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Breast cancer development in BRCA1/2mutation carriers is a net consequence of cell-autonomous and cell nonau-
tonomous factorswhichmay serve as excellent targets for cancer prevention. In light of our previous datawe sought
to investigate the consequences of the BRCA-mutation carrier state on RANKL/osteoprotegerin (OPG) signalling.
We analysed serum levels of RANKL, OPG, RANKL/OPG complex, oestradiol (E2), and progesterone (P) during
menstrual cycle progression in 391 BRCA1/2-mutation carriers and 782 noncarriers. These studies were
complemented by analyses of RANKL and OPG in the serum and mammary tissues of female cynomolgus ma-
caques (n = 88) and serum RANKL and OPG in postmenopausal women (n = 150).
BRCA-mutation carriers had lower mean values of free serum OPG in particular in BRCA1-mutation carriers (p=
0.018) compared with controls. Among BRCA1/2 mutation carriers, lower OPG levels were associated with
germline mutation locations known to confer an increased breast cancer risk (p = 0.003). P is associated with
low OPG levels in serum and tissue, particularly in BRCA-mutation carriers (rho = −0.216; p = 0.002). Serum
OPG levelswere inversely correlated (rho=−0.545, p b 0.001)withmammary epithelial proliferationmeasured
by Ki67 expression and increased (p = 0.01) in postmenopause.
The P–RANKL/OPG system is dysregulated in BRCA-mutation carriers. These and previously published data pro-
vide a strong rationale for further investigation of antiprogestogens or an anti-RANKL antibody such as
denosumab for breast cancer prevention.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Risk factors for breast cancer development include genetic predispo-
sition and exposure to elevated sex steroid hormones. Germline
mutations in BRCA1/2 account for elevated sex steroid hormones and
2%–10% of breast cancer cases depending on ethnic origin (Fackenthal
and Olopade, 2007). Hormonal risk factors include early menarche,
late menopause or first full pregnancy, weight gain, and combined hor-
mone replacement therapy (HRT) (Veronesi et al., 2005). Evidence
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suggests a potential relationship between BRCAmutations, sex hormone
levels, and end-organ effects to hormones, and cancer risk (Kim
and Oktay, 2013; Segev et al., 2015; Titus et al., 2013; Widschwendter
et al., 2013). High breast cancer risk in BRCA-mutation carriers is partic-
ularly evident premenopausally (relative risk 32 and 10 for 40–49-year-
old BRCA1/2-mutation carriers, respectively) (Robson and Offit, 2007),
whilst removal of both ovaries in premenopausal BRCA1/2-mutation
carriers markedly reduces breast cancer risk (Domchek et al., 2010).
Studies in BRCA1/p53-deficientmice indicate a direct role for progester-
one (P) in mediating mammary tumourigenesis (Poole et al., 2006).
Specific signalling pathways mediating interactions between BRCA-
associated risk and sex steroid exposure have not been identified.

The relationship between higher serum sex steroid levels and in-
creased breast cancer risk is well established in postmenopausal
women (Fourkala et al., 2012; Key et al., 2011), but documenting a
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premenopausal link is challenging due to hormonal fluctuations associ-
ated with menstrual cycle progression (Key et al., 2013; Kaaks et al.,
2014). The temporal dynamics of oestradiol (E2), P, and other hormones
during the menstrual cycle may be more important for breast cancer
risk than absolute hormonal levels at a single time point (Brisken,
2013). Moreover, hormonal context, life stage, and reproductive status
may significantly impact hormone-associated risk: transient exposure
to high levels of P in women with multiple pregnancies has not been
associated with increased breast cancer risk, whereas persistent expo-
sure to relatively low progestin levels postmenopausally has been asso-
ciated with breast cancer in epidemiologic (Beral, 2003) and clinical
(Chlebowski et al., 2003) studies.

