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Rescue of tight junctional
localization of a claudin-16 mutant
D97S by antimalarial medicine
e primaquine in Madin-Darby canine
R kidney cells

- Kana Marunaka*, Naoko Fujii*, Toru Kimura?, Takumi Furuta®, Hajime Hasegawa®,
- Toshiyuki Matsunaga*, Satoshi Endo* & Akira Ikari(®*

Magnesium ion (Mg?*) is paracellularly reabsorbed through claudin-16 (CLDN16) in the thick
ascending limb (TAL) of Henle’s loop in the kidney. Genetic disorders of CLDN16 cause mislocalization
of CLDN16, resulting in hypomagnesemia. There is no effective treatment for hypomagnesemia
except for magnesium administration. Here, we searched for a novel drug to restore tight junctional
localization of a CLDN16 mutant. A D97S mutant, which has a mutation in the first extracellular loop
(ECL) of CLDN16, was mainly colocalized with endosome marker, whereas wild-type (WT) CLDN16 was

. colocalized with ZO-1, an adaptor protein of tight junctions. The protein stability of the D97S mutant

. was lower than that of WT. The expression level of the D975 mutant was increased by lactacystin, a
proteasomal inhibitor. Endocytosis inhibitors increased the tight junctional localization of the D97S
mutant. We found that primaquine, an antimalarial agent, increased the protein stability and cell
surface localization of the D97S mutant, but the localization of other mutants, which have mutations
in the cytosolic domain or second ECL, was not affected. Transepithelial Mg?* flux was increased by
primaquine in D97S mutant-expressing cells. The expression of chaperon proteins, proteasome activity,
and lactate dehydrogenase release were decreased by primaquine, and the proportion of viable cells
increased. In contrast, these effects were not observed in WT CLDN16-expressing cells. These results
suggested that primaquine increases the tight junctional localization of the D97S mutant, resulting
in a reduction in ER stress and cellular injury. Primaquine may become an effective treatment drug for
selected patients with mutant CLDN16.

: Body Mg?* content is rigorously regulated in the kidney. Approximately 80% of total plasma Mg?* is daily filtered
. by the glomeruli followed by reabsorption from the renal tubules and only 5% is excreted into the urine'2. The
. renal tubules are divided into several segments including the proximal tubule, thick ascending limb of Henle’s
. loop (TAL), and distal tubule, in which the reabsorption percentages are ~15%, ~60%, and ~5%, respectively. The
* transport properties of Mg?" are different in each segment. The driving forces for the reabsorption of Mg?* in the
. TAL are concentration gradient and transepithelial potential difference.
: The paracellular permeability to ions in epithelial cells is controlled by intercellular junctions, especially tight
© junctions (T7s). The TJs barrier contains aqueous channels capable of discriminating charge and molecular size,
and its electrical resistance varies among different epithelia**. Claudins (CLDNSs) are tetraspan proteins with
cytoplasmic amino and carboxyl termini, and comprise a large family of over 20 members>®. In TJs, CLDNs can
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Figure 1. Effect of D97S mutant expression on endogenous junctional protein. (A) Stable cell lines of mock

or FLAG-tagged D97S mutant CLDN16 in MDCK cells were cultured for 72 h. The cell lysates were blotted
with anti-FLAG, anti-CLDN1, anti-CLDN2, anti-CLDN4, anti-occludin (OCLN), anti-E-cadherin (E-cad),
anti-ZO-1, anti-Z0-2, and anti-3-actin antibodies. The full-length blot images are shown in Supplementary
Fig. S2. (B) The band densities of proteins are represented as the percentage of the values in mock cells. n=4 in
four independent experiments. **P < 0.01 compared with mock cells. NS P > 0.05.

bind to scaffold proteins, including zonula occludens (ZO)-1 and ZO-2, mediated by the interaction bewteen a
PDZ-binding motif and PDZ domains. ZO-1 and ZO-2 indirectly anchor CLDNSs to the cytoskeletal network.

Familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC) is characterized by hypo-
magnesemia, advanced nephrocalcinosis, and progressive renal failure’. The causative genes of FHHNC are
CLDN16 or CLDN19%'°. Both CLDNs can form homo- or hetero-oligomeric complexes and make divalent
cation-permeable pores. Mg?" may be paracellularly reabsorbed through the pores in the TAL!'. CLDN14 inter-
acts with CLDN16 to repress the cation selectivity of the CLDN16/CLDN19 complex, resulting in hypercal-
ciuria'?. Over 30 different mutations of CLDN16 are reported in FHHNC patients'*~¢. Recently, Sikora ef al.
reported that a missense variant of Leul51Phe is the most common mutation of FHHNC in Poland, but the per-
centage of each mutation in the World was unknown. Various mutants are mainly distributed into the cytosolic
compartments including the Golgi apparatus, endoplasmic reticulum, or lysosome. The mistargeting of CLDN16
must contribute to loss of Mg*™ homeostasis. Patients with FHHNC are most commonly treated with magnesium
supplementation, but the effect is incomplete and the serum Mg?* levels remain often low!”. Finally, the patients
develop chronic renal failure and need to undergo renal transplantation. Therefore, there is a need to clarify the
pathological mechanisms and develop therapies for FHHNC.

