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Abstract: In a climate and land use change context, the sequestration of atmospheric carbon in
urban agglomeration is key to achieving carbon emission and neutrality targets. It is thus critical
to understand how various climate and land use changes impact overall carbon sequestration in
large-scale city circle areas. As the largest urban agglomeration in central China, carbon dynamics
in the Wuhan City Circle area have been deeply affected by rapid urbanization and climate change
in the past two decades. Here, we applied monthly climate data, spatially explicit land use maps,
NDVI (Normalized Difference Vegetation Index) images and the CASA (Carnegie–Ames–Stanford
Approach) model to estimate the spatial and temporal changes of carbon dynamics in the Wuhan
City Circle area from 2000 to 2015. We designed six different scenarios to analyze the effects of
climate change and land use change on carbon dynamics. Our simulation of NPP (Net Primary
Productivity) increased from 522.63 gC × m−2 to 615.82 gC × m−2 in the Wuhan City Circle area
during 2000–2015. Climate change and land use change contributed to total carbon sequestration by
−73.3 × 1010 gC and 480 × 1010 gC, respectively. Both precipitation and temperature had a negative
effect on carbon sequestration, while radiation had a positive effect. In addition, the positive effect
on carbon sequestration from afforestation was almost equal to the negative effect from urbanization
between 2000 and 2015. Importantly, these findings highlight the possibility of carrying out both
rapid urbanization and ecological restoration simultaneously.

Keywords: landscape planning; carbon sequestration; NPP (Carnegie–Ames–Stanford Approach);
ecological restoration; CASA model; urbanization

1. Introduction

With the Chinese government putting forward the goals of peak carbon emissions in
2030 and carbon neutrality in 2060, regional research on carbon sequestration and emissions
reduction is becoming more and more important [1]. Climate change and human-induced
land use change are two important effects on the global and regional carbon cycle [2,3]. The
main reason for this is that they can significantly change regional biodiversity, landscape
patterns, ecosystem functions and services [4,5]. Decoupling the impacts of climate change
and human-induced land use change on carbon sequestration in regional ecosystem is a
feasible way to reveal the influence of climate change and land use change on ecosystem
services [6]. For example, some previous studies [5,7,8] reported that urban expansion
and the implementation of green infrastructure projects (e.g., afforestation, reforestation)
can occur simultaneously in the same region. Therefore, the superposition of positive and
negative effects will lead to more complex and difficult understanding of carbon dynamics
under different land use conditions [9]. Meanwhile, the lack of such information can also
lead to misinterpretation of the linkage between land use change and climate change [10].
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Consequently, it is important to quantitatively evaluate and analyze the magnitude and
direction of the respective and combined effects of various changes in climate and land use
on carbon dynamics.

Net primary productivity (NPP) is one of the most important indicators for revealing
ecosystem carbon dynamics [11]. Accurate and rapid estimation of NPP at regional scales
is of great significance for assessing the regional ecosystem carrying capacity and rational
utilization of natural resources [12]. Because it is impossible to directly and comprehen-
sively measure ecosystem productivity on a regional or global scale, using models to
estimate and simulate carbon dynamics in terrestrial areas has become an important and
widely accepted research method [13–15]. The Carnegie–Ames–Stanford Approach (CASA)
model, which is a process-based light use efficiency model [16], has been widely used
to simulate terrestrial carbon dynamics under climate change or land use change. Based
on some previous studies [16–20], the CASA model has been proved to be well applied
to the simulation of NPP in various regions in China. These studies also provide some
fundamental support for further land use policies towards carbon neutrality at the regional
scale in China. To the best of our knowledge, there is no study that has used the CASA
model to estimate the carbon dynamics of the Wuhan City Circle area in China.

The Wuhan City Circle area is an important strategic fulcrum of the central rise plan
in China [21]. This region has great opportunities to develop its economy and improve its
urban structure and layout. However, the pressure of environmental protection and carbon
emission reduction is also an important factor in maintaining sustainable development in
this region [22]. With rapid development and urbanization, the effects of land use change
and climate change on carbon dynamics in the Wuhan City Circle area have become more
obvious in the past two decades [23]. In this study, we used the CASA model to estimate
the NPP of the Wuhan City Circle area and explored the spatiotemporal dynamics of carbon
from 2000 to 2015. Six different scenarios were estimated in order to analyze the relative
roles of various climate and land use changes on carbon dynamics. Based on this study,
we were able to provide a theoretical foundation for further ecological construction in
the Wuhan City Circle area and contribute to achieving carbon neutrality at the regional
scale by strengthening land use policies. The specific objectives were as follows: firstly, to
simulate and characterize the spatiotemporal variation in total carbon sequestration in the
Wuhan City Circle area from 2000–2015; secondly, to evaluate the overall effect of climate
and land use changes on carbon dynamics in the Wuhan City Circle area; and finally, to
reveal the relative impacts of various climate and land use changes on the carbon dynamics
of the Wuhan City Circle area.

