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ABSTRACT: Extreme gradient boosting (XGBoost) is an artificial
intelligence algorithm capable of high accuracy and low inference
time. The current study applies this XGBoost to the production of
platinum nano-film coating through atomic layer deposition
(ALD). In order to generate a database for model development,
platinum is coated on α-Al2O3 using a rotary-type ALD
equipment. The process is controlled by four parameters: process
temperature, stop valve time, precursor pulse time, and reactant
pulse time. A total of 625 samples according to different process
conditions are obtained. The ALD coating index is used as the Al/
Pt component ratio through ICP-AES analysis during postprocess-
ing. The four process parameters serve as the input data and
produces the Al/Pt component ratio as the output data. The
postprocessed data set is randomly divided into 500 training samples and 125 test samples. XGBoost demonstrates 99.9% accuracy
and a coefficient of determination of 0.99. The inference time is lower than that of random forest regression, in addition to a higher
prediction safety than that of the light gradient boosting machine.

1. INTRODUCTION
Nano/micro particles (NMP)1−4 constitute new materials for
dynamic random-access memory (DRAM)5−7 and central
processing units (CPU).8−10 The properties of NMPs are
mainly determined by size, shape, and composition.11 In the
case of composite NMPs with metal−support interaction
(MSI), an interaction between the main component of the
particles and the support consisting of the nucleus and the
metal surrounding the nucleus has the greatest influence on the
properties of NMPs.12−15 Generally, MSIs include charge
transfer,16−19 interfacial boundary,20−22 morphology of
NMPs,23−25 chemical composition,26−28 and strong metal
support interaction.29−31 Therefore, studies have been
reported to solve the stability of the support while improving
electrical properties of the metal catalyst by coating the existing
performance stabilized support with a metal serving as a
catalyst.11 Applying NMPs to cutting-edge information and
communication technologies, such as DRAMs and CPUs,
motivates efforts to increase the resolution of the processing
equipment from micrometers to nanometers. The chemical
vapor deposition (CVD) methods, namely, atmosphere
pressure CVD, high-density plasma CVD, and atomic layer
deposition (ALD), having better process resolution than a
physical vapor deposition-based process such as E-beam,
sputter, or similar methods, have consequently garnered

attention. Since the ALD method is the only CVD method
that has a unique advantage of angstrom-level thickness
control, as opposed to other thin film deposition pro-
cesses,32−34 ALD enables the most conformal and uniform
nano-scale thin film process. Conventional ALD equipment
absorbs reaction gas using a two-dimensional (2D) substrate in
a vacuum, thereby forming a nano-thin film through ALD
cycles. On the other hand, since three-dimensional (3D)
substrates, namely, NMPs, have significantly higher specific
surfaces compared to 2D substrates, initial adsorption is
difficult and NMPs are likely to be lost during the process due
to the flow field of the reaction gas. Therefore, studies have
been actively conducted on advanced rotary-type ALDs,35−37

fluidized bed-type ALD38−41 development, and modified ALD
processing methods for 3D substrates. Nevertheless, since the
ALD process of NMPs has variable processing parameters,
namely, sufficient stirring of NMPs, sufficient processing
temperature, and the flow field of reaction gas, it is difficult
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to optimize the ALD process for conformal and uniform
coating on the vast specific surfaces of NMPs. In particular, a
long reaction time is required to coat a large surface area of
NMPs with metal or metal oxide through an ALD process.
Therefore, the coating process is modified by the stop valve
time as an additional process step to secure the reaction time.
This step closes all valves between the pulse and purge step of
the reaction.38−41 The process was successful, although the
process time increased due to the additional process step.
Thus, process optimization is required.
In the interest of optimizing the ALD process, this study

proposes a process prediction method that is divided into two
stages: data set generation and model development. Using test
samples from the experimental data set, we trained and tested
our proposed extreme gradient boosting (XGBoost),42 linear
regression, random forests regression (RFR),43 and light
gradient boosting machine (LGBM).44 We evaluated the
models using root mean square error (RMSE) value and the
coefficient of determination value (R2 score).
The major contributions of the current study are as follows:
1. The XGBoost model predicted ALD coating results
more accurately than the other regression models.