Primaquine, an antimalarial agent, has been reported to interfere with membrane recycling from endosomes
to the plasma membrane without neutralizing endosomal pH'®. Primaquine inhibits the kainate-induced increase
in the cell surface expression of kainate receptors in neurons'®, small-conductance Ca®*-activated K channels in
human atrial myocytes®, and focal adhesions in vascular smooth muscle cells*’. In contrast, primaquine inhib-
its the cellular entry of Clostridium botulinum C2 toxin and Bacillus anthracis lethal toxin?’. The function of
primaquine may be more complicated than has been appreciated previously, but we hypothesized that primaquine
may recover the localization and function of CLDN16 mutants found in FHHNC patients.

So far, it has been reported that D97S mutant showed weak expression and only a cytoplasmic localiza-
tion among all single mutations in the first extracellular loop (ECL) of CLDN16'°. Therefore, we investigated
whether a mutation in D97S affects protein stability, and found that the stability of D97S mutant is lower than
that of wild-type (WT). Primaquine increased the protein stability and cell surface localization of D97S mutant.
In addition, proteasome activity, lactate dehydrogenase (LDH) release, and cell viability were assessed in D97S
mutant-expressing cells because the patients with FHHNC frequently have progressive renal failure. Primaquine
decreased the expression of chaperon proteins, proteasome activity, and lactate dehydrogenase release in D97S
mutant-expressing cells. Our present results indicated that primaquine may be a new drug in the treatment of a
proportion of patients with FHHNC.

Results

Effect of D97S mutant CLDN16 expression on endogenous proteins in the cell-cell junctions.
The D97S mutant CLDN16, which is fused with N-terminal FLAG tag, was stably expressed in Madin-Darby
canine kidney (MDCK) cells and confirmed by immunoblotting using an anti-FLAG antibody (Fig. 1A). The
expression levels of endogenous junctional proteins including CLDN1, CLDN2, CLDN4, CLDN19, OCLN,
E-cadherin, ZO-1, and ZO-2 were not changed by the expression of the D97S mutant. These results were similar
to the expression of WT CLDN16%.

Intracellular localization of WT CLDN16 and the D97S mutant in MDCK cells.  The intracellular
localization of WT CLDN16 and the D97S mutant was examined using an immunofluorescence staining assay.
WT CLDN16 was colocalized with ZO-1, a scaffolding protein of the TTs, in the cell-cell border area (Fig. 2A). In
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Figure 2. Subcellular localization of WT CLDN16 and the D97S mutant. (A) FLAG-tagged WT CLDN16

or the D97S mutant in MDCK cells were incubated with anti-FLAG (CLDN16) and anti-ZO-1 antibodies,
followed by incubation with secondary antibodies. Merged images are shown on the right. (B) MDCK cells
expressing the FLAG-tagged D97S mutant were incubated with anti-FLAG (CLDN16), anti-EEA]1, anti-Rab?7,
anti-GM130, and anti-BiP antibodies or lysotracker. Enlarged images are shown on the right. The scale bar
indicates 10 pm. (B) The colocalization of FLAG-tagged CLDN16 with organelle markers was shown as the
percentage.

contrast, the D97S mutant was mainly localized in the cytosolic compartment. To specify the subcellular locali-
zation of the D97S mutant, a colocalization study with organelle markers was performed. The D97S mutant was
partially colocalized with EEAL1, an early endosome marker, and Rab7, a late endosome marker, whereas it was
not colocalized with lysotracker, a lysosome marker, BiP, an endoplasmic reticulum marker, and GM130, a Golgi
apparatus marker (Fig. 2B,C). These results indicated that the endocytosis process of the D97S mutant from the
TJs to endosomes may be enhanced.

Effect of the D97S mutation on the protein stability and degradation of CLDN16. There raisesa
possibility that a single mutation induces an alteration of protein conformation, resulting in an effect on protein
stability. We examined the effect of the D97S mutation on the protein stability of CLDN16. To avoid the effect of
protein synthesis, the cells were treated with cycloheximide, an inhibitor of translation. The level of WT CLDN16
was decreased in a time dependent manner (Fig. 3A). The rate of decrease of the D97S mutant was significantly
higher than that of WT CLDNI16, indicating that the D97S mutation attenuated the protein stability. Similar
results were observed in the R131C mutant-expressing cells (Supplementary Fig. S12). Next, we investigated the
effect of the D97S mutation on the protein degradation. The majority of intracellular proteins are degraded by
the proteasome or lysosomal pathways?%. The expression level of WT CLDN16 was slightly increased by chlo-
roquine, a lysosome inhibitor, but not by lactacystin, a proteasome inhibitor (Fig. 3B). Similarly, the expression
levels of CLDN2 and CLDN4 were increased by chloroquine. The lower molecular bands of CLDN2 and 4 were
observed in the chloroquine-treated cells, but there is no report showing that CLDN2 and 4 have splice variants.
Therefore, the lower molecular bands were not included in densitometry. In contrast, the expression level of the
D97S mutant was increased by lactacystin, but not by chloroquine (Fig. 3C). CLDN1 was changed by neither lac-
tacystin nor chloroquine. These results indicated that the D97S mutant may be mainly degraded in proteasomes,
which may be different from the degradation pathway of unmutated proteins of CLDN1, 2, 4, and 16.