2. Materials and Methods
2.1. Study Area

The Wuhan City Circle area is located in central China, and lies between 29◦01′–31◦87′

and 112◦55′–116◦23′ north latitude. It is about 57,930 km2 (Figure 1). Wuhan City Circle,
also called “1 + 8” City Circle, refers to the city clusters formed by Wuhan, the largest city
in central China, and eight large and medium-sized cities, including Huangshi, Ezhou,
Huanggang, Xiaogan, Xianning, Xiantao, Tianmen and Qianjiang. This region has various
topographical landscape types that consist of mountains, hills and plains [24]. Over the past
decades the urbanization process has been obvious, mainly reflected in the large increase
in built-up land. At the same time, forest land has also increased. However, cropland
sharply declined from 2000 to 2015 [25]. The region has a humid mid-subtropical monsoon
climate with an average annual temperature of 15.8–17.5 ◦C, ranging from an average of
3.7 ◦C during the coolest month (January) to 28.7 ◦C during the warmest month (July). The
frost-free period is usually 211–272 days. The average annual precipitation is 1269 mm.
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Figure 1. Location of the Wuhan City Circle area in China.

2.2. Data and Processing

Data used in this study mainly included land use maps, climate data (e.g., pre-
cipitation, temperature, and radiation), MODIS-NDVI (Normalized Difference Vegeta-
tion Index derived from Moderate-resolution Imaging Spectroradiometer) images, and
DEM (Digital Elevation Models) (Table 1). Land use maps from 2000, 2005, 2010, and
2015 were downloaded from the Resource and Environment Science and Data Center
(https://www.resdc.cn/, accessed on 1 October 2018), and were derived from Landsat
TM/ETM+/OLI (Thematic Mapper/Enhanced Thematic Mapper/Operational Land Im-
ager) images. The land use types include 10 classes: paddy field, dry land, arboreal forest,
shrub, open forestland 1, open forestland 2, grassland, water, built-up land, and bare land.
The details of each land use type can be seen in Table 1.

Table 1. The information of land use type.

Class I Class II Description

Crop land

Paddy field
Cultivated land with water sources and irrigation facilities, which can be irrigated
normally in typical years to plant aquatic crops such as rice and lotus root; also

includes cultivated land with rice and dry land crop rotation.

Dry land

Cultivated land that grows crops by natural precipitation; dry cultivated land with
water sources and irrigation facilities that can be irrigated normally in typical

years; cultivated land mainly for growing vegetables; normal rotation of fallow
land and rotation rest land.

Forest land

Arboreal forest Natural and plantation forest with canopy density >40%; includes timber forest,
economic forest, shelter forest and other woodlands.

Shrub Low and shrub woodland with canopy density >40% and height below 2 m.
Open forest land 1 Forest with canopy density 20–40%.
Open forest land 2 Forest with canopy density <20%.

Grassland - Natural, improved and mowed grasslands with dense growth;

Water - natural waters and water conservation facilities.

Built-up land - Urban and rural residential land; mining land and other transportation land
outside urban and rural areas.

Bare land - Land with surface soil coverage and vegetation coverage <5%.

https://www.resdc.cn/


Int. J. Environ. Res. Public Health 2021, 18, 11617 4 of 18

The monthly climate data (i.e., precipitation, temperature, and radiation) for 2000–2015
were obtained from the National Tibetan Plateau Third Pole Environment Data Center
(TPDC) [26]. Based on the time-series MODIS-NDVI images, we used the maximum value
compositing algorithm to obtain the monthly NDVI at pixel level.

2.3. The CASA Model

The CASA model is a light use efficiency model driven by remote sensing data, temper-
ature, precipitation, solar radiation, vegetation types and soil types [16]. Model simulations
use a monthly time step at the regional scale. The monthly NPP is calculated from absorbed
photosynthetic active radiation (APAR) and light use efficiency (ε) [17]. APAR depends
on the total solar radiation (SOL) and the fraction of photosynthetically active radiation
absorbed by the vegetation canopy (FPAR), and is described by Equation (1):

APAR(x, t) = SOL(x, t)× FPAR(x, t)× 0.5 (1)

where t is time (i.e., month) and x is spatial location (i.e., pixel). The constant 0.5 repre-
sents the proportion of solar effective radiation available to vegetation in the total solar
radiation [18]. In this study, FPAR was estimated by Equation (2), as follows:

FPAR(x, t) =
FPAR(x, t)NDVI + FPAR(x, t)SR

2
(2)

where FPAR(x, t)NDVI and FPAR(x, t)SR are FPAR calculated by NDVI (see Equation (3))
and SR (see Equation (4)) in x pixel and t month, respectively [19].

