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Generalized vascular collapse can be induced by the infusion of high concentra-
tions of tumor necrosis factor/cachectin (TNF) (1) ; at lower concentrations, lesions
may be localized to particular parts of the vascular tree . Exposure oftumor-bearing
mice to these lower concentrations of TNF, for example, results in intravascular clot
formation confined only to the tumor vascular bed (2). This observation raises ques-
tions about mechanisms that direct the action of TNF within the vasculature .

Endothelium is a target of cytokines, such as TNF, which are central mediators
ofthe host response . Quiescent endothelium maintains vascular fluidity and consti-
tutes a barrier to the escape of solutes and cellular elements of the blood from the
intravascular compartment. Exposure to TNF, however, activates specific endothelial
cell-dependent mechanisms in vitro and, presumably, in vivo contributes to the inflam-
matory response : these include promotion of leukocyte adhesion and coagulation,
and an increase in monolayer permeability (1, 3-5) .

Although in vitro experiments would suggest that the endothelial response to TNF
is uniform, it is evident that a characteristic feature of the host response is its local-
ization to particular sites of the vascular tree. Induction of endothelial growth/mo-
tility occurs in regeneration after damage to the endothelial monolayer and in an-
giogenesis, whether reparative, or in the neovascularization of a tumor. We have
found that such proliferating and/or motile endothelial cells would constitute a selective
target for TNF. The studies reported here demonstrate that compared with quies-
cent cultures, endothelial cells in the growth and/or motile state have enhanced re-
sponsiveness to and increased affinity forTHE In parallel, crosslinking studies showed
two additional bands on autoradiograms from SDS-PAGE of cell-bound 1251TNF.
These data suggest a model by which an injury or neoplastic focus, resulting in in-
duction of endothelial growth or motility, renders these cells more sensitive to per-
turbation by TNF, and offers insight into a possible mechanism by whichTNFeffects
are targetted within the vasculature .
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Materials and Methods
Reagents .

	

Recombinant human TNF (-108 U/mg) was generously provided by Dr. P
Lomedico of Hoffmann-LaRoche (Nutley, NJ), and this preparation was homogeneous on
SDS-PAGE and distinct from lymphotoxin . TNF was radioiodinated by the lactoperoxidase
method (6) by mixing TNF (100 Ag) with lactoperoxidase-glucose oxidase beads (0.05 ml ;
Bio-Rad Laboratories, Richmond, CA), glucose (0.025 ml ofa 2% solution), and phosphate
buffer (0.05 ml ; 0.2 M; pH 7.2) for 1 .5 min at VC. The reaction was stopped by removal
of the beads by centrifugation, and free iodine was separated by gel filtration on a Sephadex
G-25 column pre-equilibrated with Tris-buffered saline (20 mM Tris, pH 7 .4, 0 .1 M NaCI)
followed by exhaustive dialysis in the same buffer. The specific radioactivity of the tracer was
4,800-6,000 cpm/ng over eight iodinations, and autoradiograms prepared from SDS-PAGE
(7) (7.5% ; see Fig . 7, lane F) showed a single major band on reduced gels corresponding
to an M, -17,000 . Pilot experiments indicated that TNF radiolabeled by this method bound
to endothelium in a manner comparable to TNF radioiodinated using 1,3,4,6-tetrachloro-
3a, 6a-diphenyl glycoluril (8), which we used in a prior study (9) . Monospecific polyclonal
antibody to TNF was generously provided by Dr. D. Blohm (Badische Anilin-und Sodafabrik,
Ludwigshafen, FRG) .

Antibody to bovine thrombomodulin was prepared from purified thrombomodulin (10)
in rabbits by standard procedures (11) . Murine mAb to bovine tissue factor was prepared
as described (12). Vinblastine and colchicine were obtained from Sigma Chemical Co. (St .
Louis, MO). Bovine protein C, thrombin, and antithrombin III were purified by previously
described methods (13) . Tritiated inulin (271 mCi/g) was purchased from New England Nu-
clear (Boston, MA).

Cell Culture.

	

Bovine aortic endothelial cells were isolated from calf aortas as described
(14) and were grown in MEM (Flow Laboratories, Rockville, MD), supplemented with
penicillin-streptomycin (50 U/ml to 50 p,g/ml), glutamine (1%), and FCS (15%; HyClone
Laboratories, Logan, UT). Cells were grown in a humidified, 5% C02 atmosphere and were
transferred either by trypsinization or by exposing the cells to EDTA (1 mM). For experi-
ments, cells (passages 2-10) from different aortas were grown to the indicated density in 35-
mm dishes (for tissue factor assays), 24-well (for TNF radioligand binding studies and throm-
bomodulin assays), or Transwell plates (6.5-mm polycarbonate membranes, with a pore size
of 0.4 /Am, mounted on polystyrene inserts; Costar, Cambridge, MA) . Cell densities were
determined from duplicate wells electronically using a Coulter Counter (model ZM; Coulter
Electronics, Hialeah, FL) . For morphologic studies, cells were grown on coverslips inserted
in 35-mm dishes . Cultures were characterized as endothelial by the formation ofcobblestone-
like monolayers, contact inhibition at confluence, and the presence ofvon Willebrand factor,
protein S, and thrombomodulin (14-17) .
Wounding ofendothelial monolayers was carried out using a 2-mm cork borer (18) . Labeling

index was determined using a kit from Amersham Corp . (Arlington Heights, IL) . According
to this procedure cultures are allowed to incorporate 5-bromouridine, which is then detected
using a specific antibody and the peroxidase method for visualization of labeled cells.