2. We verified that the four processing parameters, namely,
processing temperature, precursor pulse time, reactant
pulse time, and stop valve time, have the most influence
on the conformal coating process of the platinum nano-
film using a rotary-type ALD.

3. It has been found to be most efficient to use the
XGBoost mechanism to predict the outcome of the
coating process of the platinum nano-film using a rotary-
type ALD through machine learning.

Further details of these contributions are conveyed as
follows: Section 2 describes the methodology for the ALD
process, machine learning methods, and data set generation.
Section 3 presents and discusses the prediction results for the
models. Finally, Section 4 provides conclusions based on the
results.

2. EXPERIMENTAL SECTION
2.1. Platinum Deposition Process Using Rotary-Type ALD.

We used the spherical α-Al2O3 powder (DAM-05, Denka) shown in
Figure 1a for the ALD process to minimize extraneous variables in
developing machine learning for predicting the platinum nano-film
coating process. The coating was formed from a rotary-type ALD
(Atomic-Shell ALD, CN1, Hwaseong, Korea) shown in Figure 1b. In
this paper, a 300 cm3 reactor was used along with a mesh filter with
0.3 μm pores at the end of the reactor to prevent the loss of 5.0 μm α-
Al2O3 powder shown in Figure 1c,d. We performed the ALD process
for the nano-film coating using MeCpPtMe3, that is, platinum as a
precursor gas, oxygen as a reactant gas, and nitrogen as a purge gas. In
order to increase the amount of pulsed platinum, the temperature of
the bubbler-type canister is heated to 80 °C, while 50 sccm of argon
gas is used as a carrier gas. Advanced ALD with a stop valve mode was
applied to coat platinum nano-films onto the α-Al2O3 powder with a
large specific surface area. Since catalyst performance was determined
by the amount of platinum deposited on the micro-sized powder, it
was necessary to quantify the amount of coated platinum. The
amount of coated platinum was quantified using an inductively
coupled plasma-atomic emission spectroscopy (ICP-AES) equipment
(Optima-4300 DV, PerkinElmer). When the platinum-coated α-
Al2O3 powder was exposed to ICP, oxygen was completely
decomposed. Since only two components of aluminum and platinum
remained inside the ICP-AES equipment, we were able to measure
the amount of coated platinum nano-films relative to the existing α-
Al2O3 powder quantified as the atomic component ratio of Pt/Al.

2.2. Processing Parameters for ALD of Platinum. A normal
ALD technique shown in Figure 2a has a cycle consisting of four
steps: precursor pulse, precursor purge, reactant pulse, and reactant
purge. In the case of a 2D substrate such as a Si wafer with a small
specific surface area, the reaction time for ligand exchange is sufficient
even with the normal ALD process, where there is a brief contact time
between the precursor or reactant and the reaction surface of the
substrate. However, in the case of a 3D substrate with a large specific
surface area such as micro-size powder, the time for reactants and
precursors to react with the reaction surface of the powder is
insufficient. In this paper, a stop valve step is added to allow sufficient
reaction time by locking all valves between the pulse and purge steps
of the reaction gases. This process cycle is the advanced ALD
technique shown in Figure 2b. Processing parameters affecting the
amount of platinum nano-film deposited on α-Al2O3 powder under
various processing conditions of advanced ALD were evaluated as
follows:
The Pt/Al ratio of the platinum nano-film was calculated according

to the stop valve time with a fixed processing temperature of 300 °C, a
platinum pulse time of 0.5 s, and an O2 pulse time of 5.0 s. During
stop valve activation, the platinum nano-film was coated on α-Al2O3
powder. As the activation time increased from 5.0 to 25.0 s, the Pt/Al
component ratio increased from 0.545 to 0.750%, as shown in Figure
2c.

1. The Pt/Al ratio was calculated relative to the processing
temperature with a fixed stop valve time of 5.0 s, platinum
pulse time of 0.5 s, and an O2 pulse time of 5.0 s. As the
processing temperature increased from 200 to 400 °C, the Pt/
Al component ratio increased from approximately 0.031−
0.544%, as shown in Figure 2d.