FPAR(x, t)NDVI =
(NDVI(x, t)−NDVIi,min)(FPARmax − FPARmin)

(NDVIi,max −NDVIi,min)
+ FPARmin (3)

FPAR(x, t)SR =
(SR(x, t)− SRi,min)(FPARmax − FPARmin)

SRi,max − SRi,min
+ FPARmin (4)

In this study, the maximum and minimum values of FPAR were 0.950 (FPARmax) and
0.001 (FPARmin) in the Wuhan City Circle area, respectively. NDVIi,min and NDVIi,max refer
to the minimum and maximum values of NDVI for the land use type i in month t (Table 2).
SRi,min and SRi,max refer to the minimum and maximum values of SR for land use type i
in month t (Table 2). SR(x, t) is the simple ratio of NDVI in x pixel and t month, and is
calculated by NDVI(x, t) following Equation (5) [19]:

SR(x, t) =
1 + NDVI(x, t)
1−NDVI(x, t)

(5)

where NDVI(x, t) is NDVI in x pixel and t month.
The light use efficiency (ε) is the efficiency of vegetation in converting absorbed pho-

tosynthetic effective radiation into organic carbon [27]. It is mainly affected by temperature
and moisture, as in Equation (6):

ε(x, t) = Tε1(x, t)× Tε2(x, t)×Wε(x, t)× εmax (6)

where Tε1(x, t) and Tε2(x, t) are temperature stress coefficients, Wε(x, t) is the moisture
stress coefficient, and εmax is the maximum light use efficiency as determined by the
empirical method [28] (Table 2). More detailed information on the CASA model is available
in [20,27].
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Table 2. Parameters of the CASA model for different land use types in the Wuhan City Circle area.

Land Use Type NDVImax NDVImin SRmax SRmin εmax

Paddy field 0.7994 0.0765 14.393 1.166 0.729
Dry land 0.8824 0.0765 17.002 1.166 0.821

Arboreal forest 0.8979 0.0765 18.793 1.166 0.985
Shrub 0.8983 0.0765 18.666 1.166 0.756

Open forestland 1 0.8889 0.0765 18.589 1.166 0.779
Open forestland 2 0.7994 0.0765 14.393 1.166 0.679

Grassland 0.6653 0.0765 12.576 1.166 0.429
Water 0.5044 0.0765 8.97 1.166 0.429

Built-up land 0.5044 0.0765 8.97 1.166 0.429
Bare land 0.5044 0.0765 8.97 1.166 0.429

Note: NDVImin and NDVImax refer to the minimum and maximum values of NDVI for each land use type.
SRmin and SRmax refer to the minimum and maximum values of SR for each land use type. The εmax refers to
the maximum value of light use efficiency.

2.4. Scenario Design

In this study, we estimated the total carbon sequestration (CS) using Equation (7):

CS = NPP × Area (7)

We designed six scenarios to decouple and analyze the effects of land use change
and climate change on carbon dynamics in the Wuhan City Circle area from 2000 to
2015 [20]. The overall effect on carbon dynamics (i.e., ∆All) includes the effect of climate
change (i.e., ∆Climate) and the effect of land use change (i.e., ∆LUCC) in this study (see
Equation (8)):

∆All = ∆Climate + ∆LUCC (8)

Based on scenario A, we removed the effect of climate change and estimated the
impact of ∆LUCC on carbon dynamics during 2000–2015, while ∆Climate could also be
calculated by the effect of overall and land use changes (Table 3).

For climate change, we designed three different scenarios: no change in precipitation
(Scenario B), no change in temperature (Scenario C), and no change in radiation (Scenario D).
Based on these scenarios, we estimated the respective effects of precipitation, temperature,
and radiation on carbon dynamics. These were recorded as ∆Precipitation, ∆Temperature,
and ∆Radiation (Table 3).

For land use change, we estimated ∆LUCC following Equation (9):

∆LUCC = ∆Afforestation + ∆Urbanization + ∆Others (9)

where ∆Afforestation is the effect of afforestation on carbon sequestration as estimated
based on scenario E (Table 3) and ∆Urbanization is the effect of urbanization on carbon
sequestration as estimated based on scenario F (Table 3). Based on the above scenarios, we
were also able to calculate ∆Others.
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Table 3. Scenario design for quantifying the effects of climate change and land use change on carbon dynamics in the
Wuhan City Circle area from 2000 to 2015.

Scenario Explanation/Purpose

A

Keeping the climate conditions (precipitation, temperature, and radiation) at the same level as in 2000, the
potential carbon

sequestration in 2015 (CSA) was calculated using the land use map and NDVI images from 2015. The effect of all
land use/cover changes was calculated as ∆LUCC = CSA − CS2000.

On the one hand, we knew that the overall effect equals the difference between the actual CS in 2000 and 2015, i.e.,
∆ = CS2015 − CS2000. On the other hand, we hypothesized that the overall effect only consisted of the effects of

climate change and land use changes, i.e., ∆ = ∆Climate + ∆LUCC. Therefore, we also calculated the effect of
climate change using the equation ∆Climate = CS2015 − CSA.

B
Keeping the precipitation at the same level as in 2000, the potential CS in 2000 (CSB) was estimated by using the

land use map and NDVI images from 2015. We then calculated the effect of precipitation according to the equation
∆Precipitation = CS2015 − CSB.

C
Keeping the temperature at the same level as in 2000, the potential CS in 2015 (CSC) was estimated by using the

land use map and NDVI images from 2015. We then calculated the effect of temperature according to the equation
∆Temperature = CS2015 − CSC.