TNFRadioligand Binding Studies.

	

Binding studies were carried out by washing monolayers
three times over 15 min with MEM containing HEPES (10 mM, pH 7.4) and BSA (1 mg/ml) .
cooling cultures to VC, and then adding the same buffer such that monolayers were com-
pletely covered with fluid . Where indicated, cultures were preincubated with either colchi-
cine or vinblastine before the binding study was performed . Irradiation was carried out using
a Siemens x-ray machine. ' 25 ITNF was then added either alone (total binding) or in the pres-
ence of excess unlabeled TNF (a 100-fold molar excess ; nonspecific binding) . After 2 h at
4oC, cultures were washed rapidly 10 times with the same buffer used for binding and then
solubilized with SDS (2%) . Specific binding, total minus nonspecific binding, was then fit
to the equilibrium binding equation B = nKa/(1 + Ka) (19), where B is the amount of
specifically bound ligand, n is the number ofbinding sites per cell, a is the free concentration
ofradioligand, and K is the association constant . A nonlinear least-squares program was used
to obtain the best fit curve, to solve for n and K, and to determine the standard error. These
methods have been used by us previously to perform equilibrium binding studies of '2sI-
TNF-endothelial cell interaction (9) .
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Crosslinking Studies .

	

Crosslinking studies were carried out using disuccinimidyl suberate
(Pierce Chemical Co., Rockford, IL) using the method described by Kull et al . (20) . In brief,
a radioligand binding assay was performed as described above and monolayers were washed
10 times with HBSS and allowed to incubate for 20 min in the presence of the crosslinking
agent (0.5 mM) at room temperature . Cultures were then washed five times with ice cold
HBSS containing PMSF (1 mM), scraped with a rubber policeman, and pelleted by centrifu-
gation . The pellet was solubilized using SDS (2%) containing PMSF (1 mM), boiled for 10
min, recentrifuged, and the suprenatant was subjected to SDS-PAGE (7.5%) (7) . Controls
were carried out in which TNF (0.5 nM) was incubated for 20 min at room temperature
with disuccinimidyl suberate at the same concentration as above, but in the absence of cells .
Samples of this reaction mixture were also obtained for SDS-PAGE .

Thrombomodulin Assays.

	

Thrombomodulin assays were performed by a previously described
method (21) . In brief, cultures were washed four times in balanced salt solution and then
incubated for 45 min at 37°C in 10 mM Hepes, pH 7 .45, 137 mM NaCl, 11mM Glucose,
4 mM KCI, 2 mM CaC12, and 2 mg/ml BSA containing protein C (100 Jig/ml) and thrombin
(0 .1 U/ml) . Formation of activated protein C was terminated by the addition of antithrombin
III (100 Wg/ml)/heparin (1 U/ml) and the amount of enzyme formed was determined using
a chromogenic assay, hydrolysis of the substrate Lys-Pro-Arg-p-nitroanilide (Spectrozyme,
American Diagnostica, New York, NY) . Enzyme concentration was determined by compar-
ison with a standard curve made in the presence of known amounts of activated protein C .

Tissue Factor Activity.

	

Tissue factor activity of endothelial cell monolayers was determined
using a coagulant assay after detaching cells from the growth surface by scraping as described
previously (22) . In brief, after washing monolayers to remove the incubation mixture, cells
were scraped with a rubber policeman and suspended in barbital-buffered saline . Cells were
washed twice, by centrifugation, and resuspended in the same buffer, and finally suspended
in 0 .1 ml ofbarbital-buffered saline . A two-stage coagulant assay was then carried out as de-
scribed previously (22) . Incubation of cells with the mAb to bovine tissue factor (12) blocked
endothelial procoagulant activity induced in response to TNF, indicating that tissue factor
was responsible for the procoagulant activity. Quantification of induced tissue factor was ac-
complished by comparing clotting times with a standard curve generated with known amounts
of purified tissue factor (23) .

Barrier Function .

	

Barrier function of confluent or postconfluent monolayers in Transwell
inserts was studied by washing cultures with Earle's balanced salt solution and then adding
MEM containing fatty acid-free BSA (1% ; Sigma Chemical Co.) to each compartment
(avoiding an oncotic gradient ; this method has been described in detail previously (24]) . Final
volumes present in the inner and outer (corresponding upper and lower, respectively) chambers
were adjusted to yield no hydrostatic gradient across the monolayer. Radiolabeled inulin was
then added in trace concentrations (3 tog/ml) in the presence or absence of TNF. The mixture
was then incubated at 37°C in a 5% C02 atmosphere with continuous agitation and samples
(0.005 ml) were withdrawn at the indicated times . Sampling of wells changed volume in
chambers during the experiment by <5% . Transport oftracers from the inner to outer chamber,
i .e., across the endothelial monolayer, was determined by dividing radioactivity in the outer
well by radioactivity in the inner well (measured from duplicate 0.005 ml samples from each
well) . Data were normalized by dividing transport of tracer observed across TNFtreated
monolayers by that observed in the matched set of untreated monolayers. Wells were also
sampled within 5 min of tracer addition to establish a background level in order to exclude
"damaged" monolayers from the experiment.

Microscopy.

