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Deep learning-based growth
prediction for sub-solid
pulmonary nodules
on CT images
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Wen-zhao Zhong1, Yi-long Wu1* and Xue-ning Yang1*

1Guangdong Lung Cancer Institute, Guangdong Provincial People’s Hospital, Guangdong Academy
of Medical Sciences, Guangzhou, China, 2Guangzhou Shiyuan Electronics Co., Ltd,
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Background: Estimating the growth of pulmonary sub-solid nodules (SSNs) is

crucial to the successful management of them during follow-up periods. The

purpose of this study is to (1) investigate the measurement sensitivity of

diameter, volume, and mass of SSNs for identifying growth and (2) seek to

establish a deep learning-based model to predict the growth of SSNs.

Methods: A total of 2,523 patients underwent at least 2-year examination

records retrospectively collected with sub-solid nodules. A total of 2,358

patients with 3,120 SSNs from the NLST dataset were randomly divided into

training and validation sets. Patients from the Yibicom Health Management

Center and Guangdong Provincial People’s Hospital were collected as an

external test set (165 patients with 213 SSN). Trained models based on

LUNA16 and Lndb19 datasets were employed to automatically obtain the

diameter, volume, and mass of SSNs. Then, the increase rate in

measurements between cancer and non-cancer groups was studied to

evaluate the most appropriate way to identify growth-associated lung

cancer. Further, according to the selected measurement, all SSNs were

classified into two groups: growth and non-growth. Based on the data, the

deep learning-basedmodel (SiamModel) and radiomics model were developed

and verified.

Results: The double time of diameter, volume, and mass were 711 vs. 963 days

(P = 0.20), 552 vs. 621 days (P = 0.04) and 488 vs. 623 days (P< 0.001) in the

cancer and non-cancer groups, respectively. Our proposed SiamModel

performed better than the radiomics model in both the NLST validation set

and external test set, with an AUC of 0.858 (95% CI 0.786–0.921) and 0.760
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(95% CI 0.646–0.857) in the validation set and 0.862 (95% CI 0.789–0.927) and

0.681 (95% CI 0.506–0.841) in the external test set, respectively. Furthermore,

our SiamModel could use the data from first-time CT to predict the growth of

SSNs, with an AUC of 0.855 (95% CI 0.793–0.908) in the NLST validation set and

0.821 (95% CI 0.725–0.904) in the external test set.

Conclusion:Mass increase rate can reflect more sensitively the growth of SSNs

associated with lung cancer than diameter and volume increase rates. A deep

learning-based model has a great potential to predict the growth of SSNs.
KEYWORDS

sub solid pulmonary nodules, growth, mass, deep learning, radiomics
Introduction

Lung cancer is the leading cause of cancer death, with an

estimated 1.8 million deaths (18.0%) worldwide in 2020 (1).

However, low-dose computed tomography (LDCT) is an effective

screening tool for reducing lung cancer mortality in high-risk

individuals (2). With the popularization of the LDCT for lung

cancer screening, the detection rate for pulmonary nodules,

particularly sub-solid nodules (SSNs), has been significantly

improved (3).

SSNs, which include both ground-glass (GGNs) and part-solid

(PSNs) nodules, have a higher likelihood of malignancy than solid

nodules regardless of size (4). Although SSNs have a good prognosis

when treated early, they are at serious risk of overdiagnosis and

overtreatment (5). Further, predicting the growth of SSNs is crucial

to the successful management of SSNs during follow-up periods.

Compared with diameter and volume, an increase in mass is an

early indicator of growth. However, manual measurement of tumor

quality requires many human resources and is difficult to carry out

in routine clinical practice (6). Artificial intelligence (AI) has

provided great improvements in cancer imaging (7). For example,

many studies have used radiomics and deep learning to progress

their fields (8–12). However, in the field of SSNs, little progress has

been made with the use of AI or other automatic methods.