D
Keeping the radiation at the same level as in 2000, the potential CS in 2015 (CSD) was estimated by using the land

use map and NDVI images from 2015. We then calculated the effect of radiation according to the equation
∆Radiation = CS2015 − CSD.

E
Keeping the climate conditions and the NDVI values for afforestation pixels at the same level as in 2000, we

calculated the potential CS in 2015 caused by land use changes, except for afforestation (CSE). We then calculated
the effect of afforestation according to the equation ∆Afforestation = CSA − CSE.

F
Keeping the climate conditions and the NDVI values for urbanization pixels the same as the level in 2000, we

calculated the potential CS in 2015 caused by land use changes, except for urbanization (CSF). We then calculated
the effect of urbanization according to the equation ∆Urbanization = CSA − CSF.

3. Results
3.1. Spatial and Temporal Variations of Carbon Dynamics

Our simulation results show that the annual NPP increased from 522.63 gC × m−2

to 615.82 gC ×m−2 between 2000 and 2015 in the Wuhan City Circle area (Figure 2). The
maximum NPP occurred in 2013, in which the annual NPP was 655.25 gC × m−2. This
was followed by 2016, with an annual NPP of 652.56 gC × m−2. In contrast, the NPP
in 2000, 2002 and 2013 was relatively low, at 522.63 gC × m−2, 528.64 gC × m−2 and
535.12 gC ×m−2, respectively. According to the trend analysis of the NPP time series, the
annual NPP demonstrated an increasing trend with a growth rate of 5.94 gC ×m−2 × yr−1

in the Wuhan City Circle area.
Although annual NPP increased in all cities of Wuhan City Circle area from 2000

to 2015, there were significant differences in the growth rate between different cities.
Comparing 2000 with 2015, Huanggang city had the highest increase in NPP (i.e., 25.27%)
in the study area, followed by Xianning and Tianmen, which increased by 120.16 gC×m−2

and 102.22 gC×m−2, respectively. The annual NPP in Xiantao city only increased by 1.78%
in the same period (Table 4). In addition, the NPPs of Ezhou, Qianjiang, Wuhan, Xianning
and Xiantao were the largest in 2006, while those of Huanggang, Huangshi, Tianmen and
Xiaogan were the highest in 2013. Similarly, the NPP was lowest in 2003 in several cities,
excepting Xianning, Huanggang and Huangshi, where it was lowest in 2000. Comparing
the annual NPP of the nine cities in the Wuhan City Circle from 2000 to 2015, the maximum
NPP was 737.28 gC ×m−2, which occurred in 2013 in Tianmen city, and the smallest NPP
was 399.02 gC ×m−2, which occurred in 2003 in Ezhou city.
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Figure 2. Temporal variation of annual NPP (gC × m−2) for the whole Wuhan City Circle area from
2000 to 2015. Note: The red line indicates the linear fitting for the period of 2000 to 2015. The p value
documents the significance. Error bars extending from the means document the standard deviation
of Annual NPP, while the light red region represents the 95% confidence intervals of the linear model.

Table 4. Temporal variations of annual NPP (gC ×m−2) for nine cities in Wuhan City Circle from 2000 to 2015.

Year Ezhou Huanggang Huangshi Qianjiang Tianmen Wuhan Xianning Xiantao Xiaogan

2000 412.82 533.29 481.37 596.26 597.56 441.18 531.69 568.28 563.21
2001 447.21 575.40 526.53 602.73 598.01 446.40 566.70 564.88 572.87
2002 410.72 548.25 503.81 601.13 596.05 432.62 547.29 562.07 553.36
2003 399.02 564.40 542.19 538.07 571.96 417.63 585.89 533.39 543.78
2004 523.80 672.87 603.71 641.69 669.17 503.49 638.52 630.06 648.63
2005 470.33 621.09 531.77 647.30 656.35 473.77 569.00 607.78 596.03
2006 528.62 679.09 611.07 727.34 735.14 529.47 679.10 677.11 679.78
2007 507.29 652.44 591.75 676.03 682.65 493.87 670.15 629.17 632.62
2008 479.46 657.24 606.67 646.33 660.78 489.34 646.11 620.52 637.29
2009 461.16 604.68 578.31 576.58 596.67 442.00 620.19 556.56 589.39
2010 505.42 635.98 623.56 637.93 682.79 494.46 659.56 599.60 665.57
2011 475.27 592.30 613.61 645.82 677.41 458.98 663.37 610.14 603.63
2012 478.37 670.99 573.03 604.10 658.06 474.44 621.01 565.48 620.55
2013 501.86 706.65 625.04 691.18 737.28 508.86 675.53 647.66 698.63
2014 440.79 678.92 572.63 619.46 693.14 459.57 667.87 569.05 636.27
2015 433.54 668.06 575.46 664.90 699.78 463.12 651.85 578.37 656.51

