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Abstract: A method for simultaneous laser profilometer and hand–eye calibration in relation to
an industrial robot as well as its implementation is presented. In contrast to other methods, the
new calibration procedure requires the measurement of only one reference geometry to calculate
all the transformation parameters. The reference geometry is measured with a laser profilometer
from 15 different poses. The intrinsic parameters of the profilometer, as well as the extrinsic (hand–
eye) parameters, are then numerically optimized to achieve the minimum deviation between the
reference and the measured geometry. The method was characterized with experiments that revealed
a standard deviation of the displacements between the reference geometry after the calibration of less
than 0.105 mm in the case of using the robot-arm actuator and 0.046 mm in case of using a 5-axis CNC
milling machine. The entire procedure, including measurement and calculation, can be completely
automated and lasts less than 10 min. This opens up possibilities for regular on-site recalibration of
the entire system.

Keywords: 3D-scanner calibration; laser scanning; hand–eye calibration; laser triangulation pro-
filometer; robotic vision

1. Introduction

Laser profilometers enable rapid and accurate three-dimensional (3D) measurements
of complex surfaces. Their simple principle of measurement, based on laser triangula-
tion [1], offers a compact and robust design, enabling their wide application in many areas
of product quality control [2], reverse engineering [3] and adaptive machinings, such as
milling [4], deburring [5] and welding [6–8].

Since these profilometers measure a single profile of the cross-section between the laser
plane and the measured surface, a scanning movement must be used to acquire the com-
plete 3D shape of the inspected object. The simplest designs use single-axis translational or
rotational actuation, which makes it possible to capture the surface of simple geometry. On
the other hand, multi-axis manipulators, such as coordinate measuring machines [9] and
industrial robots [10,11], are used in situations with more complex geometries.

A major advantage of robots is their positioning flexibility, which enables automated
measurements from different poses so as to avoid shading problems, maintaining the right
working distance and achieving uniform sampling. The laser profilometer is attached to
the end of the robot arm, which can move it in all six degrees of freedom. To transform
the acquired profiles in a global coordinate system, an accurate position and orientation
of the profilometer relative to the robot’s last joint must be determined, which involves
a so-called hand–eye calibration [12,13] (also called robot–sensor calibration or system
calibration). Furthermore, the profilometer itself must also be calibrated to remove the
nonlinearities of optical distortion, camera and laser projector misalignments and the
triangulation principle itself.
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There have been many different calibration approaches to the robot–laser scanning
system [11,12,14,15]. These approaches are usually composed of two separate steps: (i) pro-
filometer and (ii) hand–eye calibration [11,16]. In studies where the authors used a com-
mercial profilometer, they rely on the manufacturer’s sensor calibration and focus only
on the hand–eye part of the calibration [13]. However, in the industrial environment,
a sensor must be recalibrated regularly or in the occurrence of any exceptional event such
as replacement of optical parts (protective window, camera’s lens, laser line projector) and
collision. Even during the simplest procedures, 3D profilometers can be disassembled and
reinstalled on the robotic arm, meaning the calibration data are no longer valid. Hence,
the need for a procedure where the intrinsic parameters, as well as hand–eye parameters
extrinsic, can be determined on the site is obvious.

The hand–eye calibration often mimics the well-known method of the tool center point
(TCP) determination [17] by touching a fixed spike with an end-effector from different
orientations. In [13,15], the authors measured a sphere using a profilometer in various
orientations and determined its center instead of physically touching the spike. However,
these methods do not calibrate the intrinsic parameters of the laser profilometer, which
must be calibrated separately.

The established approach of an intrinsic calibration is based on measuring a reference
2D plate with a circle grid [14], holes [11] or checkerboard [18] that is acquired in various
poses. However, the critical step is accurate detection of the reference grid, which is
distorted due to an oblique projection and the camera’s lens [14]. To improve the detection
accuracy, additional, uniform illumination is proposed [11]. Anyway, these approaches
demand different data processing as during normal measuring regime to detect reference
markers, which can introduce additional measurement uncertainty. Similarly, systematic
offsets may be introduced during additional illumination due to chromatic aberrations.
Our concerns also lie in the applicability to the industrial environment, where simplicity
and robustness are of paramount importance.

Some authors calibrated multiple aspects of the system in a single step. For example,
in [19] and [20], the kinematic parameters of a robot and the hand–eye parameters were
calibrated simultaneously. Authors in [21] used the same set of calibration images for
the profilometer and hand–eye calibration, but the procedure itself was still composed of
several distinct steps. No reports were found on a simultaneous calibration of the hand–eye
and intrinsic parameters of the profilometer.

To skip the detection of features on the reference plate, authors in [22,23] introduced
the calibration of laser-scanning apparatus based on measuring a reference 3D geometry
with a series of perpendicular grooves. The intrinsic and extrinsic parameters are then
numerically optimized by minimizing the average deviation between the measured and
the reference geometry. This approach allows the use of the same operating parameters,
both during the scanning of the reference geometry and during normal operation, which
prevents possible detection offsets. Moreover further, the reference plate can be an integral
component of the measuring system that is periodically used for accuracy inspections.
However, the 3D sensor was not attached to the robot arm or other type of actuator; thus,
hand–eye parameters were not calculated. On the other hand, the rail track inspection
system [24] based on laser profilometry and a 2D laser scanner attached to the portable
mobile platform for mapping the outdoor environment [25] was calibrated using Gauss–
Helmert model. The reference geometry composed of multiple nonparallel planes was
measured in the first step, and numerical optimization of only extrinsic transformation
parameters was executed in the second step. They achieved high precision results; however,
the intrinsic calibration was not included.

In this paper, we present a method for the simultaneous hand–eye and intrinsic
calibration of the laser profilometer, which is attached to the robot arm. The method
is based on measuring the reference geometry from various positions and orientations
using the same robot. The measured 3D data are then used to numerically optimize
the transformation parameters in order to achieve the minimum deviation between the
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measured and the reference geometry. The geometry of the latter is known with an
uncertainty of an order of magnitude lower than the expected deviations. Hence, our
intention was to develop a procedure, which can be performed in an industrial environment,
at the end customer, with as little additional equipment and operator intervention as
possible. In addition, the calibration should be performed on the data that is captured and
post-processed in the same way as the production measurements. This means a single-step
procedure, no feature extraction, external positioning devices, additional light sources, etc.,
only a simple, robust reference plate.