Therefore, the aim of this study is to investigate the most

sensitive measurement of diameter, volume, and mass, using

automatic methods, for identifying the growth of SSNs, and

further, to establish a deep learning-based model to predict the

growth of SSNs based on consecutive computed tomography (CT)

scans to provide evidence for follow-up and treatment plans.
02
Materials and methods

Study protocol

We retrospectively analyzed sub-solid nodule cases from

the National Lunch Screening Trial (NLST) (2) from August

2002 to December 2009, Yibicom Health Management Center

from August 2017 to January 2022, and Guangdong

Provincial People’s Hospital from July 2011 to September

2021. The inclusion criteria for Yibicom Health Management

Center and Guangdong Provincial People’s Hospital were as

follows: (a) 30 ≤ aged ≤80 years old; (b) underwent at least 2-

year examination records with thin-section (2.5 mm) CT

images; (c) at least one sub-solid nodule; and (d) the

diameter 5 and 30 mm of the sub-solid nodule on initial CT

images. The exclusion criteria were as follows: (a) only

received one CT examination; (b) follow-up time was less

than 2 years from the first CT examination; and (c) combined

with other malignant tumors with history of less than 5 years,

except for lung cancer. If the patient had multiple sub-solid

nodules, the largest of the two nodules meeting the above

conditions was selected for the study.

In total, 2,358 patients with 3,120 SSNs from the NLST

dataset were enrolled and were randomly divided into the

training set (1,894 patients with 2,493 SSNs) and validation set

(464 patients with 627 SSNs), according to the ratio of 8:2

(Figure 1). In addition, 165 patients with 213 SSNs from

Yibicom Health Management Center and Guangdong

Provincial People’s Hospital were collected as an external test

set (Figure 2).
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CT examinations

Axial images from 7,177 LDCT/CT examinations (6,812

CT examinations of 2,358 patients from NLST, 365 CT

examinations of 165 patients from our two hospitals) were

included in this study and were reconstructed by standard or

lung kernel. If there were more than three available CT

examinations, the latest three exams were enrolled. In total,

9,411 sub-solid nodule volumes from the axial images were

extracted to assess the growth (Figures 1, 2).
Image analysis

In order to analyze the changes in diameter, volume, and mass

of SSNs over consecutive years, we followed the method in Fang

et al., to pair the same nodules between different CT scans (13). Our

data organization approach aimed to ascertain the diameter,

volume, and mass change of SSNs in consecutive CT scans

(Figure 3). A semiautomatic pipeline was developed to process

the consecutive CT scans. First, we detected and identified the SSNs

on original CT scans. We then performed 3D image registration for

the second (Tt) and third (Tt+1) CT scans in terms of the first scan

(Tt−1) and paired 3D volumes of interest (VOIs) containing SSNs to

match the same sub-solid nodule at different time points. Next, we

employed a segmenter to automatically crop out the lesion of

nodules in VOIs to calculate their diameter, volume, and mass.
Frontiers in Oncology 03
After automatically annotating, we performed a manual review to

acquire reliable labels.

Specifically, two popular CT datasets, Lung Nodule Analysis

(LUNA)16 (14) and Lung Nodule Database (LNDb) (15), were

used to train our models (detector and segmenter), in which the

detector for VOI identification was a 3D variant of CenterNet

(16) and the segmenter for lesion segmentation was a multi-scale

3D UNet (17). The results of the detector on LUNA16 were

FROC = 0.966, recall = 0.978, and precision = 0.654. The

segmenter has a dice of 0.838 on LUNA16.
Growth measurement

There were three measurements for evaluating the growth of

nodule, after semiautomatic acquisition of the nodule mask (1):

the diameter, which was the longest side of the smallest

circumscribed rectangle on the maximal surface of the nodule

mask; (2) the volume (V in mm3), which was computed by

multiplying the voxel number and the volume of a single voxel;

and (3) the mass, which was computed as follows: M = V × (A +

1,000)/1,000 (18), where A is the average CT attenuation value

(HU) and V is the volume of the nodule.

The SSNs from NLST were divided into cancer group and

non-cancer group according to follow-up confirmation

results. For each SSN, we calculated the increase rates of the

diameter, volume, and mass during follow-up, respectively,
FIGURE 1

Flowchart of case selection on the NLST data set.
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then compared the three relative rates between the cancer

group and non-cancer group to evaluate the most appropriate

way for identifying the growth.
Growth prediction model

According to the selected measurement, all SSNs were

classified into two groups: growth group and non-growth

group. The deep learning-based model and radiomics model

were developed using the training set and were verified in the

validation and test sets, respectively.