Change
rate 2.28 7.88 5.98 3.43 7.13 2.02 7.75 1.30 6.29

To explain and analyze the spatial variation of annual NPP in the Wuhan City Circle
area, we analyzed the average and linear trend of NPP from 2000–2015 pixel by pixel
(Figure 3). We found that the annual NPP was lower in the central region than in the others
(Figure 3a), and that the maximum decrease rate was −27.38 gC × m−2 × yr−1 in the
middle of the study area (Figure 3b). Conversely, the annual average NPP was higher in
regions outside the central region, especially in Huanggang and Xianning, which had the
highest annual average NPP at 1035.24 gC × m−2. The maximum growth rate in these
areas was up to 32.40 gC ×m−2 × yr−1. Consequently, the annual NPP showed distinct
spatial heterogeneity in the Wuhan City Circle area. As a result, the p-value of the t-test
for the modeled slope was less than 0.05 in these study areas (Figure 3c). Only 7.79%
of the total area showed an insignificant change in annual NPP during 2000–2015, while
more than 90% of the total area showed no change in annual NPP at the 0.05 statistically
significant level. Meanwhile, the changes in the annual NPP were significant in the
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northwest and southeast of the Wuhan City Circle area. Moreover, we defined three NPP
change types based on the linear trend of annual NPP and its significance. The reduced
areas were mainly distributed in Wuhan and Xiantao. Meanwhile, the increased areas were
mainly distributed in Huanggang, Huangshi, Xianning, and at the junction of Xiaogan
and Tianmen (Figure 3d). Consequently, 7.24% of the total area (4196.06 km2) presented
a significant increase in annual NPP at the 0.05 statistically significant level, and only
0.55% of the total area (320.95 km2) showed a significant decrease in annual NPP during
2000–2015.
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3.2. Effects of Climate Change on Carbon Dynamics

Based on our scenario simulations, we found that the effect of climate change on
carbon sequestration was −73.3 × 1010 gC in the whole Wuhan City Circle area from 2000
to 2015 (Table 5). Our simulation results indicated that Ezhou, Huanggang and Wuhan
showed positive effects from climate change on carbon sequestration of 9.02 × 1010 gC,
20.2 × 1010 gC and 12.2 × 1010 gC, respectively, during 2000–2015. In contrast, other cities
showed negative effects from climate change on carbon sequestration. The lowest impact
of climate change on carbon sequestration was found in Xianning, with −51.9 × 1010 gC,
followed by Xiaogan with −24.6 × 1010 gC.

Table 5. The effects of climate change, precipitation, temperature and radiation on total carbon
sequestration (1010 gC) for the Wuhan City Circle area between 2000 and 2015. ∆Climate, the effect
of climate changes; ∆Precipitation, the effect of precipitation changes; ∆Temperature, the effect of
temperature changes; ∆Radiation, the effect of radiation changes.

City ∆Climate ∆Precipitation ∆Temperature ∆Radiation

Ezhou 9.02 −0.04 −0.07 9.13
Huanggang 20.2 5.34 20.3 −5.46
Huangshi −6.59 −1.53 −6.90 1.84
Qianjiang −14.2 −11.5 −13.6 10.9
Tianmen −12.3 −10.0 −11.3 9.04
Wuhan 12.2 10.4 13.1 −11.3

Xianning −51.9 −31.0 −52.7 31.9
Xiantao −5.21 −2.38 −4.35 1.52
Xiaogan −24.6 −30.4 −22.8 28.5

The annual average temperature of the nine cities revealed that only the temperature
in Huangshi decreased, at a rate of −0.005 per year during 2000–2015, while it increased at
various rates in all other regions in the Wuhan City Circle (Table S1). Overall, the annual
average temperature in Wuhan City Circle was the highest in 2007 and 2013, at 19.24 ◦C
and 19.16 ◦C, respectively, while the lowest was 17.81 ◦C in 2012. Similarly, only Qianjiang,
Tianmen and Xiaogan had declining annual precipitation, at a rate of−1.67 mm, −2.47 mm
and −5.99 mm, respectively (Table S2). In contrast, the annual precipitation in Ezhou has
the greatest variation, increasing at a rate of 35.88 mm per year. The annual precipitation
in Wuhan City Circle was the highest in 2002, at 2326.21 mm, and the lowest in 2007, at
1468.26 mm. In terms of annual radiation, Qianjiang, Tianmen and Xiantao saw a decrease
at a rate of −3.34 MJ ×m−2, −1.30 MJ ×m−2 and −0.34 MJ ×m−2 per year, respectively,
while other regions saw an increase at various rates (Table S3). The annual radiation of
Wuhan City Circle was the highest in 2006 at 5793.76 MJ × m−2 per year, and the lowest in
2003 at 4068.50 MJ ×m−2 per year.