Effects of endocytosis inhibitor and primaquine on the expression and intracellular distribution
of the D97S mutant. The expression levels of the D97S mutant were increased by monodansylcadaverine
(MDCQ), a clathrin-mediated endocytosis inhibitor, and methyl-3-cyclodextrin (MBCD), a caveolae-dependent
endocytosis inhibitor (Fig. 4A). Immunofluorescence assays showed that the D97S mutant was colocalized with
ZO-1 at the TJs in cells treated with MDC and MBCD (Fig. 4B). These results indicated that the D97S mutant is
trafficked to the plasma membrane, but it can also be quickly internalized into the cytosolic compartment. To sup-
port the elevation of the D97S mutant in the plasma membrane, we performed biotinylation assay, which allows
the detection of cell surface protein expression. The cell surface expression of the D97S mutant was increased by
primaquine in a time-dependent manner, whereas that of CLDN1 was constant (Fig. 4C). Similarly, primaquine
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Figure 3. Protein stability of WT CLDN16 and the D97S mutant. MDCK cells stably expressing FLAG-tagged
WT CLDN16 or the D97S mutant were treated with cycloheximide (CHX, 5 uM) for the indicated periods.
After collecting cell lysates, the aliquots were blotted with anti-FLAG and anti-3-actin antibodies. The band
densities of proteins are represented as the percentage of the values at 0h. (B,C) MDCK cells stably expressing
the FLAG-tagged WT (B) or D97S mutant (C) were treated with and without chloroquine (CQ, 20 pM) or
lactacystin (Lac, 10 pM) for 6 h. The cell lysates were blotted with anti-FLAG, anti-CLDN1, anti-CLDN2,
anti-CLDN4, and anti-(3-actin antibodies. The band densities of proteins are represented as the percentage of
the values in control cells. The full-length blot images are shown in Supplementary Figs S3-S5. n=4 in four
independent experiments. **P < 0.01 and *P < 0.05 compared with control cells. NS P > 0.05.

increased the cell surface expression of the D97S mutant (Fig. 4D). The total amount of the D97S mutant was
increased by primaquine, but that of WT was not (Fig. 4E). Immunofluorescence assays showed that primaquine
increased the tight junctional localization of the D97S mutant (Fig. 4F). Similarly, primaquine increased the tight
junctional localization of the D97S mutant in another stable and transient clones (data not shown). To clarify
the effect of primaquine on other mutants of CLDN16, we investigated the localization of these mutants using
transient expression assays. All mutants were mainly distributed in the cytosolic compartment similar to the
D97S mutant under control conditions (Figs 5 and S14A). Primaquine increased the tight junctional localization
of the D97S and R131C mutants, which have mutations in transmembrane domain (TMD) 1, whereas it did not
change that of the G198D and S235P mutants, which have mutations in TMD3 or TMD4, or that in the Y277X
and T303R mutants, which have mutations in the carboxyl cytosolic domain. Primaquine significantly decreased
the tight junctional localization of W'T, but the effect was weak.
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Figure 4. Increase in plasma membrane surface localization of the D97S mutant by endocytosis inhibitor or
primaquine treatment. (A,B) MDCK cells stably expressing the FLAG-tagged D97S mutant were treated with
MDC and MBCD for 3 h. After collecting cell lysates, the aliquots were blotted with anti-FLAG and anti-(3-actin
antibodies. The band densities of proteins are represented relative to the values with 0 pM. (B) The cells were
stained with anti-FLAG (CLDN16) and anti-ZO-1 antibodies. (C,D) MDCK cells stably expressing the FLAG-
tagged D97S mutant were incubated with primaquine (PQ, 100 pM). The biotinylated proteins were blotted with
anti-FLAG and anti-CLDN1 antibodies. (E) The cell lysates of MDCK cells expressing the WT or D97S mutant
were blotted with anti-FLAG and anti-3-actin antibodies. The band densities of proteins are represented relative
to the values at 0 h. The full-length blot images are shown in Supplementary Figs S6-S8. (F) The cells were
incubated with anti-FLAG (CLDN16) and anti-ZO-1 antibodies. The scale bar indicates 10 pm. n =4 in four
independent experiments. **P < 0.01 and *P < 0.05 compared with 0 pM.
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Effect of primaquine on protein stability and ubiquitination of the D97S mutant. The rate
of decrease in the D97S mutant was significantly attenuated by primaquine (Fig. 6A). As described in Fig. 4F,
primaquine increased the tight junctional localization of the D97S mutant. These results indicated that
primaquine may enhance stabilization of the D97S mutant in the TJs. The endocytosis of WT CLDN16 from
the TJs to cytosolic compartment is regulated by a ubiquitination process®. The ubiquitination level of the D97S
mutant was higher than that of WT CLDN16 (Fig. 6B). Primaquine significantly decreased the ubiquitination
level of the D97S mutant, whereas it did not change that of WT CLDN16 (Fig. 6C). These results indicated that
de-ubiquitination may be involved in the stabilization of the D97S mutant by primaquine.