BRCAmutations may lead to cell-autonomous defects including de-
fects in chromosome duplication and cytokinesis (Venkitaraman,
2014). Although cell nonautonomous alterations such as hormonal
alterations leading to aberrant growth of hormone-sensitive target
cells may be particularly relevant to sporadic cancers (Veronesi et al.,
2005), recent evidence linking BRCA-associated risk and hormonal
factors (Domchek et al., 2010; Dubeau, 2015) suggests an interplay be-
tween cell-autonomous and cell nonautonomous factors in BRCA-
mutation carriers. Preclinical studies (Chodankar et al., 2005; Hong
et al., 2010; Yen et al., 2012) show mice carrying a BRCA1 mutation in
the steroid-hormone-producing granulosa cells have a longer pro-
oestrous phase, corresponding with the oestrogen-dominant follicular
phase of the human menstrual cycle, as well as elevated basal E2 levels
and evidence of increased oestrogen exposure in target organs such as
bones. Recently, we demonstrated altered endometrial thickness and
higher E2 and P levels in well-defined parts of the luteal phase in
BRCA-mutation carriers vs wild-type controls (Widschwendter et al.,
2013). Targeting cell nonautonomous hormonal targets may thus be
an effective, noninvasive strategy for breast cancer prevention in
BRCA-mutation carriers. A majority of breast cancers among BRCA1-
mutation carriers are oestrogen-receptor negative (Foulkes et al.,
2004), and removal of ovaries in BRCA1-mutation carriers with an
oestrogen-receptor negative breast cancer dramatically reduces breast
cancer-specific mortality (hazard ratio 0.07, p = 0.009) (Metcalfe
et al., 2015), suggesting that breast cancer biology in BRCA1-mutation
carriers is determined by ovarian hormones other than oestrogens.
Hence, strategies targeting cell nonautonomous oestrogen pathways
(i.e. selective oestrogen receptor modulators like tamoxifen or aro-
matase inhibitors), although successful for primary prevention and
adjuvant treatment in oestrogen receptor-positive cancers (Cuzick
et al., 2015; Cuzick et al., 2014; Forbes et al., 2008), are unlikely to
be successful in BRCA1-mutation carriers. Therefore, we aimed to ex-
plore alternative pathways as targets for breast cancer prevention in
BRCA carriers.

Receptor activator of nuclear factor kappa-B ligand (RANKL), a
member of the tumour necrosis factor (TNF) superfamily, plays a key
role in bone remodelling and immune function. RANKL is an important
mediator of sex hormone-driven mammary gland development, prolif-
eration, and carcinogenesis (Gonzalez-Suarez et al., 2010; Schramek
et al., 2010; Wood et al., 2013). Blocking RANKL (Gonzalez-Suarez
et al., 2010; Schramek et al., 2010; Joshi et al., 2010) or progesterone-
receptor (PgR) pathways (Poole et al., 2006) substantially reduces
mammary cancers in mice. In bone, one of the other main sources of
RANKL and its physiological antagonist osteoprotegerin (OPG), evi-
dence suggests a direct and inverse tissue/serum relation for OPG and
RANKL (Findlay et al., 2008).

Here we analysed the dynamics of serum ovarian hormones, free
RANKL, OPG, and the RANKL/OPG complex in BRCA-mutation carriers
and wild-type controls throughout the menstrual cycle to test whether
RANKL andOPG are dysregulated in BRCA-mutation carriers.We further
examined whether hormonal exposure modulates serum RANKL and
OPG not only in serum, but also in mammary tissues, and the relation-
ship between RANKL/OPG and mammary epithelial proliferation in cy-
nomolgus monkeys.
2. Materials & Methods

2.1. Subjects and Design

2.1.1. Human
Subjectswere participants in theUK Familial Ovarian Cancer Screen-

ing Study (UKFOCSS), recruited from 42 regional centres from June
2002–September 2010 after ethical approval (Eastern MREC 97/5/
007). Included subjects were N35 years old with known BRCA status
(Widschwendter et al., 2013), provided serum samples, no previous/
subsequent history of cancer or intrauterine device, not used oral con-
traceptives during the collection period, and provided the dates of
their last menstrual period.We enrolled 391 BRCA1/2-mutation carriers
meeting these criteria, and 782 noncarrier volunteers matched for age
and day of menstrual cycle. All samples were stored in liquid nitrogen
and tested at the same time. Additionally, we analysed serum from 50
and 150 healthy premenopausal and postmenopausal women (obtain-
ed from Cureline, S. San Francisco, CA), for which premenopausal
criteria was defined as age b45 years or ≥3 consecutive normal menses
immediately before blood collection; postmenopausal criteria was
defined as age N52 years or last menses ≥12 months before blood
collection.

All women gave consent for their samples to be used for research.