The paper is divided into six sections. The experimental system is described first. Then
the mathematical model of the profile transformation into the chosen coordinate system is
presented, together with all the intrinsic and extrinsic parameters. The Section 4 describes
the calibration procedure, which is divided into the measurement part, the assessment
of the initial values of all the transformation parameters, their numerical optimization
and software implementation. The Section 5 presents the characterizations of the method
from different aspects such as convergence and measurement uncertainty according to
variation of important procedure parameters. The conclusions are drawn in the Section 6
to summarize the study.

2. Experimental System

The system is composed of three main components (see Figure 1): laser profilometer
(Yaskawa MOTOSense, Ribnica, Slovenia), six-axis industrial robot (Yaskawa MA1440,
Fukuoka, Japan) with the corresponding controller (Yaskawa DX 200, Fukuoka, Japan),
and a reference plate that is used for hand–eye and intrinsic calibration of the system after
initial assembly and for periodic system recalibration. The laser profilometer itself has an
approximate measurement range from 35 mm to 75 mm at a distance between 50 mm and
150 mm from the sensor. At the maximum distance, the precision is 0.1 mm in the vertical
and lateral directions [26].
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{C}, tool cs {T}, and cs of the reference plate {R}.
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A camera (manufacturer Basler, Ahrensburg, Germany, model Ace acA640-120, res-
olution 659 × 494 pixels, 120 frames per second) inside the laser profilometer captures
images of the surface illuminated by a laser line projector (manufacturer Laser Components,
Olching, Germany, model Flexpoint MVnano, wavelength 660 nm, line thickness approx.
100 µm at the focus distance), which is also a part of the profilometer. Simultaneously
with each image, a robot’s pose is acquired from the robot controller, and both are fed into
an industrial computer (Intel Core i7-7700HQ, 2.80 GHz processor and 16 GB of RAM).
A custom-developed LabView-based software (manufacturer National Instruments, Austin,
USA) communicates with the camera and the robot controller and processes the acquired
data to detect the profiles with a subpixel resolution from each image and further transform
them into a 3D space of the reference coordinate.

Several coordinate systems (cs) are used in the subsequent description of the system
and are presented in Figure 1, where red, green and blue arrows are used for X, Y and Z
axes, respectively. The robot base cs {B} is located above the motor of the first turning axis,
defined by the manufacturer during the robot’s calibration. The zero cs {Z} is located in the
center of the flange of the last axis. The sensor cs {S} is located at the intersection of the
laser plane and the camera’s optical axis. The camera’s cs {C} is attached to the principal
point of the camera’s lens of the laser profilometer. The tool cs {T} is located at the working
point of the attached tool. Moreover, the cs of the reference plate {R} is attached to the
center of the reference geometry.

The latter is shown in Figure 1b,c. It is milled from an aluminum plate, 320 mm long,
240 mm wide and 30 mm thick, with perpendicular round channels. Two central channels
are 6.5 mm deep and have a radius of 12.5 mm, whereas all the other channels are 4 mm
deep and have a radius of 10 mm. The distances between channels are 25 mm. Axes XR
and Y are collinear with the central channels, and the Z-axis is directed out of the plate.
Its shape has an accuracy of 0.01 mm in the vertical and horizontal direction according to
the CNC milling machine’s specification. The surface was sandblasted after the milling to
ensure diffuse reflection of the laser light.

The geometry was designed to ensure a change of the deviation between the mea-
sured and the reference geometry after the variation of any transformation parameter (see
Section 4). Only that way optimization of the transformation parameters can converge to a
stable solution.

3. Transformation Model

The laser profilometer is based on the triangulation principle (see Figure 2), where a
laser projector projects a laser plane towards a measured surface. An intersection curve is
formed at the intersection of the laser plane and the measured surface, which is observed
by a camera from a different viewpoint.

Once the camera captures an image of the illuminated surface, the location of the
profile, which is an image of the intersection curve, is detected in each column (V direction)
of the image with sub-pixel resolution [27]. This means that profile location along V
direction is detected with a precision better than 0.1 pixels. That leads to the coordinates u
(index of the column) and v (height within the column) of the intersection profile. After
this, the following model is used to transform each point of the profile into the respective
coordinate system (e.g., cs of reference geometry).

Lens distortion is corrected in the first step using the Brown–Conrady model [28]. The
original coordinates u and v are transformed to undistorted coordinates of the detected
intersection curve uUD and vUD:

uUD = u + (u− cU)
(

k1r2 + k2r4
)
+ p1

(
r2 + 2(u− cU)

2
)
+ 2p2(u− cU)(v− cV) (1)

vUD = v + (v− cV)
(

k1r2 + k2r4
)
+ 2p1(u− cU)(v− cV) + p2

(
r2 + 2(v− cV)

2
)

(2)
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where r2 = (u− cU)
2 + (v− cV)

2cU, cV are coordinates of the principal point [9] on the
camera’s sensor, k1, k2 are radial distortion coefficients and p1, p2 are tangential distortion
coefficients. The normalized direction vectors uN and vN are then calculated as [22]:

uN =
(cU − uUD) · dU

f
(3)

vN =
(cV − vUD) · dV

f
(4)

where f is the focal length of the camera lens, and dU, dV are the pixel dimensions. A pro-
file points in the camera’s coordinate system {C} PC =

[
XC YC ZC 1

]T are then
calculated using the model described in [22]:

ZC =
L

vN + tan(α)
(5)

XC = ZC · vN (6)

YC = −ZC · uN (7)

where L is a baseline, i.e., the distance between the projector and the camera in the YC
direction and α is a triangulation angle between the projector’s and the camera’s optical
axes. The points are then transformed from {C} to {S} using the following Equation:

PS = RTC-S · PC (8)

where PC and PS are point vectors and RTC-S is a homogeneous transformation matrix
from {C} to {S}:

RTC-S =


cos(θ) cos(α) − sin(θ) cos(θ) sin(α) 0
sin(θ) cos(α) cos(α) sin(θ) sin(α) 0
− sin(α) 0 cos(α) ZC·L

tan(α)
0 0 0 1

 (9)

where θ is an angle between the laser plane and the YS axis. The ZS axis is coincident with
the XcZc plane. Therefore, only two angles (α and θ) are needed to completely define the
orientation of the {S}. The points are further transformed from {S} to {Z} and then into {B},
where the profilometer movement by a robot arm is considered:

PB = RTZ-B ·RTS-Z · PS (10)

where RTZ-B and RTS-Z are homogenous transformation matrices for transformations from
{Z} to {B} and from {S} to {Z}, respectively. Information about the RTZ-B is provided by the
robot controller that streams the data to the system computer in real time, simultaneously
with each recorded image, as described in [29]. Meanwhile, the RTS-Z is dependent on the
position of the laser profilometer relative to the {Z} and is calculated during the hand–eye
calibration.