Effect of primaquine on the function of the D975 mutant. The tight junctional localization of WT
CLDNI16 increases TER and transepithelial Mg?* flux*. TER and transepithelial Mg?* flux in cells-expressing
WT CLDN16 was not changed by primaquine (Fig. 7). In contrast, primaquine significantly increased TER
and transepithelial Mg>" flux in D97S mutant-expressing cells. Similar results were observed in the R131C
mutant-expressing cells (Supplementary Fig. S14B and S14C), but not in the T303R mutant-expressing cells.
These results indicated that primaquine may rescue the function of the D97S and R131C mutants.

Effect of primaquine on protein aggregation of the D97S mutant. Overexpression of mis-
folded proteins leads to the formation of aggresome?”. Aggresome formation was examined using a ProteoStat
Aggresome Detection kit. Primaquine decreased the red fluorescent signal of aggresome formation in
D97S mutant-expressing cells (Fig. 8). Similarly, MDC and MBCD decreased aggresome formation. These
results were inversely proportional to tight junctional localization of the D97S mutant (Fig. 4B,F). In con-
trast, MG-132, a proteasome inhibitor, significantly increased aggresome formation. Aggresome formation in
WT CLDN16-expressing cells was lower than that in the D97S mutant, whereas it was increased by MG-132.
Immunofluorescence assays showed that aggresome is colocalized with Rab7 (Supplementary Fig. 1). These
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Figure 5. Effect of primaquine on the subcellular localization of CLDN16 mutants. MDCK cells were
transiently transfected with FLAG-tagged WT or mutants of CLDN16 including D97S, G198D, S235P, Y277X,
and T303R. The cells were incubated for 2 h in the absence or presence of 100 pM primaquine (PQ), and then
stained with anti-FLAG (CLDN16) and anti-ZO-1 antibodies. Merged images are shown on the right. The scale
bar indicates 10 pm. (B) The colocalization of FLAG-tagged CLDN16 with ZO-1 was shown as the percentage.
**P < 0.01 and *P < 0.05 compared with control. NS P> 0.05.

results indicated that the D97S mutant may enhance the formation of aggresome and the misfolded proteins are
degraded by proteasome.

Effect of primaquine on chaperon expression, proteasome activity, and cell injury. The fold-
ing of proteins is regulated by chaperons including BiP and the Hsp70 family?. The expression levels of BiP
and Hsp72 were decreased by primaquine in D97S mutant-expressing cells, but not in WT CLDN16-expressing
cells (Fig. 9A). The activity of proteasomes is often increased by elevated levels of misfolded proteins and their
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Figure 6. Effect of primaquine on protein stability and ubiquitination of the D97S mutant. (A) MDCK cells
expressing the FLAG-tagged D97S mutant were treated with cycloheximide (CHX, 5 pM) and primaquine
(100 uM) for the indicated periods. After collecting cell lysates, the aliquots were blotted with anti-FLAG and
anti-B-actin antibodies. The band densities of proteins are represented as the percentage of the values at 0 h.
The dashed line shows the relative expression of D97S mutant in the absence of primaquine as indicated in

Fig. 3A. (B) The cell lysates isolated from MDCK cells expressing FLAG-tagged WT CLDN16 and the D97S
mutant were immunoprecipitated with protein G sepharose beads and anti-FLAG antibody. Immune pellets
were blotted with anti-ubiquitin (Ub) and anti-FLAG antibodies. The band densities of ubiquitinated CLDN16
are represented as the percentage of the values in WT. (C) MDCK cells expressing the FLAG-tagged WT
CLDNI16 or D97S mutant were incubated with 100 pM primaquine (PQ) for the indicated periods. The cell
lysates were immunoprecipitated with anti-FLAG antibody. Inmune pellets were blotted with anti-Ub and anti-
FLAG antibodies. The band densities of ubiquitinated CLDN16 are represented as the percentage of the values
at 0 h. The full-length blot images are shown in Supplementary Figs S9 and S10. n=4 in four independent
experiments. **P < 0.01 compared with 0h or WT. NS P >0.05 compared with control or 0 h.

aggregates”. Primaquine decreased chymotrypsin-like, trypsin-like, and caspase-like proteasome activities in
D97S mutant-expressing cells (Fig. 9B). Similar results were observed in the R131C mutant-expressing cells
(Supplementary Fig. S15). Some mutant proteins produce misfolded proteins and their aggregates, resulting in
the progression of cell injury®. Primaquine decreased LDH release, whereas it increased WST-1 activity in D97S
mutant-expressing cells (Fig. 9C,D), indicating the primaquine decreased the cell injury. In contrast, primaquine
did not significantly change proteasome activity, LDH release, and WST-1 activity in WT CLDN16-expressing