The radiomics model was the logistic regression model based

on radiomics features, which was extracted from the shape and

appearance of SSN in 3D VOIs and selected by the Least

Absolute Shrinkage and Selection Operator (LASSO) (19). In

total, 1,218 features were extracted and 60 features were selected

for modeling the logistic regression model.
Frontiers in Oncology 04
Following selection (13), the deep learning-based model was

identified (called SiamModel, Figure 4), where FGt, FLt, and FLt−1
represent global feature embedding of Tt VOI, local feature

embedding of Tt VOI, and local feature embedding of Tt−1 VOI,

respectively. A learnable embedding FLt−1 was provided if Tt−1 VOI

was unavailable, which occurred when there were only two CT

scans. For a given subject, the 3D VOI pairs (Tt−1 and Tt) taken

from CT scans at sequential time points were fed into the Siamese

encoder for extracting feature embedding. After fusing the features

using the spatial-temporal mixer (STM) module (13), the fully

connected layer was used to predict the growth probability. It was

worth mentioning that the global information of VOIs was

changeless on Tt−1 and Tt. Hence, we only learned global feature

embedding from Tt without Tt−1. However, the local information of

the same nodule in Tt−1 and Tt was different and highly

discriminative for growth prediction. Therefore, we learned local

feature embeddings from both Tt−1 and Tt to capture the evolving

local information.
FIGURE 2

Flowchart of case selection on the external data set.
FIGURE 3

The pipeline of organizing the dataset, including CT scan registration, ROI pairing, and class annotation. The letters d, v, and m denote the
diameter, volume, and mass of lung nodules, respectively.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1002953
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Liao et al. 10.3389/fonc.2022.1002953
To efficiently leverage changing information of SSNs in both

non-growth and growth groups, we took the weighted smooth-

L1 loss instead of cross-entropy loss to train our model, as

follows:

L = a � SmoothL1(p,  y)� I≥ + SmoothL1(p, y)

� (1� I≥) (1)

In this model, p and y are the model output and ground

truth of the relative growth rate, respectively. The indicator

function Iy ≥ r = 1 if y ≥r, and 0 otherwise, and r was set to 0.1. a
is the imbalance coefficient and was set to 1.0, 2.0, 3.0, 4.0, and

5.0 for our experiments, where we found that 3.0 was the

best value.

The model was trained from scratch for 100 epochs with

the AdamW optimizer (20), with a weight decay of 0.05 and a

momentum of 0.9. The batch size was set as 16, and learning

rate from 10e-6 to lr×Batchsize/64 in the first five epochs,

where lr = 5e-4, and then scheduled by the cosine annealing

strategy (20).
Statistical analysis

Python 3.6.8 software with scipy.stats (1.8) and

sklearn.metrics (1.0) packages was employed for data

processing and statistical analysis. The reported statistical

significance levels were all two-sided, and P< 0.05 was

considered statistically significant.

Continuous variables were expressed as means ± standard

deviations and compared with t-tests. Categorical variables were

expressed by frequency and compared using the c2 test. The

discriminatory ability of these growth prediction models was
Frontiers in Oncology 05
evaluated with receiver operating characteristic (ROC) curves.

Then, the non-parametric bootstrap was used to estimate the

variability around each of the performance measures.
Results

Growth-to-variability ratio

In total, 3,120 SSNs from 2,358 patients in the NLST dataset,

including 2,983 (96%) GGNs and 137 (4%) part-solid nodules

(PSNs), were selected for the study. Most patients with a total of

2,695 SSNs received at least three CT scans. To evaluate the best

way for identifying the sub-solid nodule growth, we divided

those SSNs from NLST into the cancer group (403 SSNs) and

non-cancer group (2,717 SSNs) according to follow-up

confirmation results. The increase rate and doubling time (21)

of diameter, volume, and mass were calculated respectively

(Table 1). The P-values of the measurements (without

diameter double time) compared between cancer and non-

cancer groups were less than 0.05. In addition, mass had the

smallest P-value, indicating that the difference in mass was more

pronounced for cancer and non-cancer groups. In addition,

mass had the shortest double time in the cancer group, which

means mass has a better sensitivity for growth.

The mean time between the first and last CT examinations of

the selected SSNs was 739 days (range, 521–1,274 days). During

this period, the diameter, volume, and mass of the SSNs in the

cancer group increased with a mean of 14%, 90%, and 121%,

respectively, while in the non-cancer group the mean increased

at 4%, 26%, and 19%, respectively. For distinguishing growth in

the cancer and non-cancer groups, the increase rate in mass was
FIGURE 4

Overview of our proposed deep learning-based growth prediction model (called SiamModel), where FGt, FLt, and FLt−1 represent global feature
embedding of Tt VOI, local feature embedding of Tt VOI, and local feature embedding of Tt−1 VOI, respectively. The two encoders, whose
backbone was ViT-B, in the Siamese-encoder shared weights.
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more significant than those in volume and diameter (Figure 5).