Finally, the transformation into the cs of the reference geometry {R} is made to calculate
a deviation between measured and reference geometry:

PR = RTB-R · PB (11)

where RTB-R, is homogenous transformation matrix for transformation from {B} to {R}. This
transformation is used only during calibration, while in normal operation, it is omitted or
replaced with transformation into a user-defined coordinate system.
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Figure 2. Sketch of the arrangement of the camera and the laser projector with their corresponding
coordinate systems.

As can be seen from the presented transformation model, Equations (1) to (9) represent
point transformations inside the profilometer where 12 intrinsic transformation parameters
must be known. Furthermore, in Equation (10), six additional parameters are defining
RTS-Z, so-called hand–eye: three translations XS-Z, YS-Z and ZS-Z and three rotations RXS-Z,
RYS-Z and RZS-Z. Moreover, finally, in Equation (11), the matrix RTB-R is similarly defined
by three translations XB-R, YB-R and ZB-R and three rotations RXB-R, RYB-R and RZB-R.
Thus, 24 transformation parameters should be precisely determined during the calibration
procedure to achieve accurate 3D measurements.

4. Calibration Procedure

The calibration procedure is schematically presented in Figure 3. It is divided into
measuring of the reference geometry, determination of initial (guess) values and numerical
optimization of the transformation parameters. Each step is described in more detail below.

Figure 3. Basic steps of the calibration procedure.
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4.1. Measurement of the Reference Geometry

In the first step, the measurements of the reference plate are acquired from 15 different
poses, as shown in Figure 4, where three distances from the plate (75 mm, 100 mm and
125 mm) are combined with three rotations (−10◦, 0◦ and 10◦) around the XR and (−5◦, 0◦

and 5◦) Y axes. The scanning direction is approximately parallel to the XR axis in all poses.

Figure 4. Poses of laser profilometer during the scanning of the reference plate.

By changing the robot orientation, we increased the sensitivity of the deviation be-
tween reference and measured plate to the hand–eye parameters. However, the angles
were limited to minimize the influence of the robot positioning inaccuracy. This is vital
in applications where the robot orientation must be changed during the scanning to be
perpendicular to the measured surface, such as the case of 3D seam tracking [4] or geometry
inspection of parts with complex shapes [30].

A smaller range of rotations around the Y-axis was chosen to prevent an excessive
reduction of maximal and minimal measuring distances since we want to assure that the
entire profile width was always within the sensor’s measuring range.

4.2. Estimation of Initial Values of Transformation Parameters

The initial values of the intrinsic parameters are estimated from the sensor’s geometry
in the product documentation and the specifications of the camera and lens. The distortion
parameters (k1, . . . p2) are set to zero, while the principal point (cU, cV) is set to the middle
of the sensor. The initial RTS-Z transformation (hand–eye transformation) is estimated by
positioning the profilometer perpendicularly to the reference plate, which is achieved by
visual observation of live images from the profilometer’s camera (see Figure 5). The proper
pose is achieved when the central channels of the reference geometry overlap with the red
overlay mesh. The pose of the reference geometry relative to the base cs is determined
by touching the diagonal corners of the reference geometry with the robot’s working tool.
We must emphasize that this procedure must be carried out only after the installation of
the robot and the reference plate on the factory floor, while during periodical recalibration
routines, it is not necessary.
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Figure 5. An example of a good alignment between the overlaid mesh (red lines) and the reference
plate, illuminated by a laser line. The central channels are in the center of the image. The white
horizontal line is an overexposed laser line since a camera’s exposure time is increased from 400 µs to
30 ms.

4.3. Numerical Optimization

Numerical optimization of the transformation parameters starts by importing the
calibration measurements into the custom-developed calibration program of the MOTO-
Sense software (Yaskawa, Ribnica, Slovenia), which implements an algorithm described in
Figure 6.

Figure 6. Flow chart of the calibration algorithm.

Each of the 15 calibration measurements contains a sequence of detected profiles in
the image coordinate system (u, v) and the corresponding poses of the robot arm (XZ-B,
YZ-B, ZZ-B, RXZ-B, RYZ-B and RZZ-B). Thus, the measurements are stored as data tables of
Ndata × (6 + Mdata) rows and columns, where Ndata is a number of profiles, Mdata is the
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length of a profile (equal to the image width) and six values of the robot pose at the time of
the image acquisition are appended to each row.

The initial set of the transformation parameters, corresponding weights and random-
ization intervals are additionally read from the datafile at the start. From these inputs, the
optimization of the transformation parameters is performed using Powell’s optimization
algorithm [31] for finding the local minimum of the merit function (DEV), defined as a
deviation between the measured and the reference geometry:

DEV(C) =

√√√√ 1
N

N−1

∑
i=0

(Ref(XR(C)i, YR(C)i)− ZR(C)i)
2 (12)

where N is the number of measured points, C is the vector of the transformation parameters,
XR(C)i, YR(C)i and ZR(C)i are the coordinates of the i-th measured point in the {R}, recon-
structed using the transformation model defined with Equation (1) to Equation (11). The
function Ref(x, y) returns the height of the reference geometry (see Figure 7) for coordinates
x and y, which is defined as follows:

Figure 7. Dimensions of the reference geometry.

If (|x| < WC or |y| < WC), then:

Ref(x, y) = RC −HC −
√

RC
2 −min(x2, y2) (13)

If (|x| mod D) < W or (|y| mod D) < W), then:

Ref(x, y) = R−H−
√

R2 −min
(
(|x|modD)2, (|y|modD)2

)
(14)

Else if none of above conditions is true, Ref(x,y) = 0.
Dimensions of the grooves are presented in Figure 7, where the distance between

grooves (D) is equal along x and y-direction. Equation (13) is used for points, which are
within the region of central grooves, while Equation (14) is used for points, which are
within any noncentral groove. If the point is within the region where the central grove
is crossing with anyone of a noncentral one, then the Ref(x, y) returns the minimum of
Equations (13) and (14).

