density explodes

and the situation is be closer to what happens in high-grade gliomas (where cells at the center

of the tumor are closely packed), than to low-grade gliomas. In order to keep a cell density rea-

sonable, as in low-grade gliomas, the saturation-of-proliferation rule seems to be necessary.

The last scenario we studied was the appearance of an abnormal cell with a higher prolifera-

tion coefficient. This abnormal original cell is associated with a proliferation coefficient five

times higher (0.25 h−1) than the proliferation coefficient of all the other cells around it (0.05

h−1). All the progeny of this mutated cell has the same high proliferation coefficient. The holes
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left by normal cells that die are quickly filled by highly-proliferating ones. As the small highly-

proliferating core progressively grows, glioma and normal cells compete for space. Fig 6

depicts the temporal evolution of such a glioma (see also S2 Video).

Where both cells types cohabit, Fig 7(a) reveals that normal cell density decreases with time

(blue circles and lines), whereas the glioma cell density increases (red circles and lines). After a

long time, the normal cells disappear and all the cells bear the mutation. In the tumor, the over

proliferating cells reach a new equilibrium: the cell density is constant and higher than before,

as predicted by Eq (3) and as it can be observed in Fig 7(c).

Since the third scenario (an over-proliferating cell) corresponds to the better agreement

with the cell density and proliferating cell density observed in real low-grade gliomas, we kept

only this scenario for further comparisons with clinical properties of gliomas.

As real low-grade gliomas, the simulated tumour is invasive: the border of the tumor are

not regular and the tumor cell density decreases progressively from the center to the normal

Fig 4. Total and proliferating cell densities in real gliomas. The graphs in (a) compare the mean total cell density (left) and the mean MIB-1

positive cell density (the MIB-1 positive cells are the cells that have entered the cell cycle, i.e. the proliferating cells) (right), inside (red bars) and

outside (blue) real gliomas. The data come from 9 different patients, 22 samples inside the tumor (i.e. inside the signal abnormality on T2 MRI

scans) and 16 samples ouside. In (b) left, a histological sample of a low-grade glioma, with a hematoxylin-eosin staining, displays a quasi-normal

cell density. In (b), right, the same sample stained with the proliferation staining MIB-1, reveals a limited increase in the proliferating cell density

compared to normal tissue. The detailed data have been published in [11].

https://doi.org/10.1371/journal.pcbi.1005977.g004
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tissue, see Figs 6 and 7(a). Since the normal cells already have migration properties, there is no

need in our model to introduce specific migration properties for tumor cells in order to obtain

an invasive tumor. Moreover, the evolution of the mean radius of the core in the three carte-

sian directions is plotted and fitted, see Fig 7(b). We find that the growth of the core is linear,

and the velocity of growth of this core in the simulations is around 1.1 mm/yr.

Discussion

In this article, we present a model of oligodendrocyte precursor cells dynamics. The model is

based on a cellular automaton and the rules that we define are close to the biological reality:

the virtual cells can divide, disappear as OPCs (either differentiate or die) after a given lifetime

that depends on the local cell density, and move in the direction that will minimise their over-

laps with other cells. Our model reproduces the main properties of the OPCs that have been

described experimentally in a normal tissue: it allows to achieve the same homeostasis with a

Fig 5. Comparison of the different scenarios of glioma appearance. (a) and (b), an immortal cell appears at time t = 0, (c) and (d), a cell without contact inhibition

appears at time t = 0. (a) and (c) Temporal evolution of the total cell density. (b) and (d) Normal (blue lines) and tumoral (red lines) proliferating (plain curve) and

disappearing (dashed curve) cell densities, in a 1 mm3 cube.

https://doi.org/10.1371/journal.pcbi.1005977.g005
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constant density and the same behavior after a lesion when the surrounding cells proliferate

and migrate in order to fill the injured area. Our model also achieves a very good quantitative

agreement with experiments in rodents, since the theoretical and experimental cell density,

mean velocity, cycle duration, fraction of proliferating cells are very similar.

There is a strong suspicion that OPCs and more generally glial progenitor cells are at the

origin of gliomas [19, 20, 22]. As OPCs retain some of their characteristics from development

to adulthood, including the ability to proliferate and migrate, they could easily transform to an

uncontrolled growth state. We proposed three different scenarios for the genesis of gliomas:

the appearance of a deadless cell, a cell that has lost its contact inhibition for proliferation and

an over proliferating cell. The deadless cells could also correspond to non-differentiating cells,

since in our simulations, we do not separate death from differentiation. Those three scenarios

are not the only ones possible for gliomatogenesis, but are among the most probable [47]. we

Fig 6. Formation of a glioma by the appearance of an over proliferating cell. (a) Normal OPCs (blue) at equilibrium proliferate (ρ = 0.05/h)

and differentiate, as described in the text. In (b), a newly created cell is characterized by an over-proliferating (ρ = 0.25/h) phenotype, in red

(t = 0). The daughters of this abnormal cell keep the over-proliferating character. In (c) the system is represented at t = 1500 h = 62.5 days, the

developing glioma appears in dark red; in (d) the system is represented at t = 3000 h = 125 days.