	

Cell monolayers grown on coverslips were fixed in 3 .5°Jo paraformaldehyde
in PBS, pH 7.2, containing 0.1% NP-40 for 5-10 min and then washed in PBS . For visualiza-
tion of Factin, coverslips were incubated with rhodamine-conjugated phalloidin (Molecular
Probes, Junction City, OR) for 30-45 min, washed in PBS, and mounted ,in Gelvatol con-
taining 1 mg/ml p-phenylenediamine . Mounted coverslips were examined in a Leitz Dialux
20 microscope with a 2.4 Ploempak filter block and water immersion fluorite objectives, and
recorded on Kodak Tri-X film . Immunofluorescence for TNF, thrombomodulin, and tissue
factor was carried out by the procedures previously described to visualize endothelial cell
protein S (16) . Cell surface bound TNF was also visualized by scanning electron microscopy.
TNF-colloidal gold conjugates were prepared as described (9) and bound to the endothelial
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cell surface during a 2-h incubation at 4°C. Monolayers were fixed in 2.5°70 glutaraldehyde
in 0.1 M cacodylate buffer for 30 min, postfixed in 2% osmium tetroxide, dehydrated in eth-
anol, dried from Pel-Dry (Ted Pella Inc., Redding, CA); and viewed in aJeol T300 scanning
electron microscope .

Results
TNF-inducedModulation ofEndothelial Cell Function: Comparison ofSubconfluent, Confluent,

and Pbstconfluent Cultures. TNF can modulate endothelial cell surface coagulant prop-
erties by several mechanisms, including suppression of the anticoagulant cofactor
thrombomodulin and induction of the procoagulant cofactor tissue factor, which
potentially results in promotion of coagulation on the vessel surface (1, 3-5) . At a
low concentration ofTNF (0 .1 nM), thrombomodulin was suppressed in subconfluent
cultures (2 d after plating; labeling index 30% ; 3.6 x 104 cells/cm 2) with a decrease
in cell surface activity of -65% after 8 h (Fig. 1, lower left inset) . In contrast, cultures
that had just achieved confluence (4 d after plating; labeling index 2-5% ; 4.8 x
104 cells/cm2) were less responsive, with a decline in thrombomodulin activity of
only N25% ; and late postconfluent cultures (14 d after plating; labeling index <1%;
2 x 105 cells/cm2) showed little if any response. These results led us to examine the
response of endothelium to a higher concentration of TNF (Fig . 1, right upper inset) .
At a concentration of 10 nM, TNF induced similar suppression ofthrombomodulin
in subconfluent, just confluent, and postconfluent cultured endothelium. In experi-
ments carried out with a wide range of TNF concentrations (Fig. 1), half-maximal
suppression of endothelial cell surface thrombomodulin activity occurred at TNF
concentrations of -0.1, 1.0, and 2.0 nM, respectively, in subconfluent, confluent,

FIGURE 1 . Effect of the growth
state of endothelium on TNFin-
duced suppression ofthrombomod-
ulin . Endothelial monolayers (sub-
confluent, C, + ; confluent, B, 9 ;
late postconfluent, A, /) were in-
cubated with the indicated concen-
tration of TNF and after 8 h of
thrombomodulin activity, throm-
bin-mediated activated protein C
formation was assessed as described
in the text . Cultures were classified
based on the number of days after
plating, the number of cells per
cm2 and the labeling index: sub-
confluent (2 d after plating, 3.6 x

10 4 cells/cm2 , labeling index 30%), confluent (4 d after dating, 4.8 x 10 4 cells/cm2 , labeling index
2-5%), early postconfluent (7 d after plating, 1.3 x 10 cells/cm2, labeling index 1-2%), and late
postconfluent (14 d after plating, 2 x 105 cells/cm2, labeling index <1%) . Early postconfluent cells were
only used in selected experiments . Results are expressed as percent of maximal suppression of throm-
bomodulin activity. The mean and SEM is shown. (Inset lower ltft) Time course of TNFinduced sup-
pression of thrombomodulin with subconfluent (C, *), confluent (B, " ) and late postconfluent (A,
N) endothelial cultures. Cultures were incubated with TNF (0.1 nM) forthe indicated times and thrombin-
mediated protein C activation was assessed as described in the text . Results are expressed as percent
maximal suppression ofthrombomodulin activity as above. (Inset upperright) Time course ofTNFinduced
suppression of thrombomodulin as in lower left inset except that the TNF concentration was 10 nM . In
each case the mean of triplicates is shown and SD was <15% .



and late postconfluent cultures . Suppression of thrombomodulin activity was paral-
leled by a fall in total cell-associated thrombomodulin antigen (data not shown) .
Comparing these results, the effectiveness of TNF for modulating endothelial cell
thrombomodulin appears to be -20 times greater on growing than postconfluent,
quiescent cultures.

Several mechanisms uncterty the erect of 1 ivr on tnromaomoauhn, indicaing
accelerated degradation, shedding ofcell surface thrombomodulin, and suppression
of synthesis (25-27). This led us to examien whether TNFinduced modulation of
endothelial cell tissue factor, which involves de novo synthesis (21, 28), would also
vary with the growth state ofendothelial cell cultures (Fig . 2) . Subconfluent cultures
exposed to TNF showed half-maximal induction oftissue factor activity at a concen-
tration of -0.2 nM; in contrast, confluent and late postconfluent cultures showed

effect at 1-2.5 nM. Thus, growth state appears to be a deter
dothelial cell sensitivity to TNF, both in terms of the induction of tissue factor and
suppression of thrombomodulin .