When the mass increased at greater than 25%, the SSNs showed

a significant growth trend and were more likely to deteriorate

into lung cancer.
Growth and non-growth subsolid
nodule characteristics

According to the above analysis, the growth of SSNs was

defined as an increase in mass at 25% within 1 year. There were

2,493 SSNs (174 growth, 2,319 non-growth), 627 SSNs (38

growth, 589 non-growth), and 213 SSNs (9 growth, 204 non-

growth) in the training, validation, and external test sets,

respectively (Table 2). In the training and validation sets from

NLST, there were significant differences in average CT value (P<

0.01) and diameter (P< 0.001) between the growth and non-

growth groups. However, in the external test set, only diameter
Frontiers in Oncology 06
(P = 0.04) was significantly different between the growth and

non-growth groups.
Model performance comparison

The deep learning-based and radiomics models were

developed using the training set and were verified in the

validation and test sets. The AUC of SiamModel was 0.858

(95% CI 0.786–0.921) in the validation set and 0.862 (95% CI

0.789–0.927) in the external test set (Table 3). The comparable

results between the validation and external test sets showed that

SiamModel had good generalization ability.

Compared with STM (13), our SiamModel obtained better

performance with the AUC of 0.858 (95% CI 0.786–0.921) vs.

0.823 (95% CI 0.731–0.898) in the validation set and 0.862 (95%

CI 0.789–0.927) vs. 0.806 (95% CI 0.693–0.902) in the external

test set, which indicated the superiority of our proposed

weighted smooth-l1 loss for SSN growth prediction.
FIGURE 5

Progression in mass, volume, and diameter of SSNs.
TABLE 1 Different rates of change (between the latest two consecutive examine) in the NLST dataset.

Type Cancer Non-cancer P-value

Number** 187 2508 –

Diameter Rate 0.07 ± 0.23 0.01 ± 0.16 0.002

Double time* 711 (638, 894) 793 (716, 899) 0.2

Volume Rate 0.49 ± 2.05 0.06 ± 0.66 0.005

Double time* 552 (344, 725) 621 (458, 801) 0.04

Mass Rate 0.74 ± 3.39 0.08 ± 0.83 0.009

Double time* 488 (321, 630) 623 (463, 799) <0.001
front
Double time* (Q1, Q3): selected within [1, 1,000] for statistics. Number**: SSNs with consecutive Tt−1, Tt, and Tt+1.
iersin.org
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Assuming all Tt−1 scans were unavailable in datasets (using

only Tt VOI as input), the performance of SiamModel and

radiomics model was compared as shown in Table 3 and

Figure 6. In the NLST validation set, the AUC values of

SiamModel and radiomics model were 0.855 (95% CI 0.793–

0.908) and 0.760 (95% CI 0.646–0.857), respectively, and 0.821

(95% CI 0.725–0.904) and 0.681 (95% CI 0.506–0.841) in the

external test set. Therefore, our SiamModel performed better

than the radiomics model in both the NLST validation set and

external test set (Figure 6).

Comparing one using only Tt VOI as input, we saw that our

SiamModel with two VOIs (Tt−1 and Tt) as input could perform

slightly better, with an AUC of 0.858 vs. 0.855 in the NLST

validation set and 0.862 vs. 0.821 in the external test set.
Frontiers in Oncology 07
Examples of model prediction

Figure 7 provides examples predicted by our SiamModel in

the external test set.

The probability of growth was calculated as shown in Eq. 2,

where p and th are the model output and threshold selected for

sensitivity and specificity as shown in Table 3, respectively, and t
is the sharpening coefficient, set as 0.1 to map p to 0-1:

prob =
e(p� th)=t

1 + e(p� th)=t
(2)

The predicted result with prob ≥0.5 indicated the growth,

which required more attention from doctors and relatively

intensive follow-up.
TABLE 2 The characteristics of patients and sub-solid nodules and the results of univariate analysis on training, validation, and external test sets.