SCIENTIFICREPORTS| (2019) 9:9647 | https://doi.org/10.1038/s41598-019-46250-4 7


https://doi.org/10.1038/s41598-019-46250-4

www.nature.com/scientificreports/

A
250 - %% NS
. -
<< 200 | NS i NS
€
2 150k
<}
x 100 F
1]
'_
50 F
0
-+ - o+ -+ - + PQ
Mock WT D97S T303R
B
100 .
= NS
% 80 1 ™1 i
3 NS
E 60 |- NS
5 40l
2
+
o 20}
=
0
-+ -+ -+ -  + PQ
Mock wT D97S  T303R

Figure 7. Effects of primaquine on paracellular permeability. FLAG-tagged WT CLDN16, D97S, or T303R
mutant were transiently transfected in MDCK cells and cultured on transwell inserts for 96 h, then incubated for
2h in the absence or presence of primaquine (PQ, 100 pM). (A,C) TER values were measured using a Millicell-
ERS epithelial volt-ohmmeter and expressed as resistance (Q-cm?). (B,D) The transepithelial permeability to
Mg?* for 1 h was measured using XB-1. n =4 in four independent experiments. **P < 0.01, *P < 0.05, and NS
P>0.05 compared without PQ.

cells (Fig. 9E-G). These results indicated that the reduction in aggregated D97S mutant by primaquine may atten-
uate proteasome activity and cell injury.

Discussion

Dysfunction of CLDN16 and CLDN19 is involved in the pathogenesis of genetic hypomagnesemia. Over 40 and
10 different mutations have been currently identified in the CLDN16 and CLDN19 genes, respectively!*!63-32,
Mutations in the CLDN16 gene mainly occur in the ECL and TMD. Although there is a difference in the degree,
the patients with mutation in CLDN16 gene show hypomagnesemia independently of the mutation sites®. The
function and intracellular localization are different in each mutant. The mutants of CDLN16 distributed in the
TJs have full or partial function after being transfected into LLC-PK|, a porcine proximal tubular cell line'¢,
and MDCK-C7 cells". In contrast, the mutants that mislocalized to intracellular compartments including the
endoplasmic reticulum, Golgi apparatus, and lysosome, lose their function. Our results showed that the D97S,
R131C, G198D, S235P, Y277X, and T303R mutants of CLDN16 were mainly localized in the cytosolic compart-
ment (Figs 2 and 5). The D97S mutant was mainly localized the endosome in MDCK cells (Fig. 2B), whereas the
mutant was localized in the endoplasmic reticulum (ER) in LLC-PK cells'®. In addition, the G198D mutant was
expressed in the cytosolic compartment in MDCK cells, whereas it was not detected in LLC-PK| cells. At present,
we do not know the reason for the difference, but cell type may affect on expression and subcellular localization
of mutants.

Several genetic diseases induce the mislocalization of membrane proteins. The mislocalization of misfolded
mutant AF508-cystic fibrosis transmembrane conductance regulator was restored by chemical chaperones such
as sodium 4-phenylbutyrate* and quinazoline derivate*. The maturation, cell-surface expression, and function
of a vasopressin V3 receptor mutant were rescued by SSR149415%. In the present study, we found that mis-
localization of the D97S mutant of CLDN16 was restored by primaquine. It has been reported that the recy-
cling of transmembrane CD4 receptor is sensitive to primaquine in transfected Chinese hamster ovary cells*'.
Primaquine increased the protein stability and cell surface localization of the D97S mutant (Figs 4D,E, 5, and 6A).
Therefore, we suggested that the effect of primaquine was mainly caused by the inhibition of endocytosis of the
D97S mutant. The mislocalization and function of R131C were also recovered by primaquine, but other mutants
were not. There is a possibility that primaquine recover the localization and function of first ECL of CLDN16
mutants. However, biochemical properties of other mutants including R131C and those in other renal cells have
not been clarified. We need further study to clarify the effect of primaquine on all mutants in detail using various
renal tubular epithelial cells.

CLDN16 can interact with CLDN19, which are colocalized in the TJs*’. Our data indicate that the sig-
nal of CLDN19 was weak, but it may be endogenously expressed in MDCK cells (Fig. 1). Hou et al. reported
that the knockdown of CLDN19 by siRNA in mice causes a loss of tight junctional CLDN16 in the TALY,
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Figure 8. Decrease in aggresome formation by primaquine and endocytosis inhibitors. (A,B) The FLAG-tagged
D97S mutant-expressing cells were treated with primaquine (100 pM), MDC (5 pM), MBCD (10 pM) and MG-
132 (10 pM). (C) The FLAG-tagged WT CLDN16-expressing cells were incubated with 100 pM primaquine

and MG-132 (10 pM) for 6 h. Then, the cells were incubated with ProteoStat Aggresome Detection Reagent and
Hoechst 33342 for 1h. The fluorescence images were collected using a confocal microscope. The fluorescence
intensity of aggresome signal (red) is shown as arbitrary units. n =4 in four independent experiments. The scale
bar indicates 10 pm. **P < 0.01 compared with control.