Maintenance of a barrier against passage of solutes from the intravascular space
to the interstitium is an important homeostatic property of the endothelial cell
monolayer. A general characteristic ascribed to newly formed blood vessels is in-
creased "leakiness" indicating that barrier function has not attained optimal levels.
This observation, taken together with previous work showing that TNF can perturb
endothelial cell barrier function to permit the passage ofmacromolecules and lower
molecular weight solutes (24, 29-30), led us to compare the effect ofTNF on confluent
and late postconfluent cultures (Fig . 3) . When confluent cultures (monolayers that
had just achieved barrier funct
the passage of [3H]inulin could be observed within 1 h, as compared wi
confluent cultures, and was increased twofold by 2-3 h. In contrast, late postconfluent
cultures showed a slower response : increase in permeability, as compared with un-
treated postconfluent cultures, was not evident until 3-4 h after exposure to THE
Furthermore, the extent ofincreased passage oftracer across postconfluent monolayers
was only 50% of that observed in confluent cultures .

Coincident with TNFinduced perturbation of monolayer barrier function, there
was an alteration in cell shape/cytoskeletal organization . Subconfluent endothelial
cells are polar to polygonal, with prominent lamellae, sublamellar microfilament

FIGURE 2.
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FIGURE 3 .

	

TNFinduced modulation of endothelial monolayer
permeability: comparison ofconfluent (A, *) andlate postconfluent
(B, ") cultures . Endothelium was incubated with TNF(0.5 nM)
for the indicated times and passage of [3H]inulin across the
monolayers was determined as described in the text . Character-
ization of confluent and late postconfluent cultures is described
in the legend to Fig. 1 . Cultures achieved cell-cell apposition N4
d after plating. The mean t SEM is shown.

arcs, and oriented stress fiber arrays (Fig . 4 A) . At confluence, cultures form a con-
tiguous monolayer with actin-based cytoskeletons characterized by parallel central
stress fiber arrays and prominent circumferential stress fiber bundles (Fig . 4 C) .
Postconfluent endothelial cells form tightly apposed monolayers with dense mar-
ginal actin bands and few central stress fibers (Fig . 4 E) . After TNF treatment of
endothelial cultures (Fig . 4, B, D, and F), circumferential stress fibers were lost,
central stress fibers become fragmented, and actin aggregates appeared in the pe-
ripheral cytoplasm. These changes were most marked in the subconfluent and just
confluent cells (Fig . 4, B and D), consistent with the hypothesis that these cells have
increased sensitivity to TNF compared with postconfluent cultures (Fig . 4 F) .
Taken together, these data showed that the response of endothelium to TNF was

dependent on the growth/motile state ofthe cultures : subconfluent cultures appeared
to be more sensitive to the effects of TNF than postconfluent cultures, possibly due
to a difference in the apparent affinity ofthe endothelial cell forTNFin growing/motile
and quiescent cultures . To assess the basis for this differential responsiveness of en-
dothelium to TNF, expression ofendothelial cell surface TNFbinding sites/putative
receptors was examined .

FIGURE 4.

	

TNF-induced perturbation of the actin-based cytoskeleton, cell shape, and apposi-
tion in subconfluent (A-B), confluent (C-D), and late postconfluent (E-F) endothelial cell cul-
tures. Cultures were incubated for 2 h in medium alone (A, C, E) or medium supplemented with
TNF (0 .5 nM) (B, D, F) . Cultures were classified based on confluency as described in the legend
to Fig. 1 . After the incubation period, the actin-based cytoskeleton was visualized by rhodamine
phalloidin staining. Details of methods are described in the text. The subconfluent motile cells
(A) exhibit polar/lamellar extensions proximal, sublamellar microfilamentous arcs, and axially
oriented stress fiber arrays. At confluence (C), these endothelial cells characteristically have sub-
marginal circumferential stress fibers that do not approach the cellular margins, and fewer, un-
oriented central stress fibers . At postconfluence (E), the peripheral microfilament bundles are
chiefly marginal (at the cell-cell appositions), and there are few or no central stress fibers . Dis-
ruption of the organized actin-based arrays induced by TNF is evident in cells of subconfluent
(B) and confluent (D) monolayers ; in the latter, retractile change of shape and the opening of
intercellular gaps is evident . Postconfluent cells (F) are much less responsive to the shape and
cytoskeletal changes induced by TNF. x650 .
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Binding of TNF to Endothelium: Induction of High Affinity Cell Surface Binding
Sites. Radioligand binding studies using 1251TNF were performed under equilib-
rium conditions using subconfluent, confluent, and early and late postconfluent
monolayers, as described in the legend to Fig. 1 (Fig . 5). 2 d after subculture, the
apparent Kd of TNF-cell surface binding to subconfluent endothelium was -0.12
nM. As cells remained in culture for longer periods, the affinity ofTNF-endothelial
cell interaction appeared to decrease : at 4 (confluent), 7 (early postconfluent), and
14 d (late postconfluent) after plating the apparent Kds were -0.27, -0.85, and
-1.87 nM, respectively. When a series of six representative TNF binding experi-
ments with cells derived from different calf aortas and different passages were com-
pared, the affinity of TNRendothelial cell binding appeared to decrease from 6- to
16-fold from the subconfluent to the late postconfluent state. There was also a change
in receptor number as the cells grew to confluence consisting of less than a twofold
decrease in binding sites (Fig . 5) .
One important consideration was whether these changes in TNF binding to en-

dothelium reflected better access of ligand to the receptor in subconfluent cultures
as compared with tightly packed late postconfluent cultures . To address this issue,
radioligand binding studies were carried out in suspension using endothelial cells
released from the culture surface by exposure to EDTA-containing buffer. Under
these conditions, cells derived from subconfluent cultures still displayed higher affinity
binding sites than cells derived from late postconfluent cultures (apparent Kds were
-0.2 and -1.5 nM, respectively), the total number of TNF molecules bound to sus-
pended cells followed the same pattern observed with adherent cells . The decreased
affinity of confluent/postconfluent cultures for 1251TNF was not due to endothelial
cell-dependent processing of the tracer. When the supernatant of 1251TNF binding
mixtures previously incubated with late postconfluent cultures was subsequently ex-
posed to subconfluent cultures, high affinity binding comparable to that observed
with tracer not previously exposed to endothelium was observed (data not shown).