2. The Pt/Al ratio of the platinum nano-film was calculated
according to the platinum pulse time with a fixed stop valve
time of 5.0 s, a processing temperature of 300 °C, and an O2
pulse time of 5.0 s. As the platinum pulse time was changed
from 0.5 to 2.5 s, the Pt/Al component ratio increased from
approximately 0.318−1.677% (Figure 2e).

3. The Pt/Al ratio of the platinum nano-film was calculated
relative to the O2 pulse time with a fixed stop valve time of 5.0
s, processing temperature of 300 °C, and platinum pulse time
of 0.5 s. As the O2 pulse time was changed from 5.0 to 25.0 s,
the ratio increased from approximately 0.186−0.616%, as
shown in Figure 2f.

Figure 1. 3D modeling of rotary-type ALD equipment and Al2O3
powder for platinum nano-film coating. (a) TEM image of spherical
α-Al2O3 powder. (b) 3D modeling of rotary-type ALD process
chamber and reactor. (c) Assembled reactor. (d) Mesh filter to
prevent powder loss.
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We therefore defined four processing parameters, namely, stop
valve time, processing temperature, platinum pulse time, and O2 pulse
time, as factors determining the amount of the platinum nano-film
coated on α-Al2O3 powder.

2.3. Machine Learning Models for Platinum Nano-Film
Growth Prediction. As discussed in Section 2.1, traditional methods
for analyzing the deposition amount of nano-thin films of powder
include photographic methods using a transmission electron micro-
scope, X-ray analysis such as X-ray fluorescence, and component ratio
analysis method using plasma, such as ICP-AES. Therefore, we used
machine learning as a method to increase predictive power, while
preventing the problem of multicollinearity of variables due to the
multivariable characteristics of the ALD process.
Machine learning is defined as understanding the structure of data

by analyzing and learning data based on algorithms by computers to
predict results.41 Therefore, machine learning is sometimes useful, but
it is difficult to mathematically derive models because the data is too
vast and complex for humans to sufficiently comprehend. Never-

theless, humans may select machine learning methods based on the
structure of the data. Since the ALD process results in the current
study are not purely linear in relation to our four processing variables,
it is suitable to use a nonlinear, non-parametric model. Whereas a
parametric model is a probability distribution group that can be
explained by mobilizing finite parameters, where k-dimensional
parameter vector, the non-parametric model has a parametric space
with infinite dimensions. It is assumed that the coupling form of the
parameters is linear or non-linear, without making special
assumptions. Representative non-parametric models include general
additive modeling; decision tree-based methods, as shown in Figure
3a; polynomial regression modeling; support vector machines; and
multivariate adaptive regression spline methods.41 The decision tree-
based model is widely used because it is simple and human
interpretable and can be readily expressed using diagrams. Although
such modeling is known for low accuracy, random forests use
thousands of trees to improve performance. More recent XGBoost
implementations and LGBMs build upon this advancement by

Figure 2. Difference between normal ALD technique and advanced ALD technique and ICP-AES analysis of rotary-type ALD platinum nano-film
on α-Al2O3 powder for four processing parameters. (a) Schematic of normal ALD cycle, (b) schematic of advanced ALD cycle, (c) atomic
component ratio of the Pt/Al element under different stop valve times, (d) atomic component ratio of the Pt/Al element under different processing
temperatures, (e) atomic component ratio of the Pt/Al element under different MeCpPtMe3 pulse times, and (f) atomic component ratio of Pt/Al
element under different O2 pulse times.
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addressing the problems of overfitting regulation and high inference
time encountered by other algorithms. Hence, the prediction accuracy
of our Pt-ALD coating process is analyzed using the following
methods, along with linear regression and random forest models.

1. Random forest is a machine learning algorithm that selects
variables having a strong causal relationship with the
dependent variable among multiple independent variables.
Although it is impossible to present a final model, random
forest has the advantage of excellent performance in all aspects
of classification and regression. The random forest algorithm is
a method that combines the decision tree-based method and
the ensemble technique. This method is an algorithm that finds
the decision tree with the best predictive power among n
decision trees, as shown in Figure 3b.