The changes in precipitation and temperature had a negative effect, by−71.2× 1010 gC
and −78.2 × 1010 gC, respectively, on carbon sequestration in the whole study area from
2000–2015 (Table 5). Specifically, changes in precipitation and temperature had positive
effects on carbon sequestration in Huanggang and Wuhan, while they had negative effects
in the other cities. We also found that Xianning showed the lowest effect from precipi-
tation (−31.0 × 1010 gC) and temperature (−52.7 × 1010 gC). However, radiation in the
Wuhan City Circle area had a positive effect of 76.1 × 1010 gC on total carbon sequestration
in the same period. Contrary to the trends in precipitation and temperature, radiation
changes in Huanggang and Wuhan had a negative impact on carbon sequestration. The
highest effect of radiation (31.9 × 1010 gC) on carbon sequestration was found in Xian-
ning (Table 5). In addition, the highest simulated value of the effect of temperature was
20.3 × 1010 gC in Huanggang, while the lowest effect of radiation on carbon sequestration
was −11.3 × 1010 gC, in Wuhan (Table 5).
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3.3. Effects of Land Use Change on Carbon Dynamics

According to our scenarios, the results indicate that the effect of land use change
on carbon sequestration was 480 × 1010 gC in the whole Wuhan City Circle area during
2000–2015 (Table 6). Overall, in this period, the largest increase in land use type was in
built-up land, which was 1496.36 km2. This is followed by water at 630.76 km2 (Table S4).
Moreover, the most obvious decreases of land use types in the Wuhan City Circle area
from 2000 to 2015 were dry land (i.e., −1000.92 km2) and paddy field (i.e., −948.68 km2)
(Table S4). However, afforestation and urbanization had little effect on carbon sequestra-
tion in the Wuhan City Circle from 2000–2015, at 6.05 × 1010 gC and −6.29 × 1010 gC,
respectively (Table 6). The most affected by afforestation was Xiaogan, with 1.38 × 1010 gC,
while the areas with the highest effect of urbanization were Xianning and Huanggang with
−2.64 × 1010 gC and −2.04 × 1010 gC, respectively. In contrast, ∆Others played a decisive
role in the influence of carbon sequestration, with 479.0 × 1010 gC (Table 6). The city most
affected by ∆Others was Huanggang, with a value of ∆Others of 164.0 × 1010 gC; the least
affected was Ezhou, with 7.20 × 1010 gC.

Table 6. The effects of land use changes on total carbon sequestration (1010 gC) for the Wuhan City
Circle area during the period between 2000 and 2015. ∆LUCC, the effect of all land use changes;
∆Afforestation, the effect of non-forest land changes on forest land; ∆Urbanization, the effect of
non-construction land changes on construction land; ∆Others, the effect of other land use changes.

City ∆LULC ∆Afforestation ∆Urbanization ∆Others

Ezhou 6.96 0.09 −0.33 7.20
Huanggang 163.0 0.18 −2.04 164.0
Huangshi 20.6 0.16 −1.15 21.6
Qianjiang 27.7 0.51 −0.04 27.2
Tianmen 35.0 0.96 0.21 33.8
Wuhan 35.4 0.97 −0.8 35.2

Xianning 86.0 0.94 −2.64 87.7
Xiantao 13.3 0.86 0.28 12.2
Xiaogan 92.4 1.38 0.22 90.8

Wuhan City Circle 480.0 6.05 −6.29 479.0

4. Discussion
4.1. Relationship between Carbon Dynamics and Climate Change

Climate change is an important driving factor affecting regional NPP changes [29].
In this study, climate change showed a negative effect on carbon sequestration in the
whole Wuhan City Circle area between 2000 and 2015. We found that this negative effect
mainly came from an increase in temperature and precipitation. Similar results were found
by Khalifa et al. [30], who indicated that temporal variations in NPP mainly depend on
changes in climatic factors such as temperature, precipitation, and radiation. According to
the change trend analysis, the annual average temperature in the Wuhan City Circle area
showed an insignificant increasing trend of 0.005 ◦C × year−1 (Table S1). Some previous
studies have reported that carbon sequestration in forest ecosystems can decrease with
increasing temperatures if the region has good moisture [31,32]. This can be attributed to
carbon loss due to soil respiration, as the increase in temperature usually directly enhances
both autotrophic and heterotrophic soil respiration [33]. As an important factor in climate,
precipitation is also a key driving factor of forest NPP [34,35]. The average precipitation
in the Wuhan City Circle area was 1872.50 mm × year−1 between 2000 and 2015, and the
annual average precipitation also showed an increasing trend of about 10 mm × year−1

(Table S2). This can intensify soil erosion and thus soil organic carbon denudation, transport
and deposition [36]. In addition, soil erosion can lead to soil nutrient loss, thus indirectly
affecting ecosystem productivity and carbon sink function [36].