2.1.2. Animal
Archived samples were used from an experiment (Cline et al., 2002)

involving 6–8-year-old, ovariectomised, adult female cynomolgus ma-
caques (Macaca fascicularis) randomised to diets containing placebo
(control; n = 31), 0.042 mg/kg conjugated equine oestrogens (CEE;
n = 28), or CEE + 0.167 mg/kg medroxyprogesterone acetate
(CEE + MPA; n = 29) over 2 years. Dose equivalents approximated
standard HRT doses of CEE (0.625 mg/day) and MPA (2.5 mg/day).
Serum and mammary tissue samples were collected at study end. Im-
munohistochemistry was performed as previously published for Ki67
and PgR (Cline et al., 2002) or RANK/RANKL antigens (Wood et al.,
2013). H-scores, obtained by multiplying staining intensity (scales
0–3) with the number of positive cells (range, 0–300), were document-
ed for epithelial tissues from each group for each antibody (Cline et al.,
2002). Mammary gland expression of Ki67 (MKI67), RANKL (TNFSF11),
andOPG (TNFRSF11B)mRNAwas evaluated using real-time quantitative
PCR, as previously described (Wood et al., 2013). All procedures involv-
ingmacaques in the original studywere conducted per state and federal
laws and standards of the USDepartment of Health andHuman Services
and approved by the Wake Forest University Animal Care and Use
Committee.

3. Procedures

3.1. Serum Steroid Hormone Assays

Serum E2 and P from randomly mixed and masked batches of
mutation carriers and controls were measured with automated
immunoassays on an Elecsys 2010 analyser (Roche Diagnostics GmbH,
Mannheim, Germany) (Widschwendter et al., 2013). E2 and P intra-
assay coefficients of variability (CV) were 1.6%–5.7% and 1.5%–2.7%,
while interassay CVs were 2.3%–6.2% and 3.7%–5.4%, respectively.

3.2. RANKL, OPG, and RANKL/OPG Serum Assays

Free soluble RANKL (sRANKL), free soluble OPG (sOPG), and
sRANKL/OPG complex were measured by ELISA. The assays were vali-
dated for dilutional linearity, sample parallelism, accuracy, and preci-
sion. sRANKL capture was achieved with recombinant human OPG
(R&D Systems,Minneapolis, MN, Cat# 185-OS/CF) precoated onto ami-
croplate, while sOPG capture was achieved by precoating microplates
with soluble recombinant huRANKL (R&D Systems, Cat# 390-TN/CF).
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Postwashing, RANKL and OPG were detected by incubations with
biotinylated monoclonal antibodies (Amgen Clones 80A9 & 78H10 for
RANKL; PeproTech, Rocky Hill, NJ, Cat# 500-P149Bt for OPG) followed
by washing and incubation with streptavidin peroxidase and a
fluorogenic substrate solution (Thermo Scientific, Waltham, MA, Cat#
15,169). Free sRANKL and OPG were quantified by interpolation from
standard curves (using Amgen recombinant huRANKL or Cat# 185-
OS/CF from R&D) for each plate. The lower limit of quantitation for
sRANKL assaywas 1.5 pg/ml. Similar procedureswere applied for detec-
tion of sRANKL/OPG complex captured with anti-huRANKL mAb 74F1
(Amgen Inc.).

4. Outcomes

4.1. Statistical Analysis

Differences between BRCA-mutation carriers and wild-type controls
as a function of the menstrual cycle were assessed using linear regres-
sion models for each hormone and allowing hormone levels to vary
differentially over time for cases and controls. Specifically, the log hor-
mone levels were regressed on restricted cubic spline functions of
time using three internal knots, interacted with case–control status
and age. The knots were placed where a local polynomial model sug-
gested P turning points (days 7 and 22) andwhere the luteal phase typ-
ically begins (day 13), although spline functions are largely insensitive
to knot placement (Lambert and Royston, 2009). Likelihood ratio tests
Fig. 1. Serumanalysis of hormones. Analysis of (log) (a) progesterone, (b) oestradiol, (c)RANKL,
in the BRCA1 or BRCA2 gene as a function of the menstrual cycle. The ranges of concentrations
complex (17.4 pg/ml–225,101 pg/ml). RANKL = receptor activator of NF-κB ligand, OPG = os
(LRTs) compared the full model with a nested model allowing no
case–control interaction with time functions and to dynamically test
the null hypothesis of no difference between BRCA-mutation carriers
and controls. There were five degrees of freedom for the LRTs; the full
model contained an additional four interaction terms with the four
spline functions and one individual case–control factor term. Analyses
were repeated using trigonometric functions (sine and cosine) of time,
as the spline approach does not guarantee endpoint convergence, al-
though trigonometric functions may not capture dynamic trends suffi-
ciently. LRTs here had three degrees of freedom.