2. XGBoost and LGBM have been reported in recent studies for
their excellent predictive power and low inference time.
Boosting derives an ensemble with excellent performance by
sequentially learning models with weak predictive power.
When the model is integrated with the boosting method, the
nth weight is given according to the error of the n-1st model,
and the objective function is composed of a regularization term
representing the model complexity and loss function between
the predicted value and the true value. However, the difference
between XGBoost and LGBM is the growth direction of the
decision tree. When growing a tree as large as layer n − 1 to
layer n, XGBoost calculates only the weight, while saving all the
branches of the tree as shown in Figure 3C. Conversely,
LGBM removes the branches with less weight to grow into
new layers as shown in Figure 3d. For this reason, XGBoost is
called level-wise tree growth, whereas LGBM is called leaf-wise

Figure 3. Regression algorithms for machine learning. (a) Decision tree, (b) RFR, (c) XGBoost regression, and (d) LGBM regression.
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tree growth. Therefore, XGBoost and LGBM are methods to
improve the error of the preceding tree by sequentially learning
the decision tree. Compared to other decision tree-based
models, they have high scalability and fast processing speed,
along with the advantage of simple data pre-processing.

2.4. Machine Learning Data Set. As discussed in Section 2.2,
the amount of platinum nano-film coated on α-Al2O3 powder is
determined by four parameters. Prediction of the proposed rotary-
type ALD is made on a total of 625 samples. The samples contain five
cases each of four parameters:

1. Stop valve time from 5.0 to 25.0 s
2. Processing temperature from 200 to 400 °C
3. Platinum pulse time from 0.5 to 2.5 s
4. O2 pulse time from 5.0 to 25.0 s
80% of the total of 625 samples was used for training, whereas the

remaining 20% of the data set was used as a test data set for
evaluation, as denoted in Table 1.

3. RESULTS AND DISCUSSION
The prediction accuracy of the proposed modeling method
was assessed through two indicators: RMSE and R2 score.
RMSE is the root of the average squared difference between
the predicted value of the model and the experimental value as
follows

n
x yroot mean square error (RMSE)

1
( )

i

n

i i
1

2=
= (1)

where yi is the experimental value and xi is the predicted value.
Since the difference is squared, the RSME does not explicitly
indicate whether the model is underestimating or over-
estimating. On the other hand, the R2 score is a value that
quantifies the degree of influence between variables or the
degree of causal relationship. The higher the coefficient of

determination, the better the independent variable explains the
dependent variable. The R2 score has a range between 0 and 1,
with the fit of the model improving as the score approaches 1.
The R2 score is calculated as follows

Rcoefficient of determination ( score)

SSE/SST

1 SSR/SST

2

=
= (2)

where SST is the sum of the total squares of the differences
between the experimental value and the mean of the
experimental values, SSE is the sum of regression squares of
the differences between the regression model predictions value
and the mean of experimental values, and SSR is the sum of
squared residuals of the differences between the experimental
values and the predicted values of the regression model as
follows

x xSST ( )
i

n

i i
1

2=
= (3)

y xSSE ( )
i

n

i i
1

2=
= (4)

x ySSR ( )
i

n

i i
1

2=
= (5)

R2 scores and RMSEs are shown in Table 1.
3.1. Linear Regression. A linear regression model was

used as a representative of non-decision tree-based regression.
The parameters of the linear regression model having a
significant effect on model learning were the fit intercept and
the normalization. Linear regression model training was carried
out by setting the true value of the fit intercept and deprecated
normalization. Therefore, the linear regression model used was
one without intercept and normalization.
Training data predictions had an RMSE value of 0.25114

and an R2 score of 0.774. On the other hand, the test data
predictions had an RMSE value of 0.26987 and an R2 score of
0.719. The distribution plot of the predicted values shown in
Figure 4 confirmed that the distribution had a large area, and
therefore, the differences between the actual values and the
predicted values were significant.