whereas CLDN16 is localized at TJs in MDCK and LLC-PK1 cells without expressing CLDN19. We do not
know whether CLDN19 is necessary for the tight junctional localization of CLDN16 in MDCK cells. The
single mutation in amino acids located in the first ECL suggests the inhibition of homo-oligomerization of
CLDNI16 or hetero-oligomerization with CLDN19, leading to the elevation of instability of the mutants in the
TJs. Primaquine increased transepithelial permeability to Mg*" in the D97S or R131C mutant-expressing cells
(Fig. 7). The cation permeable pore of CLDN16 is formed by the negatively charged amino acids located in the
first ECL, which are different from D97 and R131. We do not know whether primaquine induces the formation
of homo-oligomerization of CLDN16 or hetero-oligomerization with CLDN19, but the D97S mutant must form
a Mg*"-permeable pore in the TJs. In addition, TER was increased by WT CLDN16 expression and the D97S
mutant treated with primaquine. Therefore, it cannot be denied that CLDN16 and primaquine may up-regulate
the barrier forming CLDNs or down-regulate channel forming CLDNs. Further studies are needed to clarify how
CLDN16 increases TER and transepithelial permeability to Mg?*, but we found for the first time that primaquine
rescues the function of the D97S mutant.

So far, we reported that the tight junctional localization of WT CLDNI16 is suppressed by treatment with 200
uM primaquine®. In contrast, we found that the tight junctional localization of the D97S mutant were rescued by
100 pM primaquine in the present study. These results showed that primaquine has opposite effects depending on
the concentration or target molecules. Primaquine may not directly increase exocytosis or inhibit endocytosis of
the CLDN16 mutants. Because the ubiquitination level of the D97S mutant was higher than that of WT CLDN16,
which was decreased by primaquine. We suggested that primaquine inhibits the association between CLDN16
and the regulatory factor of endocytosis.

FHHNC is characterized by not only by progressive renal failure of renal reabsorption of Mg?* and Ca*", but
also by abnormal reabsorption of divalent cations, and nephrocalcinosis and renal stone formation, leading to
chronic renal failure. Hypercalciuria may be one of the causes of renal failure in FHHNC patients, but the exact
mechanism of the development of renal failure have not been clarified fully. Hypomagnesemia is observed in
the CLDN16 RNAi mice®® and CLDN16 targeted deletion mice®, but renal failure is not. This means that the
losses of function and expression of CLDN16 may not be a cause of renal failure. The accumulation of misfolded
or damaged proteins causes cell damage®’. Increased proteasome activity could be an adaptive response to the
augmented accumulation of misfolded proteins. The red fluorescence of ProteoStat was colocalized with Rab7
(Supplementary Fig. 1). Bocock et al.*! reported that proteasome can degrade the proteins in the endosomal
membranes. We suggest that the aggregated D97S mutant is present in the late endosome, followed by trans-
ported to proteasome. The aggregated proteins were decreased by primaquine in D97S mutant-expressing cells
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Figure 9. Decrease in chaperone protein, proteasome activity, and cell injury by primaquine. (A) The FLAG-
tagged WT CLDN16- or D97S mutant-expressing cells were treated with primaquine (PQ, 100 pM) for 6 h.
After collecting cell lysates, the aliquots were blotted with anti-BiP, anti-Hsp72, and anti-3-actin antibodies.
The band densities of proteins are represented relative to the values without PQ. The full-length blot images are
shown in Supplementary Fig. S11. (B,E) The cytosolic fraction was isolated from D97S mutant-expressing cells
(B) or WT CLDN16-expressing (E) using a passive buffer. Chymotrypsin-like (Chy), trypsin-like (Try), and
caspase-like (Cas) proteasome activities were measured using each selective substrates. (C,D,F and G) MDCK
cells expressing the FLAG-tagged D97S mutant (C,D) or WT CLDN16 (F,G) were incubated with 100 pM PQ
for 24h. Cell injury was estimated by LDH release into the media and WST-1 activity. n =4 in four independent
experiments. **P < 0.01, *P < 0.05, and NS P> 0.05 compared with 0 h or without PQ.

(Fig. 8A). In addition, LDH release and WST-1 assays suggest that primaquine reduces the cellular injury in
D97S mutant-expressing cells (Fig. 9). When the accumulation of aggregated proteins exceeds the threshold of
degradation by proteasomes may induce renal tubular damage. The expression levels of unmutated proteins of
CLDN2, 4, and 16 were increased by chloroquine, indicating that these proteins were degraded in the lysosome.
The degradation mechanism of the D97S mutant may be different from that of WT CLDN16. The lower molecu-
lar bands of CLDN2 and CLDN4 were observed in the chloroquine-treated cells. There is no report showing that
CLDN?2 and CLDN4 have splicing variants, and these molecules may be usually degraded in the lysosome under
control conditions.

Taken together, the results of the present study demonstrated that the D97S mutant has lower protein stability
compared with WT CLDN16. The mutant was mainly distributed in the endosome and degraded by proteasomes.
Primaquine increased the tight junctional localization of the D97S mutant, leading to the elevation of TER and
transepithelial Mg?* flux. In addition, primaquine decreased the formation of aggresome and cell injury. Our
data are summarized in Fig. 10. We suggest that primaquine may be the basis for an effective treatment drug in
patients with mutations in the first ECL of CLDN16.