FIGURE 5 .

	

Binding of 1251TNF
to endothelium: comparison of
subconfluent (#), confluent (N),
early (0), and late postconfluent
cultures (" ) . (A) Endothelial
monolayers were incubated for 2 h
at 4°C with the indicated concen-
trations of 1251TNF alone (total
binding) or 1251TNF in the pres-
ence of a 100-fold molar excess of
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binding) . The binding assay was
carried out as described in the text .
Specific binding (total minus

nonspecific binding) is plotted versus free 125 1TNF. Data were analyzed by the nonlinear least squares
program and the curve indicates the best fit line. Cultures were classified based on confluency as de-
scribed in the legend to Fig. 1 . (B) Scatchard analysis of the data shown in A . Parameters of binding,
Kd and the number of molecules bound per cell, follow : preconfluent (2 d after plating; 0 .12 t 0.02
nM; 5 .6 t 0 .2 x 10 3 molecules/cell), confluent (4 d after plating, 0.27 t 0.02 nM, 5.4 t 0 .2 x 10 3
molecules/cell), early postconfluent (7 d after plating, 0.85 t 0.02 nM, 4 .3 t 0.1 x 10 3 molecules/cell),
and late postconfluent (14 d after plating, 1 .87 t 0.03 nM, 2 .7 t 0.4 x 10 3 molecules/cell).
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Conversely, when 125ITNF that had been exposed to subconfluent cultures was then
incubated with late postconfluent monolayers, binding was the same as that observed
with fresh tracer. These data indicate that the change in affinity ofTNF-endothelial
cell interaction as cells move from the sub- to postconfluent state is not due to
modification ofthe ligand, but rather occurs due to a change at the level ofthe celular
receptor.

To assess TNF-endothelial cell interaction at the morphological level, cell-bound
TNF was visualized in subconfluent and late postconfluent cultures (Fig . 6) . For
immunofluorescence, endothelium was incubated with alow concentration ofTNF
(to promote occupancy of high affinity TNF binding sites) for 1 h at 4°C and then
after 5 min at room temperature (during which time culstering/patching presum-
ably occurred, facilitating visualization of the ligand) fixation was carried out. In-
direct immunofluorescence staining of cultures using antiTNF IgG demonstrated
greater staining of subconfluent than late postconfluent cultures (Fig . 6, A-B) . In
view of recent data indicating that cytokines can modulate membrane fluidity (31),
we also carried out experiments in which TNF-colloidal gold conjugates were bound
to the cell surface and visualized by electron microscopy (in this case, visualization
of the ligand is independent of receptor redistribution) . At low concentrations of
TNF, TNF-gold particles were consistently observed only on subconfluent endothelial
cultures (Fig . 6, C-D) . These results support the data from the radioligand binding
studies and suggest that there is a higher affinity of TNF for its cell surface binding
sites on growing endothelium .

To gain insight into molecular mechanisms responsible for formation ofthe high
affinity cell surface binding site, crosslinking studies were carried out (Fig . 7) . Late
postconfluent monolayers (lane A) demonstrated two bands, corresponding to Mr
-90,000 and -108,000, which were similar to those observed in other crosslinking
studies (1, 20, 32-34) . Subconfluent cultures consistently showed two additional bands
corresponding to Mr -66,000 and -84,000 (lane B) . Addition of excess unlabeled
TNF blocked in parallel binding of 1251TNF to the cell surface and the appearance
of these four bands on autoradiograms (lanes C-D) . Since TNF has been reported
to form multimers (35-36), it was important to compare these results with studies
performed in the absence of cells : none of the four bands (corresponding to Mr of
-66,000, -84,000, -90,000, and -108,000) were observed when radioiodinated TNF
was incubated with the crosslinking agent in the absence of cells (lane E), although
bands corresponding to Mr -35,000 and -52,000, representing TNF dimer and
trimer, were seen (in lanes A-E, TNF monomer, Mr -17,500, was allowed to run
off the gel) . The initial tracer, '25 ITNF, in the absence of crosslinker, demonstrated
only a single band with Mr -17,500 (lane F) . These results are consistent with the
hypothesis that subconfluent cells express new polypeptides on the cell surface, with
which TNF becomes associated .

Role of the Growth State and Cytoskeletal Organization/Cell Shape in Expression of High
Affinity TNF Binding Sites . Since growing endothelial cells are in a radially ex-
tended/motile configuration (37-38), it was important to distinguish between the
contribution made by alterations in cell shape/Cyoskeletal configuration, and that
related to the proliferative state of the cell (i .e ., cell cycle, entry into S phase), on
the expression ofhigh affinity TNF binding sites (39) . To address this question, cul-
tures were irradiated to block proliferation and TNF-endothelial cell interaction was
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FIGURE 6.