The regions with significant temperature increases were mainly located in the western
part of the study area, which showed the highest change rate at 0.019 ◦C (Figure 4(a1)),
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while the temperature decreased significantly in Huanggang and Xianning. The Spearman’s
rank correlation between NPP and annual mean temperature was significant. The spatial
explicit correlation coefficients were positive in the northwest regions of Wuhan City Circle,
and the maximum value of the correlation coefficient was 0.85 in this area (Figure 4(a2)).
However, the spatial explicit correlation coefficients were negative in the central and eastern
regions of Wuhan City Circle (Figure 4(a2)), while the minimum value of the correlation
coefficient between the annual NPP and temperature was −0.64 in these areas. At the same
time, precipitation caused NPP to decrease in most regions, excepting only the northeastern
regions (Figure 4(b2)). The minimum value of the correlation coefficient between the annual
NPP and precipitation was −0.67 from 2000 to 2015. However, the precipitation increased
in most areas of Wuhan City Circle (except for the northwest), and the maximum growth
in precipitation was up to 17.19 mm (Figure 4(b1)).
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Radiation is known to have very important effects on many biological processes, such
as photosynthesis and growth in terrestrial vegetation [3]. In the Wuhan City Circle area,
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the average annual radiation was 4713.27 MJ×m−2 between 2000 and 2015, and the change
rate was 1.72 MJ × m−2 × year−1 (Table S3). Usually, forest carbon sequestration was
positively related to radiation [5,20,37]. For example, Jiang et al. [38] showed that reduction
in cloud cover increased solar radiation reaching the Earth’s surface, thereby increasing
NPP. Mercado et al. [39] demonstrated that solar radiation was the main driver of plant
photosynthesis. Thus, the increase of solar radiation is beneficial to the formation of carbon
sinks. This is completely consistent with our simulation results, as NPP increased with ra-
diation in the northeastern regions but decreased in the more central regions (Figure 4(c2)).
However, there was a significant increasing trend in radiation in both the central and
northeastern regions of the study area, with a maximum increment of 12.47 MJ × m−2

(Figure 4(c1)). The reason for this difference is mainly due to the central area of Wuhan City
Circle being a key part of urban expansion, with less vegetation coverage. The maximum
value of the correlation coefficient between annual NPP and radiation was 0.91. This value
is higher than both temperature and precipitation in the Wuhan City Circle area during the
same period.

4.2. Land Use Change Altered Carbon Sequestrations

Forest plays a very important and unique critical role in terrestrial carbon sequestration
and slowing down global warming [40–42]. In this study, forestland had the highest annual
NPP from the spatial distribution map of land use (Figure 5) and the spatial distribution
map of annual NPP (Figure 3a). The Afforestation area was 395.39 km2 from 2000 to 2015,
while the effect of afforestation had a positive value of 6.05 × 1010 gC. Moreover, ∆Others
had the highest effect on carbon sequestration, 479.0 × 1010 gC in the study area. The
major reason for this was that a large amount of forestland had been protected and grown
naturally during these years. We know that the factors affecting forest carbon sequestration
mainly include climate condition, forest composition (i.e., tree age, tree species, and density)
and forest management [43–45]. However, limited by the acquisition of forestry survey
data, we were unable to analyze the impact of specific forest management level and stand
structure on regional carbon sequestration in the Wuhan City Circle area. Because the
increase of temperature and precipitation brings negative effects, we think that the positive
effects of afforestation may come with increasing forest age and effective radiation.

In addition, the positive effects of afforestation on carbon sequestration in the Wuhan
City Circle area during 2000–2015 were almost equal to the negative effects of urbanization
(i.e., −6.29 × 1010 gC). However, built-up land increased by 1496.36 km2, which was
almost 20 times the reduced area of forestland (Table S4). Actually, we also found that
the built-up land increased by urbanization mainly came from the reduction of cropland
(i.e., −1949.6 km2, which includes paddy field and dry land) in the Wuhan City Circle
area (Figure 5). Specifically, 1244.43 km2, 222.8 km2 and 127.2 km2 of cropland, forest land
and water were transferred to built-up land during 2000–2015 (Table S5), resulting in a
significant loss of NPP. These results are similar to those reported by Liu et al. [45], who also
concluded that the increase in land use types with higher photosynthetic productivity offset
a certain amount of NPP loss despite the rapid encroachment of built-up land on cropland.
Therefore, 310.75 km2 and 51.66 km2 of crop land and grassland were transformed into
forest land under the influence of the reforestation policy (Table S5), which effectively
compensated for the negative impact of urban expansion on NPP in the Wuhan City
Circle area.
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Other land use changes were mainly reflected in the substantial decrease in crop land
and increase in water area, (i.e., 630.76 km2) in the Wuhan City Circle area between 2000
and 2015 (Table S4). Of this, 887.67 km2 of cropland and 103.44 km2 of bare land were
converted to water during the study period (Table S5). Between 2000 and 2015, 260.69 km2

of water and 164.36 km2 of forest land were also converted to crop land. However, the
transfer of crop land in was much smaller than the transfer out, so it mainly showed a
decreasing trend. We think that increased precipitation, complex human activities and the
rugged topography are the main reasons for these changes.