To visualise the spline (or trigonometric) functions, fitted mean
curves for each mutational status type, fixed at the mean age of 42.2,
were plotted and superimposed upon individual data points separately
coded for BRCA1-carriers, BRCA2-carriers, and controls. Further, a mean
difference curve (mean[log(valueBRCA)]− mean[log(valuecontrol)]) was
plotted for each hormone, comparing each group of interest. For both
plot types, 95% confidence bands assumed normality of mean response
and were calculated with Stata's margin command, using a factor or
contrast operator, respectively, set to the necessary values of spline
functions and age.

By summing the absolute deviations of the difference curves over
the menstrual cycle, we estimated differential expression between
cases and controls over vectors of the relevant hormones. Because all
hormones were logged, difference estimates were based on a common
scale, the log(ratio difference). This sum of absolute differences was es-
timated by fitting a multivariate regression model and using an LRT on
(d) OPG, and (e) RANKL/OPG complex in serum fromwomenwith andwithout amutation
were: sRANKL (2.9 pg/ml–2135 pg/ml), sOPG (10.8 pg/ml–1414 pg/ml) and sRANKL/OPG
teoprotegerin, and CI = confidence interval.
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20° of freedom to test the overall difference between cases and controls
over the hormone vector. The vector of absolute differences follows a
multivariate folded-normal distribution from which correct inferences
can be difficult to draw. We therefore approximated the sum and asso-
ciated 95% confidence band with 1000 bootstrap samples, using the
50th, 2.5th, and 97.5th centiles, respectively. The bootstrap median
(or mean) was slightly larger than the simple sum of absolute differ-
ences calculated from each individual hormone because the absolute
mean of a normal distribution is always less than that of its correspond-
ing folded-normal distribution. Similarly, the appropriate null hypothe-
sis value (based on a multivariate half-normal distribution) is not zero,
but larger, ensuring positive values for the sum of absolute deviations.
We estimated this null hypothesis value for each dayof the cycle by sim-
ulation from a multivariate normal distribution (n = 100.000) using a
mean vector of zeroes and a covariance matrix containing the set of es-
timated variance-covariance terms from the multivariate model.

Tests of mean difference between each treatment group of experi-
mental animals were performed with a Dunnett-type adjustment for
multiple comparisons to a control.

We used the reported hazard ratios (HR) for breast cancer based on
the nucleotide position of the BRCA1 and BRCA2 mutation (Rebbeck
et al., 2015). The estimated HRs indicating the risk for breast cancer at
specific regions of the BRCA1/2 mutation was regressed on the log of
free serum OPG (pg/ml), adjusted for age at sample at cycle day. The
use of fractional polynomials indicated that a linear fit was appropriate.
Fig. 2. Case–control differences in hormone values. Mean differences in (log) (a–c) RANKL and
BRCA2 gene as a function of the menstrual cycle, with 95% confidence bands. RANKL = recep
OPG = osteoprotegerin.
5. Role of the Funding Source

The work was in part sponsored by Amgen Inc. Amgen Inc.
employees (YP, PY, and WCD) were involved in the study design, data
collection, and data analysis (ie RANKL and OPG assays in human and
animal tissues), data interpretation, andwriting of the report. The corre-
sponding author had full access to all the data in the study and had final
responsibility for the decision to submit for publication. He is account-
able for all aspects of the work in ensuring that questions related to
the accuracy or integrity of any part of thework are appropriately inves-
tigated and resolved.

6. Results

The mean log measurements of serum P, E2, free RANKL, free OPG,
and RANKL/OPG complex were fitted as a function of time, with sepa-
rate mean curves for BRCA-mutation carriers vs controls. Overlays of
curves illustrating individual data points of mutation carriers, and con-
trols showed typical menstrual cycle dynamics for P and E2, but free
RANKL, free OPG and RANKL/OPG complex did not vary substantially
throughout the menstrual cycle (Fig. 1).