Dataset Characteristics Growth Non-growth T/c2 value P value
(Q1, Q3) (Q1, Q3)

Number 174 2319 – –

Age (years) 63
(59, 67)

62
(58, 66)

1.48 0.14

Gender
(male/female)

102/72 1312/1007 0.2 0.66

NLST train set Average CT value (HU) -598.4
(-692.1, 538.7)

-640.6
(-703.3, -589.7)

4.1 <0.001

Diameter (mm) 9.6
(5, 12.2)

5.6
(4, 6)

8.1 <0.001

Texture
(GGNs/PSNs)

142/32 2247/72 90.82 0

Number 38 589 – –

Age (years) 65
(61, 69)

62
(58, 66)

3.6 <0.001

Gender
(male/female)

19/19 363/226 1.57 0.21

NLST Val Set Average CT value (HU) -564.2
(-679.8, -454.1)

-630.1
(-684.3, -581.1)

2.72 <0.01

Diameter (mm) 12.9
(5.8, 20.5)

5.6
(4.0, 6.4)

6.03 <0.001

Texture
(GGNs/PSNs)

19/19 363/226 31.6 0

Number 9 204 – –

Age (years) 58
(47, 67)

53
(46, 61)

0.83 0.43

Gender
(male/female)

4/5 84/120 0.02 0.88

External test set Average CT value (HU) -553.2
(-700.1, -460.9)

-657.5
(-723.2, 600.9)

1.51 0.17

Diameter(mm) 9.6
(7.1, 12)

6.2
(4, 7.1)

2.47 0.04

Texture
(GGNs/PSNs)

8/1 202/2 1.16 0.28
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Discussion

Our study first compared the effectiveness of diameter,

volume, and mass for assessing SSN growth based on the big

data from NLST and found that mass had a better sensitivity to

assess SSN growth. Then, we developed the deep learning-based

model (SiamModel) to predict the mass growth of SSNs and

achieved good performance in both the validation set (AUC =

0.858) and the external test set (AUC = 0.862).

For pulmonary nodules discovered in screening or

incidentally, the first task was to assess risk of malignancy.

There are several models (22–24) which combined clinical and

radiographic factors to estimate the malignancy probability and

achieve fair performance (25). For those indeterminate nodules,
Frontiers in Oncology 08
follow-up would be recommended (26). The growth pattern of

lung nodules (18, 27) would increase the accuracy rate to

diagnose malignant nodules and reduce the false positives,

although some benign nodules would grow (28).

In addition, there are several methods to measure nodule

growth, such as diameter, volume, and mass. Nodule growth or

the solid component in part-solid nodule growth is defined as an

increase in diameter of more than 1.5 mm in Lung-Reporting

and Data Systems (RADS) (27) and in the National

Comprehensive Cancer Network (NCCN) algorithm (NCCN

2022 screening). While 2 mm was chosen as the threshold for

defining growth in both overall nodule size and the solid

component of a part-solid nodule in the Fleischner Society

(24), I-ELCAP requires different sizes of growth according to
TABLE 3 Performance of different models using only one CT scan in the validation and external test sets.

Data set Method AUC Sensitivity Specificity PPV NPV
(95% CI) (95% CI) (95% CI) (95% CI) (95% CI)

NLST val SiamModel
(our)

0.858 0.632 0.921 0.341 0.975

(0.786-0.921) (0.485-0.786) (0.898-0.942) (0.239-0.456) (0.961-0.987)

SiamModel
(once, our)

0.855 0.843 0.651 0.136 0.985

(0.793-0.908) (0.724-0.952) (0.613-0.692) (0.094-0.184) (0.973-0.995)

STM[13] 0.823 0.764 0.738 0.157 0.98

(0.731-0.898) (0.622-0.897) (0.702-0.774) (0.109-0.217) (0.965-0.991)

Radiomics (once) 0.76 0.763 0.465 0.085 0.968

(0.646-0.857) (0.615-0.889) (0.424-0.506) (0.059-0.114) (0.947-0.986)

External test SiamModel
(our)

0.862 0.893 0.749 0.134 0.994

(0.789-0.927) (0.625-1.000) (0.685-0.807) (0.056-0.230) (0.980-1.000)

SiamModel
(once, our)

0.821 0.889 0.669 0.106 0.993

(0.725-0.904) (0.625-1.000) (0.608-0.731) (0.040-0.179) (0.977-1.000)

STM[13] 0.806 0.895 0.574 0.083 0.992

(0.693-0.902) (0.636-1.000) (0.507-0.664) (0.034-0.141) (0.972-1.000)

Radiomics (once) 0.681 0.663 0.528 0.059 0.972

(0.506-0.841) (0.333-1.000) (0.461-0.599) (0.019-0.107) (0.939-1.000)
fro
FIGURE 6

Receiver operating characteristic (ROC) curves on NLST validation set (left) and external test set (right). SiamModel (once) and radiomics (once)
are only using Tt VOI as input.
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initial diameter of nodules (I-ELCAP protocol. Available at

https://www.ielcap.org/protocols Accessed June 14,2022).