Materials and Methods

Materials. Rabbit anti-CLDN1 (71-7800), anti-CLDN2 (51-6100), and anti-ZO-1 (61-7300), and mouse
anti-CLDN4 (32-9400) antibodies were obtained from Zymed Laboratories (South San Francisco, CA, USA).
Mouse and rabbit anti-FLAG (018-22381 and PM020) antibodies were from Wako Pure Chemical Industries
(Osaka, Japan) and Medical & Biological Laboratories Co. (Nagoya, Japan), respectively. Rabbit anti-Rab7 (9367)
antibody was from Cell Signaling Technology (Beverly, MA, USA). Goat anti-(3-actin (sc-1615), anti-occludin
(sc-8145), and anti-ZO-2 (sc-8148) antibodies were from Santa Cruz Biotechnology (Dallas, TX, USA). Rabbit
anti-EEA1 (PA1-063) and anti-CLDN19 (SAB2100440) antibodies were from Affinity BioReagents (Golden, CO,
USA) and Sigma-Aldrich (St. Louis, MO, USA), respectively. Mouse anti-BiP (610978), anti-E-cadherin (610181),

SCIENTIFIC REPORTS |

(2019) 9:9647 | https://doi.org/10.1038/s41598-019-46250-4 10


https://doi.org/10.1038/s41598-019-46250-4

www.nature.com/scientificreports/

Familial hypomagnesemia with
hypercalciuria and nephrocalcinosis

D97S claudin-16

|— Primaquine
Degradat[on

Proteasome

Endosome

Accumulation

D978 Forward 5'-AGCTGTTGGATGGTGAATGCTGATGACT-3’
D978 Reverse 5'-AGTCCAGGTGGCCACAATCAAAAAC-3/
R131C Forward 5'-TGCACCTGTGATGAGTACGATTCCATAC-3'
R131C Reverse 5'-AATCCCATCAAAAGCATTTGTGACG-3'
G198D Forward 5'-GATACCCCAGGAATCATTGGCTCTGTGT-3'
G198D Reverse 5'-TGCTATTAGTAACGTGGCTCCAGCA-3'
S235P Forward 5'-CCCTGTTGGCTCGGAATGGCTGGGTCTC-3/
S235P Reverse 5'-CCAACCAAATTTATATTGGATACCA-3/
Y277X Forward 5'-TAATCAGCCGCGGGTGTTTCCATGGCCA-3'
Y277X Reverse 5'-GGCTTTCCTCAAGGAATAAGGATAG-3/
T303R Forward 5'-AGAAGGGTGTAAGTCGACGATATCTCTA-3’
T303R Reverse 5'-GTCTACAGCATACATTTTGGCCGTC-3’

Table 1. Primer pairs for point mutation of CLDN16.

and anti-GM130 (610822) antibodies were from BD Biosciences Clontech (San Jose, CA, USA). Mouse anti-ubiq-
uitin (PWO0150) antibody was from Biomol GmbH (Waidmannstr, Germany). LysoTracker Red DND-99 was
from Thermo Fisher Scientific (Waltham, MA, USA). Lipofectamine 2000 was from Invitrogen (Carlsbad, CA,
USA). All other reagents were of the highest grade of purity available.

Plasmid DNA construction. FLAG-tagged CLDN16/pTRE2hyg vector was generated as described previ-
ously?. An N-terminal FLAG tag is added to CLDN16. The mutants of CLDN16 (D97S, R131C, G198D, S235P,
Y277X, and T303R) were generated using a KOD-Plus-mutagenesis kit (Toyobo Life Science, Osaka, Japan).
Primer pairs are listed in Table 1.

Cell culture and transfection. The type Il MDCK cell line (MDCK Tet-OFF, BD Biosciences Clontech)
were grown in Dulbecco’s modified Eagle’s medium (Sigma-Aldrich, St. Louis, MO, USA) supplemented with
5% fetal bovine serum, 0.07 mg/ml penicillin-G potassium, 0.14 mg/ml streptomycin sulfate, 0.1 mg/ml G418,
and 0.1 mg/ml hygromycin B in a 5% CO, atmosphere at 37 °C. Plasmid DNA was transfected into cells using
Lipofectamine 2000 as recommended by the manufacturer. Stable transfectants of empty vector (mock), WT
CLDN16, and the D97S mutant were maintained in the continuous presence of the selecting drug.