We examined potential hormone level variations between BRCA-
mutation carriers and controls fromdifference curves over themenstru-
al cyclewith 95% confidence bands (Fig. 2; Supplemental Fig. 1). Overall,
the LRT for P was not significantly different between cases and controls
(d–f) OPG in serum between women with and without a mutation in the BRCA1 and/or
tor activator of NF-κB ligand, LRT = likelihood ratio test, df = degrees of freedom, and
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(p = 0.1114, Supplemental Table 1), although the difference plots
showed significantly higher levels in BRCA-mutation carriers around
days 6 and 24 (especially BRCA1). The LRT for E2 showed no differ-
ence between cases and controls (p = 0.4623); however, levels
tended to be higher in the follicular phase, mostly for BRCA2. All mu-
tation carriers had lower mean values of free serum RANKL than
controls (p = 0.0006), particularly in the early- to mid-follicular
phase. Overall difference in the mean curves (p = 0.0649) for free
serum OPG was indicated, while OPG levels were significantly
lower throughout the menstrual cycle in BRCA1-mutation carriers.
Serum RANKL/OPG complex values were consistently lower in
BRCA carriers (p = 0.008) throughout the cycle. This was the only
variable for which the spline function-fitted mean curves did not
display endpoint-convergence. Overall conclusions based on LRT
p-values (Supplemental Table 1) and mean curve shapes were
broadly similar using trigonometric functions. Stratification by
BRCA1/2 status revealed no significant difference, although differ-
ences vs controls appeared greater for BRCA1-mutation carriers,
most notably for P and OPG.

Supplemental Fig. 2a depicts the sum of absolute differences for all
serum hormones analysed, with an approximate null hypothesis curve
for inferential comparison. There was strong evidence of differential
levels across the four distinct hormones analysed between BRCA1/2-
mutation carriers and controls (multivariate LRT p= 0.0007), most no-
ticeable during days 4–11, with the peak at 7 days corresponding to a
16.0% (95% CI: 7.1%–26.2%) geometric mean difference in hormone ex-
pression vs the null (Supplemental Fig. 2b). No serum RANKL peak
was apparent in the luteal phase (Fig. 1), but a clear inverse pattern of
different levels between mutation carriers and controls regarding OPG
and P was observed (Fig. 2d–f; Supplemental Fig. 1a–c). Correlation of
serum P with serum RANKL, OPG, and RANKL/OPG in the luteal phase
separately for controls and mutation carriers showed no association
between serum P and RANKL or RANKL/OPG (Supplemental Fig. 3).
Serum P and serum OPG demonstrated a negative association that was
Fig. 3.Association between the nucleotide position of the BRCA1/2 germlinemutation and serum
ing on the nucleotide position of the BRCA1/2mutationwas regressed on the log of free serumO
ples from human volunteers have been split according to the HR (b0.9; b0.9–1.1; N1.1) given by
each group. OPG = osteoprotegerin.
much more significant in BRCA-mutation carriers (rho = −0.216; p =
0.002) vs controls (rho = −0.098; p = 0.06; Supplemental Fig. 4).

Recent evidence indicates that BRCA1/2 mutation triggered breast
cancer risk also depends on the actual site of the germline mutation
(Rebbeck et al., 2015). In order to test whether the breast cancer
risk within the BRCA-mutation carriers might be associated with
serum OPG levels we performed a linear regression analysis (adjusted
for age and menstrual cycle day) of serum OPG levels and reported
breast cancer risk associated with specific sites of mutations in the
222 samples for which we had exact information on the site of the mu-
tation (Rebbeck et al., 2015). We observed a significant decrease in
reported HR for breast cancer risk with increasing serum OPG levels
(beta = −0.058; 95% CI:−0.020,−0.096; p = 0.003; Fig. 3).

Because P was negatively associated with serum OPG, especially in
BRCA-mutation carriers, but the well-established P-mediated increase
in RANKL in breast tissue was not mirrored in serum, we examined
serum and mammary gland tissues from ovariectomised adult female
cynomolgus macaques treated with no hormones (control), oestrogen
only (CEE) or oestrogen/progestin (CEE + MPA) for 2 years. Whereas
progestin treatment led to higher RANKL expression in the mammary
gland (Fig. 4a), no differences in serum RANKL were observed between
the three groups (Fig. 4b). In contrast, OPGwas significantly lower post-
progestin treatment in both breast (Fig. 4c) and serum (Fig. 4d).