An integral part of Powell’s optimization algorithm is so-called bracketing [32] that
brackets the minimum of DEV along the optimization direction. To assure proper function-
ing of this subroutine, the initial guess of brackets must generate approximately the same
changes of DEV for any combination of transformation parameters, which is done by a
normalization of the transformation parameters with weights:

Pj = Cj/Weightj (15)

where Cj is the j-th transformation parameter and Weightj is the corresponding factor used
to equalize the sensitivity of DEV if any parameter Pj is changed for the same step. Typical
values of the Weight are listed in Table A1 in Appendix A. A higher value is used for those
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parameters that cause a smaller change in the DEV value. Such are the hand–eye rotations
and intrinsic parameters, in particular distortion parameters.

To find the global minimum of the DEV, the vector of optimal parameters Copt is
randomized after finding the local minima:

Cnew
j = Copt

j + rand(−RIj, RIj) (16)

where function rand returns a random number of uniform probability within the interval
±RIj. Typical values of randomization intervals are listed in Table A1 in Appendix A.

If the newly found DEV is lower than the one in the previous iteration, the current
parameters are stored as the new optimum (Copt), otherwise the previous remains. This
enables jumping between neighbor minima in a downhill direction, but the downside of
this is significantly longer calculation time due to many futile iterations, where the new set
Cnew is either in close vicinity of the current optimum or too far and in the wrong direction.
The same optimum is found in the first case and less optimal in the second one.

The iteration stops when the relative change of DEV is lower than the prescribed
tolerance (typically ∆DEV < 0.02%) and its value is lower than the declared threshold
(typically DEVmax = 0.11 mm). The decrease of DEV is therefore 24 nm at the convergence
criterion, or less than 3‰, according to the accuracy of the reference geometry. Then the
transformation parameters are stored in the system memory. Otherwise, if convergence
is not reached after the maximum number of iterations, a service warning is messaged
to check the robot’s accuracy, clean the optics, set the image-acquisition parameters, or
refocus the optics of the camera and projector.

4.4. Software Implementation

A graphical user interface (GUI), a data reading and storage are programed in LabView
2015, while the optimization kernel is implemented as a dynamically linked library (dll) in
C++, using the library Numerical Recipes in C [32].

Figure 8 shows the GUI, which consists of Settings (upper part), a 3D display of the
measured geometry and indicators for numerical and graphical presentation of current
goodness of fit between measured and reference geometry. A very important part is a table
of transformation parameters (C) together with switches for including/excluding them
into optimization (on/off), their names, weights for normalization and randomization
intervals (RI). These controls enable us to study the influences of various transformation
parameters on the final result.

Settings related to the reference geometry define its dimensions (R, H, RC, HC and
D). Moreover, two thresholds (maxDZ and maxDZF) are used to control the rejection of
outliers from calibration measurements. The first represents the absolute value, and the
second a multiplication factor of the current DEV value. Thus, the i-th point is considered
in the calculation of the next DEV if the following condition is true:

|Ref(XR(C)i, YR(C)i)− ZR(C)i| < min
(
maxDZ, DEVopt ·maxDZF

)
(17)

In settings related to the calibration, measurements are parameters that control the
number of scans, their clipping and point-cloud reduction in order to speed-up the calcula-
tion and to remove part of scans that do not cover the reference geometry. The clipping
is done by deleting the scanned points outside of the boundary offset defined by (firstPrf,
lastPrf, left, and right), while the point-cloud reduction is done by extracting every ∆N ×
∆M point from the scanning data, where ∆N is a reduction factor along profile length, and
∆M is a reduction factor along the scanning path.

Parameters inside the drawing settings control the 3D display to draw either measured
or reference geometry or differences between them along Z-direction. The last option is
especially useful for checking the presence of any systematic deviations.

Similar monitoring offers a deviation plot, where colors represent local average de-
viation mapped with a resolution of 1 × 1 mm. Moreover, finally, the deviation is also
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presented as a histogram of differences, where we can check if its distribution is similar
to the Gaussian. This is the second in-depth check to see how many systematic effects are
still noticeable above the level of noise in the current result and can be corrected with the
calibration of the selected transformation parameters. However, the deviation plot cannot
indicate the systematic effects which are related to the inaccuracy of the reference geometry
or the robot pose.
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5. Characterization of the Calibration Method

The developed calibration method was characterized with several tests in order to
point out the parameters which have an important influence on the convergence of DEV
function and uncertainties of optimized transformation parameters (3D transformation
uncertainty). We first tested the influence of the chosen set of optimized parameters and
the associated complexity of the transformation model on the achieved deviation between
the measured and reference geometry. The influence of measured point-cloud density
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was further analyzed to choose a compromise between the calibration uncertainty and a
processing time. The calibration uncertainty was tested by repeated measurements after
various changes of the laser profilometer pose against the robot (hand–eye parameters).
Further, the combined standard uncertainty of the entire system was assessed based on
Guide to the expression of uncertainty in measurement (GUM) [33]. Finally, we compared
the results of the same calibration procedure where in the first part, the robot was used as an
actuator and, in the second part, a highly accurate 5-axis computer CNC milling machine.
These tests gave us additional insight into the influence of the positioning accuracy of the
robot actuator on the overall measurement uncertainty.

The room temperature was 21 ◦C during all experiments, and the system was started at
least two hours before the measurements so that all subsystems were thermally stabilized.
In all tests, each scanning measurement consists of 15 separate surface measurements
(scans), where each contains 426 profiles with a resolution of 0.28 mm along the X-axis
(scanning axis). The time needed for a reference plate measurement from all 15 positions
is about 280 s, where the measurement from every position is 120 mm long and consists
of about 273,000 points. The same computer was used for numerical calculation as in the
experimental system (see Section 2).

5.1. Selection of Optimized Transformation Parameters

Figure 9 shows the calibration results for different sets of optimized transformation
parameters, where 3D plots of the measured geometry are shown in the first row and
deviation plots in the second row together with histograms of differences between the
reference and measured geometry. Transformation parameters that were optimized are
listed in the third row and resulted in DEV value after optimization is displayed in the
last row.
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parameters were optimized. Focal length f, projector distance L and triangulation angle α were added in (B), and all
parameters were included in (C). 3D measurements of the reference plate are shown in the first row, where colors represent
measurements from various poses. The second row shows deviation plots and histograms of differences between the
reference and measurement geometry.
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In the first set (column A), only extrinsic parameters (hand–eye RTS-Z and base-
to-reference RTB-R) were optimized, while all other parameters were fixed at the initial
values (see Table A1). A large lateral deviation along Y-axis (approximately 15 mm)
between individual measurements can be seen from the 3D plot. Due to groove-shaped
reference geometry, these deviations also result in the vertical direction, which is visible
on the deviation plot with maximal amplitude near 4.5 mm. It should be noted that such
conversion between horizontal and vertical deviations appears only in regions where the
reference geometry is sloped.