4.3. Land Use Suggestions and Landscape Planning

There are four typical landscapes, i.e., forest, water, farmland and grassland, in the
Wuhan City Circle area. We proposed different targeted and creative design proposals
to optimize the scale structure and spatial layout for these landscapes by integrating hill,
water, forest, field, lake and grass management (Figure 6). These landscape measures
could reduce the occupation and degradation of ecological land and increase ecosystem
protection and restoration, which could enhance the carbon sequestration capacity and
efficiency of regional ecosystems.
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Although some forests have converted into cropland, the amount of crop land trans-
ferred in is much smaller than the amount transferred out. Thus, the red line of crop land
protection should be strictly adhered to and the quality of farmland and ecological construc-
tion should be strengthened. Landscape planning tries to reduce the occupation of paddy
fields and, under the premise of soil and water balance, moderately expand the area of
cropland under cultivation in order to increase the carbon sink of arable soils (Figure 6a).In
addition, comprehensive treatments such as ecological fallowing, soil restoration, treating
surface source pollution, and reducing groundwater extraction should be implemented in
the regions where environmental problems such as agricultural pollution, water scarcity
and serious soil erosion exist, so as to improve the quality of arable land and the function
of soil carbon sequestration. At the same time, we suggest implementing combined food
storage with respect to the land and use of nutrients, drawing on the experience of typical
countries and regions in the spatial and temporal allocation of fallow land, while also
taking into account the matching of water and soil pollution and ecological vulnerability in
order to reasonably determine the spatial and temporal allocation of fallow crop rotation.

For the grassland ecosystem, limiting overgrazing and optimizing grass species struc-
ture can have an important positive impact on maintaining and increasing carbon storage
in terrestrial ecosystems (Figure 6b). It is recommended that zoned rotational grazing,
grazing bans and seasonal grazing rests should be implemented in order to achieve grazing
reversion and grass–livestock balance. Grassland improvement is implemented through
moderate fertilization, irrigation, and improved species selection, and the construction of
artificial grasslands can be strengthened to improve the comprehensive vegetation cover of
grasslands and increase the organic matter content of soils.

The Wuhan City Circle area includes a large forested area, and forests play a key and
unique role in carbon sequestration and mitigating global warming. According to our
results, forests have the highest annual NPP, and increasing forest cover could significantly
promote carbon sequestration (Figure 6c). Meanwhile, forest management measures such
as optimized tree species structure, rotation period selection, and fertilizer application
programs are recommended, as these are very important for increasing the amount of
vegetation and soil carbon sequestration in forest ecosystems. Some studies have reported
that the soil organic carbon stock of broad-leaved forests is significantly higher than that of
coniferous forests, and that mixed configurations should be planted according to the shade
tolerance and successional order of tree species. The rotation periods should be extended
appropriately, and reasonable rotation periods and volumes should be determined accord-
ing to tree species in each region in order to make full use of forest carbon sequestration
potential. In terms of forest management, artificial afforestation for forest regeneration has
become a way to increase soil carbon sequestration under human control. Management
measures such as fertilization, irrigation, forest thinning, forest weed management and
controlled fires have been adopted to strengthen forestry management and change the
determinants of afforestation area, the rotation period of tree species, and average annual
growth in order to enhance the level of afforestation and sink in the region.

For the waterscape, we suggest building green ecological corridors, ecological dams
and ecological floating islands to improve carbon sequestration capacity (Figure 6d). These
measures could enhance ecological habitats for plants and aquatic plants with strong carbon
sequestration capacity, so as to enhance the carbon sequestration capacity of the watershed.

4.4. Uncertainties and Limitations

In this study, some uncertainties in our simulation results must also be considered.
First, uncertainty in the input of climate data (i.e., temperature, precipitation, and radiation)
comes from the ANU–Spline statistical interpolation based on meteorological observation,
reanalysis data and satellite remote sensing data [26]. Second, we did not consider the
effects of atmospheric processes. For example, both the acceleration of nitrogen deposition
and the increase of atmospheric carbon dioxide concentration may affect simulated NPP
at the regional scale [46–49]. Third, the simulated NPP comes from the downscaling of
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MODIS-NDVI products [50]. There is no doubt that more accurate data can improve the
performance of the CASA model. However, this study focuses on the effects of climate
change and land use change on regional carbon sequestration through relative comparison.
Therefore, the influence of the above shortcomings on the accuracy of our simulated results
can be largely ignored.

5. Conclusions

Our simulations showed that the annual NPP of the Wuhan City Circle area fol-
lowed an increasing trend from 2000 to 2015, while the total carbon sequestration was
3027.6 × 1010 gC in 2000 and 3567.45 × 1010 gC in 2015. Based on our scenario simulations,
we found that land use changes contributed to total carbon sequestration by 480 × 1010

gC in the whole study area during the period of 2000–2015. However, climate change
had a negative effect on total carbon sequestration of −73.3 × 1010 gC in the same area
and period. Both precipitation and temperature released carbon by −71.2 × 1010 gC and
−78.2 × 1010 gC, respectively; however, radiation increased carbon by 76.1 × 1010 gC. In
terms of spatial distribution, we found that the negative effect was mainly in the central re-
gion, while the positive effects were mostly in the surrounding region. Moreover, the effects
of climate change on carbon sequestration in the Wuhan City Circle area were much less
than the effect of land use change between 2000 and 2015. The effects of afforestation and
urbanization on carbon sequestration offset each other in the study area, which indicates
that the government was simultaneously implementing afforestation and urbanization
during 2000–2015. However, the negative effects of the large reduction in paddy fields and
dry land on carbon sequestration needs to be given great attention.
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