We then evaluated whether serum OPG was associated with in-
creased mammary epithelial proliferation, and found a significant in-
verse correlation (rho = −0.545, p b 0.001; Fig. 5a) between serum
OPG and mammary gland Ki67 mRNA expression. Although we cannot
distinguish the effects of OPG from direct effects of P on proliferation,
the significant inverse correlations between serum OPG and mammary
gland proliferation with either oestrogen alone or oestrogen/progestin
(Fig. 5a), plus the significant inverse correlations between serum OPG
andKi67 expressionwithin alveolar (Fig. 5b) or ductal (Fig. 5c) epithelia
for each treatment group (p b 0.05 for CEE or CEE+MP), suggest an ef-
fect of OPG independent of PgR signalling (Supplemental Fig. 5).
OPG levels. The estimated hazard ratio (HR) indicating the risk for breast cancer depend-
PG (pg/ml), adjusted for age andmenstrual cycle day at sample donation (a). Serum sam-
the volunteers nucleotide position of the BRCAmutation and serumOPG levels blotted for



Fig. 4. Hormonal effects on RANKL and OPG in tissue and serum. Expression of mammary gland tissue (a) RANKL and (c) OPG mRNA and matched serum (b) RANKL and
(d) OPG concentrations in ovariectomised adult female cynomolgus macaques treated for two years with placebo (control; n = 31), CEE at 0.042 mg/kg (n = 28) or CEE + MPA at
0.167 mg/kg (CEE + MPA; n = 29). Tests of group mean differences adjusted by Dunnett method for multiple comparisons with a control. The ranges of concentrations were: sRANKL
(2.8 pg/ml−191 pg/ml), sOPG 12.8 pg/ml-293 pg/ml). RANKL = receptor activator of NF-κB ligand, OPG = osteoprotegerin, CEE = conjugated equine oestrogens, and MPA =
medroxyprogesterone acetate.
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A strong association was noted between mammary tissue RANKL
and Ki67 expression (Fig. 6a), but not with RANK (Fig. 6b). In animals
expressing RANKL in the mammary gland, low (bmedian) serum OPG
levels trended (p= 0.09) towards highermammary gland proliferation
(Fig. 6a).

Finally, evaluation of OPG levels in postmenopause (a state known to
protect from breast cancer) suggested that serum OPG levels are signifi-
cantly (p = 0.01) higher (Fig. 7a) in postmenopause vs premenopause;
the opposite tendency (p= 0.0001) was true for serum RANKL (Fig. 7b).

7. Discussion

Hormonal factors, particularly exposure to P, may influence breast
cancer risk associated with BRCA mutations (Poole et al., 2006;
Widschwendter et al., 2013). We found that dysregulation of OPG may
mediate this relationship. We examined serum RANKL and OPG levels
across the menstrual cycle and their associations with hormonal re-
sponsiveness in the mammary gland. OPG was dysregulated in BRCA-
mutation carriers and inversely associated with breast cancer risk and
mammary epithelial proliferation, as suggested by the aberrantly low
OPG throughmost of themenstrual cycle inmutation carriers (in partic-
ular in those at extremely high risk for breast cancer), an inverse corre-
lation between serum OPG and luteal-phase P levels that was more
marked in BRCA-mutation carriers, low serum OPG levels in the animal
model associated with increased mammary epithelial cell proliferation,
and significantly higher OPG levels in the absence of functional ovaries
(ie postmenopause). Interestingly, OPG levels in breast and serum
were both decreased in presence of P. However, serum levels of
RANKL do not appear to reflect local increases at the tissue level, includ-
ing breast (this study) and bone (Eghbali-Fatourechi et al., 2003). These
data suggest that the net magnitude of RANK signalling in the breast
upon P exposure may be regulated by local increases of RANKL along
with decreases in local and systemic (serum) OPG thereby increasing
the RANKL:OPG ratio in this tissue (Wood et al., 2013).