Deviation plots are together with histograms, convenient visual indicators of goodness
of the fit between the measured and the reference geometry. This means that any systematic
offset will be visible as a consistent color variation on a deviation plot and also as a deviation
from Gaussian distribution on a histogram (skew 6= 0 and kurt 6= 3). For example, if we
look at the second case (column B), where three basic intrinsic parameters (focal length,
triangulation angle, and baseline) were added to the optimization set, we can conclude from
the DEV value (0.128 mm) that the system is finely calibrated. Nevertheless, the deviation
plot reveals some systematic deviations on the right edge of the region, and also, the edges
of the grooves are still clearly visible in the central region of the plot. The histogram also
shows some skewness (0.136) and kurtosis (3.20) of the distribution, which furthermore
proves that additional transformation parameters should be included in optimization.

The third set (column C) shows the results, where all parameters (hand–eye and
intrinsic) were optimized. In this case, the systematic deviations are nearly invisible on the
deviation plot, and the distribution is practically Gaussian (skew = −0.011 and kurt = 3.09).
These two indicators prove that optimization found a good minimum with an average
deviation DEV = 0.108 mm.

The optimization with an entire set of parameters was run 8-times, where the initial
values of hand–eye parameters were randomly varied by ±5◦ and ±7.5 mm in terms of
rotation and translation, respectively. This variation was done to calculate the measurement
uncertainties of each parameter by calculating a standard deviation. The average value
and standard deviation of each parameter are listed in the third and fourth columns in
Table 1. We can see that majority of parameters have small standard deviations; however,
some of them have extremely high relative deviations (marked with **). For example, the
relative deviation of cU is higher than 5% and of θ higher than 280 % However, the overall
uncertainty of the DEV value is still very small (0.00022 mm).

By observing the changes of parameters during optimization, we found that some
of the parameters with high standard deviation values are correlated. This means that
a change of one parameter is compensated by changing one or more other parameters
resulting in an almost constant DEV function. This appears as a slow but constant sliding
of their values during optimization. A typical example of such interdependent parameters
is image center location (cU and cV) and translational part of hand–eye parameters (XS-Z,
YS-Z and ZS-Z). Yet another group consists of a rotation of laser projector (θ) and rotational
part of hand–eye parameters (RXS-Z, RYS-Z and RZS-Z).

Therefore, in the next step, we fixed cU, cV and θ to the initial values. After the
repeated procedure of multiple optimizations, we found that the deviation between the
reference and measured geometry remained the same (DEV = 0.1081 mm) while deviations
of hand–eye parameters were significantly reduced. These results are listed in the fifth and
sixth columns of Table 1.

After fixing the mentioned parameters, we found relatively large deviations only in
the distortion parameters (k1, k2, p1 and p2). Therefore, the parameters k2 and p2 were fixed
to 0 values in the third scenario without significantly deteriorating the value of DEV, which
is presented in the last two columns of Table 1.

However, we must emphasize that fixation of certain parameters also depends on the
specific configuration of a laser profilometer, for example, the magnitude of optical distor-
tions, which affects the degree of the measuring system nonlinearity. The Gauss–Helmert
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model with constraints [24,34] is one of the possible improvements of the optimization
algorithm.

Table 1. Average values of optimized transformation parameters and respective standard deviations for N = 8 repeated
optimizations of the same measurement set where initial values of hand–eye parameters were randomly varied. Excessive
standard deviations are marked with **, and parameters that were not optimized in the second and third scenarios are
marked with FIXED.

All Parameters Without cU, cV and θ Without cU, cV, θ, k2 and p2

Parameter Unit Average Standard
Deviation Average Standard

Deviation Average Standard
Deviation

XB-R mm 106.91 0.004 106.91 0.004 106.91 0.005
YB-R mm 1152.89 0.014 1152.87 0.013 1152.88 0.021
ZB-R mm −239.74 0.117 −239.76 0.080 −239.73 0.084

RXB-R
◦ −1.125 0.0003 −1.124 0.0001 −1.124 0.0002

RYB-R
◦ 0.401 0.0346 0.476 0.0046 0.477 0.0043

RZB-R
◦ 0.505 0.0007 0.505 0.0005 0.504 0.0004

f mm 8.380 0.0209 8.380 0.0127 8.386 0.0153
cU pix 333.40 ** 19.57 329.00 FIXED 329.00 FIXED
cV pix 245.23 ** 2.17 247.00 FIXED 247.00 FIXED
α ◦ 12.14 0.085 12.08 0.005 12.08 0.006
θ ◦ −0.051 ** 0.147 0.000 FIXED 0.000 FIXED
L mm 29.83 0.047 29.83 0.046 29.88 0.040
k1 / 0.1498 0.0094 0.1450 0.0126 0.0653 0.0016
k2 / −0.948 0.2082 −0.951 ** 0.2845 0.0000 FIXED
p2 / −0.0080 0.00469 −0.0098 0.00005 −0.0099 0.00000
p1 / 0.002259 0.00027 0.00197 0.00015 0.0000 FIXED

RXS-Z
◦ 3.979 ** 0.816 4.171 0.005 4.169 0.0043

RYS-Z
◦ −14.883 0.022 −14.878 0.001 −14.879 0.0026

RZS-Z
◦ −134.946 ** 0.307 −135.04 0.003 −135.043 0.0039

XS-Z mm 112.83 ** 1.300 112.66 0.013 112.64 0.017
YS-Z mm 5.35 ** 1.317 5.83 0.014 5.81 0.025
ZS-Z mm 219.80 ** 1.010 220.54 0.079 220.50 0.082

DEV mm 0.1081 0.00022 0.1081 0.00010 0.1090 0.00020

Parameter where FIXED is written instead of standard deviation was not optimized.