https://doi.org/10.1371/journal.pcbi.1005977.g006
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found that these three scenarios lead to the formation of gliomas, but with very different

characteristics:

• the scenario of the deadless/non-differentiating cell: this scenario can occur at an early stage

of the glioma development but is not sufficient to form a tumor that has the same properties

as the real gliomas. This result is surprising and goes against the conclusion of other models

where escape from differentiation is the way to form tumors [48]. Such a scenario may have

been observed in experiments. In [22], mutations (p53/NF1) are triggered in a population of

OPCs in mouse adult brain by the injection of a specific drug. A few days after the injection,

an transient increase of proliferation of mutated OPCs is detected, corresponding to an

impairment of the differentiation of the mutated cells, but soon their proliferation returns to

the basal level. After a phase of quiescence, these cells suddenly begin to over-proliferate and

form eventually a malignant glioma.

Fig 7. Properties of a glioma formed by the appearance of an over proliferating cell. (a) Normal (blue circles) and glioma (red circles) cell densities versus the

distance to the center of space, for the glioma of Fig 6. Eight graphs corresponding to eight time points are represented from t = 0 (appearance of the first glioma cell,

dark red and blue graphs), to t = 336 days (very light red and blue graphs), with a time interval of 42 days. (b) Temporal evolution of the mean radius of the glioma of

Fig 6. (c) Temporal evolution of the total cell density, when an over proliferating cell appears at time t = 0. (d) Normal (blue lines) and tumoral (red lines) proliferating

(plain curve) and disappearing (dashed curve) cell densities, in a 1 mm3 cube, where an over proliferating cell appears at time t = 0.

https://doi.org/10.1371/journal.pcbi.1005977.g007

Modeling OPCs and the genesis of gliomas

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005977 March 28, 2018 15 / 19

https://doi.org/10.1371/journal.pcbi.1005977.g007
https://doi.org/10.1371/journal.pcbi.1005977


• the scenario of the loss of contact inhibition: this scenario leads to the very fast formation of

a glioma characterized by a very high total and proliferating cell densities inside the tumor,

closer to a high-grade glioma. This maybe the second step of transformation of OPCs in

[22], after the phase of quiescence, leading to the formation of a malignant glioma.

• the scenario of the appearance of an over proliferating cell: as in the scenario of the deadless

cell, the glioma cell density inside the tumor reaches an equilibrium when highly-proliferat-

ing cells have replaced normal ones. This equilibrium is characterized by a limited increase

in the total and proliferating cell densities, compared to normal tissue. From comparison

with histological samples of real gliomas, we can conclude that the scenario of the over pro-

liferating cell as cell of origin is the one that reproduces the best the characteristics of low-

grade gliomas. This new equilibrium could explain why low-grade gliomas may remain

indolent during one or more decades [13]. The anaplastic transformation of low towards

higher grade glioma could thus correspond to the departure from this equilibrium, by the

appearance of a new mutation or by the pressure of the microenvironment [49]. Since our

model focuses on the origin of gliomas, it does not account for the progression of low-grade

into secondary high-grade gliomas.

Another feature of real gliomas that is very well reproduced by our in silico glioma is the lin-

ear growth of the tumor radius. Actually, this property of the tumor could have been predicted:

as long as the rules of the automaton include linear proliferation and migration, the tumor is

invasive and the model naturally reproduces the linear increase of the radius of the tumor at

large time, observed clinically. This linear behaviour of the tumor radius is the same as the

constant velocity observed by the propagating front obtained with the reaction-diffusion

model used for gliomas [50]. Here, in the scenario of the appearance of an over-proliferating

cell, we measured that the velocity of increase of the tumor radius is around 1.1 mm/yr., which

is close to the mean velocity measured for human low-grade gliomas of 2 mm/yr [14]. How-

ever, this quantitative agreement has to be taken with a grain of salt since the model has been

calibrated with mouse data. The proliferation coefficient and lifetime clock may not be the

same in humans.

Our model shows that the dynamics of OPCs is compatible with the fact that they can be at

the origin of gliomas. We provide different scenarios that could lead to the formation of low-

grade and high-grade gliomas. Challenging this result with clinical data from histology will

constitue the objective of our future work.

Supporting information

S1 Appendix. Analysis of the oscillations.

(PDF)

S1 Fig. Period of oscillations versus lifetime clock threshold and the proliferation coeffi-

cient. Period of oscillations versus the lifetime clock threshold (black crosses, line and full cir-

cles) and the proliferation coefficient (gray crosses, line and open circles), calculated from the

analytical formula (5) (lines), from the simplified cellular automaton with point-wise cells

(crosses) and from the cellular automaton with spheres (circles).

(PDF)

S1 Video. Closure of a lesion. The color of the cell is related to the value of its lifetime clock.

A cell with a low lifetime clock appears in blue, whereas a cell with a lifetime clock close to the

threshold is red.

(AVI)
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S2 Video. Formation of a glioma by the appearance of an over proliferating cell. The nor-

mal cells are blue and the over-proliferating cells are red.
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