RANK pathway activation by P-mediated RANKL upregulation plays
an important role in breast carcinogenesis (Gonzalez-Suarez et al.,
2010; Schramek et al., 2010), in part by increasing mammary stem
cell proliferation (Schramek et al., 2010; Joshi et al., 2010). Moreover,
deleting RANK from the mammary epithelium decreases incidence
and delays onset of PgR-mediated mammary cancer (Schramek et al.,
2011), indicating that RANK signalling suppression might be an excel-
lent strategy for breast cancer prevention.Whereas anti-P treatment in-
hibits mammary tumourigenesis in BRCA1/p53-deficient mice by
decreasing ductal branching and alveolar proliferation (Poole et al.,
2006), long-term treatment of premenopausal women with selective
PgR modulators has not been tested sufficiently and would probably
lead to substantial side-effects, including adverse effects on the endo-
metrium (Benagiano et al., 2014). Because OPG was not regulated
throughout the menstrual cycle and luteal-phase P showed a much
stronger inverse association in BRCA-mutation carriers vs controls,
cell-autonomous factors might be involved in P-OPG regulation.
Hence, our study provides strong support for the direct targeting of
RANKL (ie replacing low OPG levels in mutation carriers), an idea so
far only investigated in mice because of the influence of the menstrual
cycle on RANKL signalling in premenopausal humans (Haynes et al.,
2014; Hu et al., 2014).



Fig. 5. Serum OPG andmammary gland proliferation. Correlation between serum OPG andmammary gland Ki67 (a) mRNA and IHC labelling in (b) alveolar epithelial cells and (c) ductal
epithelial cells in ovariectomised adult female cynomolgus macaques treated for two years with placebo (control), CEE at 0.042 mg/kg CEE or CEE +MPA at 0.167 mg/kg (CEE +MPA).
IHC = immunohistochemical, OPG = osteoprotegerin, CEE = conjugated equine oestrogens, and MPA= medroxyprogesterone acetate.

Fig. 6.Mammary gland proliferation stratified by RANKL and RANK expression in the mammary gland and OPG levels in the serum. Cynomolgusmacaques were divided according to ex-
pression of (a) RANKL and (b) RANK in their mammary gland and then substratified according to the serum OPG level (high/low, above and below themedian). OPG= osteoprotegerin,
RANKL = receptor activator of NF-κB ligand, IHC = immunohistochemical, and RANK = receptor activator of NF-κB.
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Fig. 7. Serum levels of OPG and RANKL. Serum levels of (a) OPG and (b) RANKL in premenopausal (n = 832) and postmenopausal (n = 150) women. The ranges of concentrations in
postmenopausal women were: sRANKL (2 pg/ml–361 pg/ml) and sOPG (42 pg/ml–2237 pg/ml). OPG = osteoprotegerin and RANKL = receptor activator of NF-κB ligand.
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Recent evidence suggests OPG deficiencymaypromote breast cancer
development. Serum OPG analysis in N6000 healthy subjects (Vik et al.,
2015) showed an inverse relation in younger women (b60 years) be-
tween serum OPG and risk of incident cancer at all sites, but primarily
in the breast and reproductive tract (Vik et al., 2015). High OPG levels
protected against breast cancer andmortality (Vik et al., 2015). An inde-
pendent analysis of ~4500primary breast cancers showed no prognostic
value for RANK/RANKL expression, but a substantially better prognosis
in oestrogen receptor-positive breast cancer cases showing high OPG
expression (Sanger et al., 2014). A “suppressed” RANK pathway was
likewise associated with better prognosis in another large breast cancer
set (Santini et al., 2011).

Denosumab, an antibody against RANKL that mimics the physiolog-
ical role of OPG, is currently in clinical use for osteoporosis and for the
treatment of skeletal related events in patients with bone metastasis
resulting from solid tumours. In patientswith breast cancer, denosumab
has recently been shown to reduce the risk of clinical fractures in post-
menopausal women with breast cancer receiving aromatase inhibitors
and is currently being studied for any effect on prolonging bonemetas-
tasis free survival in women with early-stage breast cancer who are at
high risk for disease recurrence (Gnant et al., 2015). While our previous
data highlighted the potential for antiprogestogens for breast cancer
prevention, the current data additionally support a clinical breast cancer
prevention trial using denosumab to compensate for the lowOPG levels
throughout the menstrual cycle in BRCA-mutation carriers.
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