5.2. Influence of Point Cloud Density

The size of the original point-cloud of the reference measurement is approximately
4.1 million points due to high measuring resolution in the lateral direction (659 pixels
× 426 profiles) and multiple scans of the reference plate (15 scans). All these points are
transformed and compared with the reference geometry during a single calculation of
REF, which is called more than 10,000 times per optimization. Since transformations and
comparison of each point are process-demanding operations, it makes sense to investigate
the influence of the original point-cloud reduction on the measurement uncertainty of
transformation parameters, as the computational time can be significantly shortened with
that. The reduced point-cloud was generated by extracting every ∆N × ∆M point from the
scanning data, where ∆N is a reduction factor along profile length, and ∆M is a reduction
factor along the scanning path.

Figure 10 shows the influence of point-cloud reduction size on the measured uncer-
tainties of extrinsic parameters. The uncertainty is calculated as a Euclidean distance of
standard deviations of all three translations (top diagram) and rotations (middle diagram),
where eight repetitions with different initial values of transformation parameters were
used. Blue bars show uncertainties of base to reference (B-R) transformation, while the red
bars the sensor to zero cs (S-Z) transformations.
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Figure 10. Influence of point-cloud reduction factors on measured uncertainty of extrinsic translations
(upper diagram) and rotations (middle diagram) and on calculation time (bottom diagram).

We can see that relatively big reduction factors (e.g., 8 × 8 and 16 × 8) do not signifi-
cantly deteriorate the measuring uncertainty neither in terms of translations nor rotations.
However, in these cases, the processing time is relatively long (350 s and 187 s). On the
other side, if reduction factors are bigger (e.g., 64 × 32 and higher), and consequently the
point-cloud size is smaller, the measuring uncertainty of translations starts increasing over
0.2 mm, which is more than twice the lowest achievable value, but the processing time
decrease below 20 s.

According to the presented results, we decided to use 16 × 8 reduction factors in all
further experiments since the increase of measuring uncertainties is within the acceptable
limits, and the processing time is reasonably short (200 s).

5.3. Changes of a Hand-Eye Configuration by a Repositioning of the Laser Profilometer

The results in the previous two subsections are based on one set of measurements
and variations of the optimization procedure to characterize its behavior without external
disturbances. In this subsection, we analyze whether a physical change of the measuring
system affects the calibration result in any way. Therefore, we performed five sets of
scanning measurements of the reference plate where each time, only the pose of the laser
profilometer relative to the robot was changed, thus the hand–eye parameters. Everything
else, the pose of the reference plate and intrinsic parameters of the laser profilometer,
remained unchanged, and we expect that they will stay constant after each calculation.

Our expectations are confirmed in Table 2. We can see that the uncertainty of the
reference plate position along the X- and Y-direction is better than 0.05 mm, and it is less
than 0.12 mm along Z-direction. Higher uncertainty along Z-direction is related to the
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relatively small rotation ranges of the laser profilometer around XR and Y axes during
scanning of the reference geometry. However, it is still evident, also by looking at B-R
rotations, that convergence of these parameters is very good. Similarly, we can notice
excellent results of all intrinsic parameters. The standard deviations are less than 0.018 mm
for the focal length (f ), less than 0.008◦ for triangulation angle (α) and less than 0.04 mm for
the camera to laser projector (L). Standard deviations of the last six parameters in Table 2
(hand–eye parameters) are obviously higher since we intentionally repositioned the laser
profilometer before each measurement.

Table 2. Average values of optimized transformation parameters and respective standard deviations
for N = 5 repeated calibrations where the hand–eye configuration was randomly varied.

Parameter Unit Average Standard Deviation

XB-R mm 106.89 0.026
YB-R mm 1152.88 0.043
ZB-R mm −239.70 0.118

RXB-R
◦ −1.126 0.0031

RYB-R
◦ 0.462 0.0144

RZB-R
◦ 0.517 0.0134

f mm 8.387 0.0175
cU pix 329.0 FIXED
cV pix 247.0 FIXED
α ◦ 12.079 0.0078
θ ◦ 0.0 FIXED
L mm 29.878 0.0384
k1 / 0.0656 0.0024
k2 / 0.0 FIXED
p2 / 0.0 FIXED
p1 / −0.0100 0.0003

The convergence of the DEV and Euclidean distances of extrinsic parameters (Teuclid)
for all five measuring repetitions are shown in Figure 11. Since the initial values of the
extrinsic parameters vary among the different measurements, also the initial DEV value
ranges between 2 mm and 6 mm. However, in all cases, at the end of optimization,
it converges below 0.11 mm. The convergence is rapid at the beginning, while it slows
down after a rough approximation of the extrinsic parameters. These parameters are
calculated to the values within 15% of the final values after the first 10 iterations in most
cases. After this, the errors of the intrinsic parameters have a major impact on the deviations.
The jumps in some curves appear when the global optimization mechanism finds a better
local minimum. Due to the same reason, the convergence among different measurements
may differ by more than 50% in terms of the required number of iterations to achieve the
convergence criterion (DEVmax < 0.11 mm). For the sake of illustration of the optimization
algorithm, graphs are shown in all cases up to the 50th iteration when the convergence is
achieved in all cases.

The jumps between local neighbor minima are even more evident from the third
diagram in Figure 11, where convergences of translations (Teuclid) are shown. The initial
value is the same in all measurements, which then converge to the value, which best
describes the position and orientation of the profilometer against the robot.

Further, we analyzed the position-measuring (PM) uncertainty where we used a
second object with easily extractable features to avoid the introduction of additional
measuring uncertainty related to the feature detection. This object was positioned in
another region of the robot’s workspace, rotated for approximately 90◦ around the Z-axis of
base cs. Its shape was the same as the reference plate, and its pose against the base cs was
determined with the same program as for the calibration. The selected position simulates
restrictions inside a robot working space in industrial applications, where a robot is often
positioned near a wall.
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Figure 11. Convergence plot of the merit function (DEV) value and Euclidean distance of hand–eye
translations (Teuclid) during numerical optimization of the transformation parameters. Five curves
represent repetitions of calibration measurements with different hand–eye configuration.

Table 3 shows the average values and corresponding standard deviations of the
measured centers in all three dimensions (XPM, YPM, ZPM). It can be observed that the
scatter is approximately the same as the translation part of the measuring uncertainty of
the reference plate (XB-R, YB-R, ZB-R) shown in Table 2.

Table 3. Position-measurement uncertainty of the second object (N = 5).

Parameter Average 1 Standard Deviation 1

XPM 1061.24 0.092
YPM 44.49 0.038
ZPM −159.66 0.094

Euclidean dist. 1074.10 0.107
1 All values are in mm.