Because the investigator of NELSON thought volume

measurements are more accurate than size by means of

semiautomatic software calculation, growth was defined as a

change in volume of at least 25% growth of pulmonary nodules

(29, 30) and volume measurement was also recommended in the

British Thoracic Society pulmonary nodule management

guidelines (22). Additionally, the volume doubling time (VDT)

of SSN would be longer, and VDT may not be sensitive to

different indolent lung cancers from benign nodules. Our study

also showed a mean of VDT cancer growth and non-cancer

growth (552 vs. 621 days, P = 0.04) and was close to the

NLST databases.

Furthermore, Hoop et al. (6) compared measurements of

diameter, volume, and mass in 52 pulmonary GGNs and found

that mass is the best method for identifying malignant GGNs

and detection of growth of GGNs. Our study also found that

mass growth was the most sensitive method to identify the

growth of SSNs, since the growth of mass might reflect the

volume, density, or solid component growth. Compared with

Hoop et al.’s study (6), we investigated growth rate in SSNs from

NLST and validated the data in a larger number of patients.

Moreover, we used an automatic machine learning method to

measure volume and mass, which would reduce the

consumption of time and labor.

Initial size (31), CT attenuation (3), and history of lung

cancer (30) were associated with GGN growth according to the

first-time CT results and clinical factors. For those pulmonary

nodules which require follow-up, previous studies focus on

classifying and few rely on prediction factors for the GGO
Frontiers in Oncology 09
growth. Radiomics and deep learning techniques have been

investigated to detect, segment, and classify in the field of

pulmonary nodule management (7, 32) in the past 10 years.

Radiomics could extract the high quantitative image features

from medical imaging (32, 33) and build high-performance

models with limited datasets. Several studies (34) have

demonstrated that radiomic signatures can differentiate

malignant and benign nodules with a sensitivity ranging from

76.2 to 92.9% and a specificity ranging from 72.7 to 96.1%. The

combined radiographic factor or supervised machine learning

with the radiomics model could achieve better performance (34,

35). In the traditional radiomics methods to classify pulmonary

nodules (11), large amounts of labor are required for manual

tumor segmentation and feature extraction. Deep learning

algorithms could detect and segment pulmonary nodules

automatically and build predictive models. Ardila et al. (8)

developed a predictive model of the risk of lung cancer by the

3D deep learning method and achieved algorithms that were

comparable to, or could even outperform, radiologists with or

without prior CT imaging. A Lung Cancer Prediction

Convolutional Neural Network model (36) was also found to

outperform the Brock model to predict risk of lung cancer. A

deep machine learning algorithm developed by Huang et al. (21)

was compared with Lung-RADS and volume doubling time to

inform lung cancer incidence with 1, 2, and 3 years. As for

growth of pulmonary nodules, Tao et al. (18) first manually

segmented 313 lung nodules in 246 patients in their hospital

then developed a convolutional neural network (CNN) to model

the imagery change in the nodules from the baseline CT image to

the follow-up CT image and achieved an AUC of 0.857 for solid

nodules and 0.843 for GGNs in differentiating growth and non-
FIGURE 7

Examples of predicting the growth probability by our method in the external test set.
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growth nodules. Compared with Tao et al. (18), we first trained

the detection and segmentation models on LUNA16 and LNDb

datasets and then used them to identify and segment SSNs

automatically which was easily reproducible. As for the growth

of SSNs, we developed a deep learning-based model, called

SiamModel. In the independent external test set, our

SiamModel could predict the growth of SSNs with good

performance (AUC = 0.862) and showed a significant

improvement, compared with the radiomics model.

This study has the following limitations: (a) the growth and

non-growth SSNs were extremely imbalanced in our external

test set, so a validation bias might exist; and (b) the training set

only contained low-dose CT scans, but the external set enrolled

both normal CT and low-dose CT scans, therefore, it is still

necessary to expand the training and test sets with more normal

CT scans in further study; and (c) we defined an increase of at

least 25% in mass as the growth of SSNs without an exact

derivation which should be tested in further clinical practice.

Mass increase rate can reflect the growth of SSNs associated

with lung cancer more sensitively than diameter and volume

increase rates. Further, we established a deep learning-based

model (called SiamModel) that could better predict the growth

of SSNs on the base of mass, compared with the

radiomics model.
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