	

Visualization ofTNF bound to subconfluent (A and C) and late postconfluent (B

and D) endothelial monolayers by immunofluorescence and electron microscopy. (A-B) Im-
munofluorescence . Endothelial cultures (subconfluent [A] and postconfluent [B]) were incubated
with TNF(0 .3 nM) for 1 h at 4°C, washed, and then after 5 min at room temperature, fixation
was carried out. TNFwas visualized by adding rabbit antiTNF antibody and FITC-conjugated
anti-rabbit IgG. Cultures were characterized based on confluency as described in the legend to
Fig. 1 . Details ofmethods are described in the text . Magnification: x650 . (C-D) Scanning elec-
tron microscopy. Endothelial cells (subconfluent [C] and postconfluent [D]) were incubated with
TNT (0.1 nM) conjugated to colloidal gold particles for 1 h at 4°C as described inthe text . Demar-
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FIGURE 7.

	

Crosslinking of 1251-TNF to endothelium : comparison
of subconfluent and late postconfluent cultures. Endothelial
monolayers were classified based on confluency as described in the
legend to Fig. 1 . Cultures were incubated with 1251TNF(0.7 nM)
alone or in the presence of a 100-fold molar excess of unlabeled
TNFfor 2 h at 4°C. Cells were then washed, crosslinked, solubi-
lized, and subjected to SDS-PAGE followed by autoradiography
as described in the text . (A) Late postconfluent endothelial culture
incubated with 1251TNF alone ; (B) Subconfluent endothelial cul-
ture incubated with 1251TNF alone; (C) same as A, but the
binding study was carried out in the presence of excess unlabeled
TNF; (D) same as B, but the binding study was carried out in

the presence of excess unlabeled TNF; (E) 1251-TNF (0 .7 nM) incubated with crosslinker under the same
conditions as described above, but in the absence of cells ; (F) 1251TNF after radiolabeling (no cross-
linking or exposure to cells) . In A-E, the monomeric form of TNF (Mr -17,500) was allowed to run
offthe gel . Arrows on the left point to bands seen in lane Acorresponding to Mr -90,000 and -108,000,
and in lane B corresponding to Mr 66,000, 84,000, -90,000, and -108,000 . Approximate molec-
ularweights were determined by comparing mobilities ofthe above bands with that ofstandardproteins
run simultaneously: myosin heavy chain (Mr 200,000), phosphorylase B (Mr 97,400), BSA (Mr 68,000),
ovalbumin (Mr 43,000), and a-chymotrypsin (Mr 25,700) .

studied (Figs . 8-9) . Subconfluent cultures irradiated with 1,100 rad and then main-
tained in culture for up to 12 d had a labeling index of -0% (Fig . 8) . No increase
in cell number was observed until after 12-14 d, consistent with the previously reported
effect of irradiation on cultured endothelium (40) . Expression of high affinity TNF
binding sites was maintained for the next 7 d (at 4 d, Kd -0.08 nM; at 7 d, Kd -0.14
nM) with only a small decrease in affinity 14 d later (Kd -0.37 nM). Furthermore,
these cells displayed an effective TNF response, assessed in terms of thrombomodulin
suppression (data not shown) .

Conversely, when late postconfluent cultures expressing lower affinity TNFbinding
sites (Kd -2 .1 nM) were irradiated and then replated at subconfluent density, with
radial extension and motility, high affinity receptors for TNF were induced (Fig .
9) . For these experiments, cultures were irradiated, allowed to recover for 2 d, then
subcultured at equal density and maintained for 3 d more before the radioligand
binding study. Such cultures, irradiated with 1,100 rad (labeling index <0.1%), had
binding sites for 1251TNF with Kd -0.08 nM, compared with Kd -0.16 nM for cul-
tures irradiated with 880 rad (labeling index 0.1-0.5%) and Kd -0.25 nM for 660
rad (labeling index -0.5%) ; in nonirradiated controls the Kd was -0.2 nM. Cul-
tures with the lowest cell density, in which the cells were maximally extended (those
irradiated with 1,100 rad in which cell division was most completely suppressed),
demonstrated the highest affinity TNF binding sites . Whereas, cultures irradiated
with 660 rad, which were still capable of cell division after subculturing and had
achieved a higher cell density when the 1251TNF binding assay was performed 3

cated areas in C-D are shown at higher resolution in the insets on the right. Cell surface-bound
TNFcolloidal gold particles (arrow heads) are demonstrated in the inset to C . Addition of an 100-
fold molar excess of TNF not bound to gold particles blocked binding of TNFgold particles to
endothelium by >90% . x2,000 ; inset, x15,000.
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d later, showed a slightly lower affinity for TNF. Parallel functional studies showed
that thrombomodulin was as effectively suppressed by TNF in irradiated cultures
as in the subconfluent cultures (Fig . 1) where there was expression of high affinity
TNF sites (data not shown) . These data indicated that expression of high affinity
TNF binding sites did not require cellular proliferation, but appeared to be cor-
related more closely with changed cell shape and assumption of the motile or radi-
ally extended configuration .

Perturbation of the microtubule network in postconfluent endothelial cultures by
agents such as vinblastine or colchicine leads to exaggerated lamellar activity, dis-

3.6
3.,.2~

W
2.4
2.0
1 .6
L2
O.E
L4

FIGURE 9. Effect of radiation-
r B

	

induced arrest of endothelial cell
proliferation on the expression of
TNF bindingsites by postconfluent
cultures. (A) Late postconfluent cul-
lures (see Fig 1 legend) were ir-.,

I
._11,

	

)@

	

radiated with either 660 (A), 880
`''4

	

"

	

(" )

	

1100 (/)ditid.