A single-factor analysis of variance (ANOVA) with a 95% level of confidence shows
that the position-measured differences are not statistically significant (p > 0.99) if the
initial extrinsic transformation parameters are randomly varied by ±5◦ and ±7.5 mm in
terms of rotation and translation, respectively, which is inside the range required for the
optimization software to find the optimal parameters on its own, without further operator
interference. It was also found that the initial parameters inside that range have a negligible
influence on the final result.

5.4. Assessment of

The combined standard uncertainty of the entire system (uc) is influenced by mea-
suring uncertainties of basic measuring values and of all transformation parameters. The
basic measuring values are the positions u and v of detected points along with each profile
and the robot pose (TZ-B), which is streamed from the robot controller. There are also robot
rotations, but due to the high accuracy of robot encoders and short distances between
coordinate systems {Z} and {S}, their uncertainties can be neglected.

The uncertainties of u and v were estimated from the measured profiles of the reference
geometry by calculation of root-mean-square deviation (RMSD) of their deviation on the
planar region of the reference geometry near the image center. The resulted values of
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uncertainties are uU = 0.58 pix, and uV = 0.1 pix along U and V direction, respectively.
The robot uncertainty is estimated according to published data of similar industrial robots
within a limited working range [35,36]. If we take into account that less than 100 × 100
× 100 mm of translational and less than ±20◦ of rotational movement is needed, the
assumption that urobot = 0.1 mm is reasonable.

The uncertainties of all optimized transformation parameters and related covariance
and correlation matrices were calculated based on repeated calibration procedures (N = 12).
The measurement of the reference geometry was performed during each calibration, and
the entire geometry was held constant during all repetitions. Figure 12 shows the matrix,
where the upper triangular part (above the diagonal) presents correlations between the
parameters, while the bottom part presents the variances.
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According to GUM [33], combined standard uncertainties related to 3D transformation
were calculated by using the equation for the correlated transformation parameters:

uc.tp
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N

∑
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∑
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∂ f
∂Ci

∂ f
∂Cj

KCiCj (18)

where N is a number of optimized parameters, Ci is ith transformation parameter, ∂ f
∂Ci

is
the sensitivity coefficient of Ci, and K is the covariance matrix (see Figure 12) of repeatedly
measured transformation parameters. Sensitivity coefficients, which describe how the
output measurands (XR, Y, and ZR) varies with the change of the transformation parameters,
were calculated with numerical simulation of small changes in transformation parameters.
Table A2 in Appendix A shows their values along all three axes.

The combined standard uncertainties, which include 3D transformation, laser profile
detection and robot, are then calculated:
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√
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The Euclidean distance is finally used for evaluation of the scalar value of combined
standard uncertainty of each measured point:

uc.Euclid =
√

uc.XR
2 + uc.YR

2 + uc.ZR
2 (22)

The propagation of the resulted standard uncertainty is summarized in Table 4, where
contributions of each subsystem are listed in separate rows, while the columns present the
contributions along separate directions and Euclidean distance the last column.

Table 4. Contributions of each subsystem to the combined standard uncertainty for separate direc-
tions and Euclidean distance.

Subsystem uc.XR
1 uc.YR

1 uc.ZR
1 uc.Euclid

1

Profile detection 0.0000 0.0612 0.0586 0.0847
Robot positioning 0.1000 0.1000 0.1000 0.1732
3D transformation 0.0064 0.0054 0.0083 0.0118

Combined 0.1002 0.1174 0.1162 0.1932
1 All values are in mm.

We can see that uncertainty of 3D transformation has more than seven times smaller
contribution comparing to the profile detection. On the other hand, we can see that robot
uncertainty, which is only a rough estimation, has the greatest contribution to the overall
uncertainty.

5.5. Effect of a Robot Positioning Accuracy

In the last experiment, we replaced the robot arm with a much more accurate 5-axis
CNC milling machine (Deckel Maho, Bielefeld, Germany, DMU 100 monoBLOCK iTNC
530 Heidenhain) in order to study the influence of the robot positioning uncertainty on the
calibration results. We compared the average values of DEV and the position-measurement
uncertainties of the second object for both systems, where the scanning measurements
were acquired from the same relative positions and with the same resolution in both cases.

The comparison of the results is shown in Table 5. It is evident that the DEV is two
times lower when the CNC was used. The average value of the DEV is, in this case,
also two-times smaller than the standard uncertainty of the profile detection (see Table 4,
uc.Euclid.p.d = 0.085 mm), where only the uncertainty of the laser line detection is taken
into account.

Table 5. Comparison of the calibration results in the case of using a 5-axis CNC machine and
robot arm.

Parameter 5-Axis CNC Robot Arm

Average (DEV) 0.051 0.105
Standard deviation (XPM) 1 0.031 0.092
Standard deviation (YPM) 1 0.013 0.038
Standard deviation (Z-PM) 1 0.032 0.094

Euclidean dist. 1 0.046 0.107
1 All values are in mm.

It is a reasonable assumption that the positioning accuracy of the CNC machine is at
least an order of magnitude better than the one of the robot. Therefore, we assume that in
cases of CNC, the positioning uncertainty itself is neglectable compared to the profilometers.
The uncertainties in Table 5, column 5-axis CNC, are uncertainties introduced mainly by
the profilometer and in the robot arm column by the robot.

Comparing with other studies, a single step calibration method of a similar system
based on measuring a checkerboard was recently presented in [21]. The duration of calibra-
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tion is within 10 min and the measurement accuracy within 0.40 mm. More surprising is
their result of position measurement uncertainty of the second object, which is 1.855 mm.

Authors in [20] used a three-step calibration procedure, where they calibrated the
robot kinematic model together with hand–eye parameters, camera and profilometer. They
validated the calibration by measuring the standard sphere platform inside a measuring
area of 700 mm × 500 mm × 400 mm and report an average distance error of 0.216 mm.

The exact values of robot position errors are hard to determine since they depend on
a robot’s position in joint space, and the same Cartesian pose of the profilometer can be
achieved by different joint poses. In our case, the distances between measuring poses are up
to 100 mm, and rotation angles up to 20◦ on a lever of about 250 mm, so position uncertainty
in a range around 0.1 mm is common for industrial robots [36]. Quantitative comparison
of different calibration techniques on the same hardware system would certainly offer the
best way to evaluate the pros and cons of an individual technique, as it negates the impact
of different accuracies of robots and laser profilometers.