Table 1. RSME Values and R2 Score of Machine Learning
Models

training test

model of machine learning RMSE R2 score RMSE R2 score

linear regression 0.25144 0.774 0.26987 0.719
RFR 0.01194 0.999 0.04547 0.991
XGBoost 0.02958 0.997 0.03190 0.996
LGBM 0.02659 0.998 0.03450 0.995

Figure 4. Distribution plot of predicted values from linear regression model. (a) Training data. (b) Test data.
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3.2. Linear Forest. The random forest model is an
ensemble model of decision tree-based regression. The model
parameters having a significant effect on learning are the
number of trees and the maximum depth. Model training was
performed for 100 trees and without setting the maximum
depth. The nodes thus expanded indefinitely until the optimal
result was obtained. Training had an RMSE value of 0.01194
and an R2 score of 0.999. On the other hand, testing had an
RMSE value of 0.04547 and an R2 score of 0.991. The

distribution plot of the predicted values in Figure 5 indicates
an insignificant difference between the actual and predicted
values.

3.3. EXtreme Gradient Boosting. The XGBoost model is
a level-wise tree growth model of decision tree-based
regression. Model parameters having a significant effect on
learning are the number of trees, maximum depth, and learning
rate. Model training was carried out by specifying 100 trees, a
maximum depth of 3, and a learning rate of 0.1. The accuracy

Figure 5. Distribution plot of predicted values from RFR model. (a) Training data. (b) Test data.

Figure 6. Distribution plot of predicted values from XGBoost model. (a) Training data. (b) Test data.

Figure 7. Distribution plot of predicted values in LGBM model. (a) Training data. (b) Test data.
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of the model is expressed by the RMSE value and the R2 score.
Training the model yielded an RMSE of 0.02958 and an R2
score of 0.997, whereas an RMSE value of 0.03190 and an R2
score of 0.996 were achieved on the test data set. Note that the
distribution plot of the predicted values in Figure 6 shows an
insignificant difference between predicted and experimental
values.

3.4. Light Gradient Boosting Machine. The LGBM is a
leaf-wise tree growth model of decision tree-based regression.
The parameters of the LGBM model having a significant
influence on model learning are the number of trees, maximum
tree leaves, and learning rate. 100 trees were set up for training,
with maximum tree leaves being 31 and a learning rate of 0.1.
An RMSE value of 0.02659 and an R2 score of 0.998 resulted
from training. Testing had an RMSE value of 0.03450 and an
R2 score of 0.995. The distribution plot of the predicted values
in Figure 7 shows that the difference between the actual and
predicted values is insignificant.

4. CONCLUSIONS
The AI approach XGBoost was optimized to predict advanced
ALD process results with 99.9% accuracy and an R2 score of
0.99. Although a traditional nano/micro-particle analysis
system takes 150 days to secure the process results through
actual experiments and ICP-AES analysis for 125 test samples,
machine learning using forest-based models, such as random
forest, XGBoost, and LGBM, takes only tens of seconds. As
shown in Table 1, the linear regression model cannot
accurately predict the process, as indicated by an R2 score of
0.77 for both the training and test data. However, for all forest-
based models, the R2 score of the training data and the test
data is higher than 0.99. The random forest model shows the
highest accuracy among the training data, although test results
have the lowest accuracy. In contrast, XGBoost and LGBM
show higher accuracy in the prediction of test data. In the case
of random forest and linear regression, the most suitable model
is found among random weight functions to predict new data.
Therefore, finding a combination of accurately predictive
weight functions is nearly random due to the limitation of the
small experimental database size of 625. On the other hand,
XGBoost and LGBM assign a value to the weight function so
that the model grows and predicts more accurately than the
previous layer. Since the optimized combination of weight
functions is calculated, it is possible to predict with high
accuracy, even with a small experimental database size of 625.
XGBoost is an algorithm with stronger prediction accuracy,
whereas LGBM generally has a lower inference time with a
larger database. Thus, LGBM showed unstable results, since
the 625 experimental data points did not meet the general
recommended data amount of 10,000 for leaf-wise growth. The
XGBoost model consequently has the highest and most stable
prediction accuracy across multiple variables.
Our study is limited to four process conditions. If it is

possible to obtain more experimental data, it will be possible to
predict the process results for more process conditions and
sudden process changes such as human error. In addition,
predictions through algorithms that require large databases
such as LGBM are expected to be feasible.
The proposed approach transcends the current study with

the potential to solve various engineering problems regarding
nano/micro-structures, particles, and multivariate processes.
Possible future applications include various industries such as
automobiles, semiconductors, and energy.
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