	

or

	

ra manane,,,

FIGURE 8. Effect of radiation-
induced arrest of endothelial cell
proliferation on the expression of
TNTbinding sites by subconfluent
cultures. (A) Subconfluent cultures
were irradiated 2d after plating with
1,100 rad, maintained in culture
and then radioligand binding
studies with [251TNFwere carried
out when indicated: nonirradiated

in culture for 2 d, and then subcul-
tured to a subconfluent density (3 .5_

0 OA LO L2 1.6 2.1 2 .4 2.0 3.2

	

0

	

2100

	

410

	

6100

	

x 10 4 cells/cm2). 3 d later a TNF
1251-TNF FREE, X01

	

1251-TNF BOUND, OIOLECULES/CELL

	

radioligand binding study was car-
ried out. Specific binding is plotted
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ruption of cell-cell contacts, and radial extension (our unpublished observation) fol-
lowed by induction of DNA synthesis (18) . This led us to examine the effects ofthese
agents on the induction of high affinity TNF binding sites (Fig . 10). Dismantling
of microtubules by incubation of late postconfluent cultures (Kd for TNF of -1 .43
nM) with vinblastine for 8 h, followed by washing anda 22-h exposure to fresh medium,
resulted in the induction of high affinity TNF binding sites (Kd -0.14 nM); simi-
larly, exposure of cultures to colchicine also increased the affinity of TNF for late
postconfluent monolayers (Kd -0.19 nM). At the time the TNF binding assay was
performed, 22 h after addition of fresh medium, monolayers displayed alteration
in cell shape and the actin-based cytoskeleton (i .e ., loss of tight cell-cell apposition,
loss of marginal actin bands, and induction of axial stress fiber arrays), but no in-
crease in labeling index. At longer times (>36 h), a considerable increase in the
labeling index (-30%) was observed. These data lend support to the hypothesis that
cytoskeletal organization/cell shape may play an important role in determining the
expression ofhigh affinity TNF binding sites on endothelium, even before the initia-
tion of cell division and/or DNA synthesis .

Wounding of an Endothelial Cell Monolayer: Effect on a TNF-Endothelial Cell Interac-
tion. These results suggested a mechanism for localizing TNF action within en-
dothelial cultures : local stimulation of endothelial cell growth/motility, in response
to injury, could enhance expression of high affinity TNF receptors and in parallel
magnify theTNFresponse. To test this, a late postconfluent monolayer waswounded
by physically removing a section of the culture, allowed to recover for 36 h, and
then exposed to a low concentration ofTNF (0.3 nM) (Fig . 11, A-F) . Cells that had
migrated into the wound (corresponding to zone 1) (38, 41-42) or those near the
wound edge (corresponding to zones 2 and 3) showed enhanced immunofluores-
cence staining forTNF(Fig . 11 A), compared with cells further back from the wound
(corresponding to zone 4) (Fig . 11 B) . In addition to increased TNF binding, the
cells in zones 1-3 had perturbed coagulant properties : there was enhanced im-
munofluorescence staining for tissue factor after exposure to TNF in cells close to
the wound (zones 1-3, Fig. 11 C), compared with cells further away from the wound
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FIGURE 11 .

	

Wounding of a late postconfluent endothelial cell monolayer: effect on TNFassoci-
ation and responsiveness . Quiescent, postconfluent endothelial monolayers were wounded as de-
scribed in the text . Then, they were exposed to either medium supplemented with 0.3 nM TNF
(A-F) or fresh medium alone (C and H). Immunofluorescence studies for cell-associated TNF,
tissue factor, and thrombomodulin were carried out. (A and B) TNF binding: cultures were in-
cubated with TNF at 4°C for 1 h followed by washing, 5 min at room temperature, fixation,
and immunofluorescence staining for TNF of cells at the wound edge (A) or quiescent cells fur-
ther away from the wound edge (B); (C and E) tissue factor expression after TNF: cultures were
incubated with medium supplemented with TNF at 37°C for 8 h followed by immunofluores-
cence staining for tissue factor of cells at the wound edge (C) or quiescent cells further away from
the wound edge (E); (D and F) thrombomodulin expression after TNF: cultures were incubated
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edge (zone 4; Fig. 11 E) or cells close to the wound in control cultures (no TNF
added; Fig. 11 G) . The latter control was important, since growing cells have been
shown to have more tissue factor than quiescent cultures (12), although this is clearly
less than that observed in the presence of TNF Suppression of thrombomodulin
was also accentuated after exposure to TNF in cells at or near the wound (Fig . 11
D), compared with cells further away from the wound (Fig . 11 F) or cells close to
the wound in control cultures (no TNF; Fig. 11 H) . Endothelial cells that showed
enhanced TNF binding and modulation of coagulant properties had also assumed
the motile configuration with concomitant rearrangement of the actin-based
cytoskeleton (as described in Fig. 4 A) . These observations emphasize the strong
association between induction ofhigh affinity TNF binding sites and the alteration
in cell shape/cytoskeleton .

Discussion
Endothelial cells respond to TNFby modulating coagulant function, barrier prop-

erties, and a range of other activities that allow them to participate actively in the
host response (1-3, 5) . These studies demonstrate that the endothelial cell response
to TNF can be regulated by alterations in cytoskeletal organization/cell shape and
is correlated with induction of the motile configuration . Cultured endothelium in
the growth state, which display an extended, motile form, express high affinity en-
dothelial cell surface TNFbinding sites whose occupancy correlates closely with modu-
lation of endothelial cell coagulant properties . Although TNF could induce similar
modulation of cellular properties in quiescent, postconfluent cultures in contact in-
hibition, about 15-fold higher concentrations of cytokine were required, consistent
with the observed decrease in affinity of TNF for such postconfluent endothelium.
A possible mechanism underlying this alteration in TNF-endothelial cell interac-
tion was indicated by the results of crosslinking studies: both postconfluent and
subconfluent cultures demonstrated bands, presumably due to ligand-receptor com-
plex, corresponding to Mr of -90,000 and -108,000 . Bands of similar molecular
weights have been observed when TNF has been crosslinked to other cellular sur-
faces (1, 20, 32-34) . Only subconfluent cultures, however, demonstrated bands cor-
responding to Mr -66,000 and -84,000. Although the functional significance of
these new bands, presumably indicating novel cell surface proteins to which TNF
becomes crosslinked, is not yet clear, by analogy with the IL-2 receptor, they may
modulate the affinity of the receptor for the ligand (43) .