This demonstrates that for any further improvement of the robot-based 3D scanning
system, we must first improve the accuracy or the robot-pose measurement. This could be
achieved, for example, with an external real-time pose measurement using a laser-tracker
interferometric device [37] or with more accurate robot arms, specifically designed for
accuracy-demanding applications.

Further, we want to stress out that the presented method solves the hand–eye and
intrinsic calibration, while the robot calibration (Denavit–Hartenberg or D-H parameters)
is not part of it. Therefore, the robot pose is supposed to be accurate within the measured
uncertainty obtained with separate robot calibration. However, a simultaneous robot
calibration is possible using the same approach, where an additional pose measuring
sensor (e.g., laser tracker) or actuator (e.g., CNC) would measure or move the reference
plate in a larger area of the robot workspace.

6. Conclusions

A method for measuring the simultaneous hand–eye and intrinsic parameters of a
laser profilometer mounted on a robot arm was developed. It is based on scanning the
reference geometry with the robot from multiple poses and a numerical minimization of
the deviation between the measured and the reference geometry.

The resulting average deviation was approximately 0.105 mm if the industrial robot
arm was used and 0.05 mm in the case of the highly accurate 5-axis CNC actuator. The stan-
dard deviation of the measured position of the second object was similar to the calculated
deviation (0.107 mm and 0.046 mm for the robot arm and CNC actuator, respectively) and
shows that the calculated deviation actually relates to the measurement uncertainty of the
whole system. Results of random variation of initial values of transformation parameters
(±5◦ and ±7.5 mm in terms of rotation and translation) show excellent repeatability and
robustness of the method due to wide tolerances of the initial values of parameters against
their final values.

The entire procedure, including measurement and calculation, can be completely
automated and lasts less than 10 min. This opens up possibilities for regular on-site
recalibration of the entire system, which is particularly useful in industrial environments,
where any shutdown of the production process is highly undesirable.

The results of this study suggest a further improvement of the proposed optimization
method with the aim of releasing requirements of relatively precise estimation of initial
values of transformation parameters. Implementation of an advanced optimization algo-
rithm, enabling the constraints between correlated parameters, would further improve the
convergence and accuracy of the calibration. Elimination of sharp edges on the reference
geometry would also improve the uncertainty of the laser profile detection.
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Appendix A

Table A1 shows an example of initial values of optimized parameters, corresponding
weights which are used in normalization (see Equation (15)) and randomization intervals
for parameters that are used during searching of the global minimum. These intervals are
defined only for some parameters and represent a plus/minus value around the current
optimal values (see Equation (16)).

Table A1. Initial values of optimized transformation parameters, their weights and randomization
intervals.

Parameter Initial Value Weight Randomization Interval Unit

XB-R 107.30 1.0 0.0 mm
YB-R 1153.00 1.0 0.0 mm
ZB-R −239.30 1.0 0.0 mm

RXB-R 0.000 1.0 0.0 ◦

RYB-R 0.000 1.0 0.0 ◦

RZB-R 0.000 1.0 0.0 ◦

f 8.00 0.1 0.1 mm
cU 329.5 0.1 0.0 pix
cV 247.0 0.1 0.0 pix
α 12.0 0.01 0.1 ◦

θ 0.0 0.01 0.0 ◦

L 30.0 0.01 0.1 mm
k1 0.0 0.01 0.0 /
k2 0.0 0.01 0.0 /
p2 0.0 0.001 0.0 /
p1 0.0 0.001 0.0 /

RXS-Z 7.600 0.1 1.0 ◦

RYS-Z −12.000 0.1 1.0 ◦

RZS-Z 130.000 0.1 1.0 ◦

XS-Z 115.00 1.0 1.0 mm
YS-Z 0.00 1.0 1.0 mm
ZS-Z 220.00 1.0 1.0 mm

Table A2 presents sensitivity coefficients used in Equations (12), (14) and (15), which
describe how the output measurands (XR, Y, and ZR) varies with the change of the transfor-
mation parameters. The coefficients were calculated according to GUM [33] recommenda-
tion using numerical simulation of small changes in transformation parameters.



Sensors 2021, 21, 1037 22 of 23

Table A2. Initial values of optimized transformation parameters, their weights and randomization
intervals.

Parameter (Ci) ∂XR
∂Ci

∂YR
∂Ci

∂YR
∂Ci

Unit

XB-R −1.0 × 100 −8.8 × 10−3 8.2 × 10−3 /
YB-R 9.0 × 10−3 −1.0 × 100 2.0 × 10−2 /
ZB-R −8.0 × 10−3 −2.0 × 10−2 −1.0 × 100 /

RXB-R −2.9 × 10−4 6.6 × 10−2 3.1 × 10−2 ◦/mm
RYB-R −6.6 × 10−2 −5.7 × 10−4 1.2 × 10−2 ◦/mm
RZB-R −3.1 × 10−2 −1.3 × 10−2 0.0 × 100 ◦/mm

f 4.9 × 10−2 3.4 × 10−1 2.9 × 100 /
cU −1.1 × 10−1 7.9 × 10−4 2.0 × 10−3 pix/mm
cV 9.8 × 10−3 6.8 × 10−2 5.9 × 10−1 pix/mm
α 7.1 × 10−2 4.4 × 10−1 3.8 × 100 ◦/mm
θ −1.3 × 10−2 −8.2 × 10−2 −7.1 × 10−1 ◦/mm
L −1.3 × 10−2 −4.4 × 10−2 −3.8 × 10−1 /
k1 −8.3 × 100 −4.5 × 10−1 −1.7 × 10−1 1/mm
k2 −3.7 × 10−1 2.8 × 10−3 6.8 × 10−3 1/mm
p2 1.8 × 10−3 3.7 × 10−1 −4.4 × 10−2 1/mm
p1 −9.6 × 10−2 2.8 × 10−2 −1.3 × 10−3 1/mm

RXS-Z 7.1 × 10−1 −7.0 × 10−1 −6.1 × 10−2 ◦/mm
RYS-Z −7.0 × 10−1 −7.0 × 10−1 −1.4 × 10−1 ◦/mm
RZS-Z 5.6 × 10−2 1.4 × 10−1 −9.9 × 10−1 ◦/mm
XS-Z −1.0 × 100 −8.8 × 10−3 8.2 × 10−3 /
YS-Z 9.0 × 10−3 −1.0 × 100 2.0 × 10−2 /
ZS-Z −8.0 × 10−3 −2.0 × 10−2 −1.0 × 100 /
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