Preparation of cell lysates and immunoprecipitation. Confluent MDCK cells were scraped into cold
phosphate-buffered saline (PBS) and collected by centrifugation. The cells were lysed in a RIPA buffer contain-
ing 150 mM NaCl, 0.5mM EDTA, 1% Triton X-100, 50 mM Tris-HCI (pH 8.0), and protease inhibitor cock-
tail (Sigma-Aldrich), and were then sonicated for 20s. The nuclear fraction was removed by centrifugation at
1,000 x g for 5min, the supernatant was used as cell lysates. Immunoprecipitation assay was performed using
cell lysates, protein G sepharose beads, and anti-FLAG antibody. By centrifugation at 6,000 x g for 1 min, the
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immune pellets were washed four times with RIPA buffer. In a biotinylation assay, plasma membrane surface pro-
teins were biotinylated as described previously*’. The cell lysates, immunoprecipitants, and biotinylated proteins
were diluted in sample buffer for sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE). The
protein concentrations were measured by Bradford assay in which bovine serum albumin was used as a standard.

SDS-PAGE and immunoblotting. SDS-PAGE was performed as described previously*. Briefly, sam-
ples (30 pg/lane) were applied to the SDS-polyacrylamide gel. After blotting proteins onto a polyvinylidene
difluoride (PVDF) membrane and incubated with each primary antibody (1:1000 dilution) followed by a
peroxidase-conjugated secondary antibody (1:5000 dilution). Finally, the blots were incubated in EzZWestLumi
plus (ATTO Corporation, Tokyo, Japan) and scanned using a C-DiGit Blot Scanner (LI-COR Biotechnology,
Lincoln, NE). Band density was quantified using ImageJ software (National Institute of Health software). 3-Actin
was used for normalization.

Measurement of paracellular permeability. MDCK cells expressing FLAG-tagged CLDN16 were cul-
tured at confluent densities on transwell inserts (Corning Incorporated-Life Sciences, Acton, MA, USA). TER
values was measured using a Millicell-ERS epithelial volt-ohmmeter (Millipore, Billerica, MA, USA) and calcu-
lated as described previously?. The transepithelial permeability to Mg?" from the apical to basal compartments
was quantified by a colorimetric method using Xylidyl blue-I (XB-I). The apical and basal compartments were
filled with a transport buffer containing 140 mM NaCl, 5.8 mM KCl, 0.34 mM Na,HPO,, 0.44 mM KH,PO,, 1 mM
CaCl,, 25 mM glucose, and 20 mM Hepes (pH 7.4). At time 0, 10 mM MgCl, was added into the apical compart-
ment. After incubation at 4°C for 1 h, the buffer in the basal compartment was collected. The absorbance of XB-I
at 520 nm was measured under alkaline conditions using a Bio-Spec Mini spectrophotometer (Shimadzu, Tokyo,
Japan). Mg?" concentration was calculated using a calibration curve.

Confocal microscopy. MDCK cells expressing FLAG-tagged CLDN16 were stained as described previ-
ously*!. The primary and secondary antibodies are diluted 1:100. The fluorescence images were collected on an
LSM 700 confocal microscope system (Carl Zeiss, Germany) with an appropriate filter set for Dylight 488, Dylight
550, and LysoTracker Red DND-99. The merged area between FLAG-tagged CLDN16 and organelle markers or
Z0-1 was shown as percentage of total intensities of organelle markers or ZO-1, respectively.

Assessment of aggresome formation.  Protein aggregation was measured using a ProteoStat Aggresome
Detection kit accordance with the manufacturer’s instructions (Enzo Life Sciences, Farmingdale, NY, USA). The
fluorescence images were captured using a fluorescence microscope (BZ-9000, Keyence, Osaka, Japan). The fluo-
rescence intensity of ProteoStat dye was calculated using Image] software.

Measurement of proteasome activity. Proteasome activity was examined using fluorogenic peptides
N-Suc-LLVY-AMC, Z-LRR-AMC, and Z-LLE-AMC as substrates to measure chymotrypsin-like, trypsin-like,
and caspase-like peptidase activities, respectively. Briefly, the cells were washed twice with PBS and homogenized
in a passive buffer (Promega Corporation, Madison, WI, USA). After sonication for 20, the supernatant was col-
lected by centrifugation at 16,000 x g for 10 min. The aliquots were diluted in an assay buffer containing 250 mM
sucrose, 10 mM NaCl, 1.5 mM MgCl,, 1 mM EDTA, 1 mM EGTA, 2mM ATP, 5mM dithiothreitol, 50 mM Hepes
(pH 7.8), and 10 uM proteasome substrates, and then the reaction mixture was incubated for 1 h at 37°C. The
proteolytic activity was measured by monitoring the formation of the fluorescent AMC (excitation wavelength
380nm and emission wavelength 460 nm).

Cell injury assay. Cytotoxicity was assessed by LDH release and 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,
4-disulfophenyl)-2H-tetrazolium, monosodium salt (WST-1) activity. Cells were seeded at 4 x 10° cells/well in
a 96-well plate. The cells were incubated with primaquine for 24h and then LDH release was measured using an
LDH Cytotoxicity Detection kit (Wako Pure Chemical Industries). Cell viability was assessed using a WST-1 Cell
Counting kit (Dojindo Laboratories, Kumamoto, Japan).

Statistics. Results are presented as the mean = S.E. Differences between groups were analyzed using one-way
ANOVA. Corrections for multiple comparisons were made using Tukey’s multiple comparison test. Comparisons
between two groups were made using Student’s ¢ test. Significance was set at a p value < 0.05.
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