Regulation of cell surface TNF binding sites by environmental stimuli such as
IFN-,y, which increases the number ofsites, and pharmacologic agents such as PMA,
which decreases the number of receptors and possibly efficacy ofTNFcellular inter-
action, has been reported (1, 44-45) . We have also observed modulation ofthe number

with medium supplemented with TNF at 37°Cfor 8 h followed by immunofluorescence staining
for thrombomodulin of cells at the wound edge (D) or cells further away from the wound edge
(F). (G and H) Control without TNF: Cultures were incubated with fresh medium at 37°C for
8 h followed by immunofluorescence staining for tissue factor (G) or thrombomodulin (H) of
cells at the wound edge . x650.
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of endothelial cell surface TNF binding sites with these agents (data not shown),
but they induced no change in the affinity of TNF for its receptor similar to that
found with growing/motile cells (Fig . 5) . The number ofbinding sites forTNF also
changed as subconfluent cultures achieved confluence (Fig . 5), consisting of about
a twofold decrease. This may be due to alteration in the relationship between the
apparent number ofbinding sites and cell area, shape, and cell-cell contact. Alter-
natively, there may be a true difference in the number of cell surface sites, as sug-
gested by the fact that when binding studies were carried out using suspended cells
there were still about twofold more sites on preparations derived from sub- versus
postconfluent cultures .

Especially in endothelium, changes in cell shape are usually tightly coupled to
modulation of the cytoskeleton and, in turn, to the growth state of the cell (37-39).
Growing, subconfluent endothelial cultures, for example, display a characteristic
motile configuration (Fig . 4) (38, 41) and express high affinity TNF sites. However,
irradiated cultures, which had lost their proliferative capacity but are capable of ex-
tensile or motile activity, retained the ability to express high affinity TNF sites. Simi-
larly, exposure of cultures to microtubule poisons, which resulted in changes in cell
shape and cytoskeleton (before entry into the proliferative state) (18), led to induc-
tion of high affinity TNF binding sites. These results suggest the importance of
cytoskeletal organization/cell shape in regulating expression of high affinity TNF
binding sites. Alternatively, other mechanisms could be involved . For example, cell-cell
contacts resulting in growth inhibition (this could be due to expression of certain
membrane proteins) (46) or formation of gapjunctions (47) may make an impor-
tant contribution to determining the TNF sensitivity of endothelium.
Thesedata lead us to propose a model for examining TNF vascular interactions :

local stimulation of endothelial cell growth and/or motility should result in expres-
sion ofhigh affinity TNF sites and targeting of the effects ofthis cytokine to a partic-
ular locus in the vasculature. Results of the in vitro wounding study, in which en-
hanced TNF binding and responsiveness was associated with the proliferating/motile
cells, support this concept. Expression ofhigh affinity TNFbinding sites is a poten-
tial parameter of activated endothelium providing insight into one mechanism by
which cytokine action can be localized within the vascular tree . We are testing this
hypothesis using angiogenesis models in vivo .

Summary
Some in vivo observations have suggested that growing or perturbed endothelium,

such as that which occurs during angiogenesis, is more sensitive to the action of
cytokines (TNF/cachectin, TNF, or IL-1) than normal quiescent endothelial cells .
This led us to examine the responsiveness of endothelium to TNF as a function of
the growth/motile state of the cell . TNFinduced modulation of endothelial cell sur-
face coagulant function was half-maximal at a concentration of -0.1 nM in
subconfluent cultures, whereas 1-2 nM was required for the same effect in
postconfluent cultures . Perturbation ofendothelial cell shape/cytoskeleton was simi-
larly more sensitive to TNF in subconfluent cultures . Consistent with these results,
radioligand binding studies demonstrated high affinity TNF binding sites, Kd -0.1
nM on subconfluent cultures, whereas only lower affinity sites (Kd -1.8 nM) were
detected on postconfluent cultures . The mechanisms underlying this change in the
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affinity of endothelium for TNF were studied in four settings. Crosslinking experi-
ments with ' 251TNF and endothelium showed additional bands corresponding to
Mr -66,000 and -84,000 with subconfluent cultures that were not observed with
postconfluent cultures . Experiments with X-irradiated endothelium, whose growth
but not motility was blocked, indicated that proliferation was not required for in-
duction of high affinity TNF sites . Postconfluent endothelium, triggered to enter
the proliferative cycle by microbutuble poisons, expressed high affinity TNF binding
sites together with changes in cell shape/cytoskeleton well before their entry into S
phase. Using wounded postconfluent monolayers, cells that migrated into the wound
and those close to the wound edge displayed enhanced TNF binding and modula-
tion of coagulant properties. These results suggest a model for targetting TNF ac-
tion within the vasculature ; regulation ofhigh affinity endothelial cell binding sites
can direct TNF to activated cells in particular parts of the vascular tree .

We are grateful to Mr. Samuel Rover for his generous contribution .
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