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Abstract: The ability of a seed to germinate and establish a plant at the right time of year is of vital
importance from an ecological and economical point of view. Due to the fragility of these early growth
stages, their swiftness and robustness will impact later developmental stages and crop yield. These
traits are modulated by a continuous interaction between the genetic makeup of the plant and the
environment from seed production to germination stages. In this review, we have summarized the
established knowledge on the control of seed germination from a molecular and a genetic perspective.
This serves as a “backbone” to integrate the latest developments in the field. These include the link
of germination to events occurring in the mother plant influenced by the environment, the impact
of changes in the chromatin landscape, the discovery of new players and new insights related to
well-known master regulators. Finally, results from recent studies on hormone transport, signaling,
and biophysical and mechanical tissue properties are underscoring the relevance of tissue-specific
regulation and the interplay of signals in this crucial developmental process.

Keywords: ABA/GA; hormone signaling and dynamics; transcription factors; environmental signals;
seed dormancy and germination; epigenetics; post-transcriptional regulation; spatio-temporal
regulation

1. General Introduction

Seed production and germination are intimately connected and closely linked to the survival and
dispersal of plant species. The main role of the seed is to protect the embryo and sense environmental
information to couple germination with seasons compatible with the completion of the plant life cycle.
Germination encompasses the events from imbibition to radicle protrusion through the seed coverings.
In the field, the spatial pattern of seed dispersal depends on the habitat of the mother plant as well as on
the fruit and seed morphology. In addition, the temporal distribution of germination mainly depends
on the interaction between the environment and the plant’s genetic makeup, which conditions both
dormancy and germination potential. For instance, it is known that seeds developed in plants exposed
to low temperatures will have higher dormancy levels and the opposite when supplied with nitrate.
Physiological dormancy, the most common type [1,2], provides seeds with valuable advantages. First,
it maximizes dispersion, thus reducing competition for resources between the offspring and the mother
plant. Second, it halts germination in the wrong season, even if short spells of favorable conditions
occur. After reaching maturity, seeds undergo a process called after-ripening (AR) characterized by a
gradual reduction in water content and dormancy level, whose speed depends on the relationship
of seed moisture content and temperature during dry storage. At this point, non-dormant seeds can
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retrieve the dormancy program upon encountering inadequate conditions (secondary dormancy) or,
if conditions are adequate, proceed to germination. In this case, the intake of water or imbibition by
the non-dormant seed triggers different biochemical, metabolic and physiological processes, such as
the resumption of respiratory activity, energy production, activation of repair mechanisms, protein
biosynthesis from both stored and newly synthesized mRNAs and reserve mobilization. These events
fuel the elongation of the embryonic axis and the weakening of the embryo surrounding tissues,
leading to rupture of the seed coat (testa rupture), embryo radicle protrusion (germination sensu stricto)
and seedling establishment.

To comprehend the processes taking place in the seed, it is necessary to have a deep understanding
of the molecular and biochemical mechanisms that regulate them. This review intends to illustrate
the key issues in a comprehensive and readable form, keeping a reasonable extension. Nevertheless,
supplementary tables with a compilation of selected reviews that expand on specific aspects of seed
biology (Table S1) and a list of complete gene names and their abbreviations (Table S2) have also been
included. We have focused this review on Arabidopsis thaliana (Arabidopsis) although relevant findings
in other plant species have been included. In the first part, we will describe the molecular players
and networks controlling these processes, and their links to environmental and hormonal cues. In the
second part we will review these processes from a genetic and physiological perspective.

2. Regulatory Layers Controlling Seed Germination

2.1. Hormone Metabolism and Signaling

Germination depends on the physiological state (dormancy) of the seed, which is partly caused
by the interaction between the plant genotype and a wide spectrum of environmental factors, such as
temperature, soil moisture, light and nutrient availability. This is mainly achieved through regulation
of the metabolism and signaling of gibberellins (GAs) and abscisic acid (ABA), two phytohormones
with antagonistic roles. Their spatio-temporal balance plays a pivotal role in seed biology by favoring
dormancy over germination when the ABA/GA ratio is high, and the opposite when it is low [3]. In fact,
the first dormancy- and germination-associated loci identified in Arabidopsis mutants included genes
involved in GA and ABA biosynthesis, perception and signaling [3–8]. Bioactive GAs are formed in
terminal reactions catalyzed by GA20ox and GA3ox oxidases. Deactivation of GAs by GA2ox oxidase
and transcriptional feedback loops are also important features in GA homeostasis [9,10]. In particular,
the GA3ox1 and GA3ox2 enzymes for biosynthesis, and GA2ox2 for catabolism, stand out for their key
role in GA signaling during germination [11–13]. There are three main components involved in early
perception and signaling by GAs: the GID1 (GA receptor) and the GID2 (F-box) proteins are positive
signaling regulators [14–16], while DELLA proteins act as negative regulators [17,18]. The presence
of GAs triggers the interaction of its receptor GID1 with DELLAs through their N-terminal domain
(DELLA domain) and the formation of a ubiquitination complex via interaction with GID2. This
interaction induces the proteasome-mediated degradation of DELLAs [19–22]. DELLA mutant versions
lacking the DELLA domain are resistant to degradation and confer GA insensitivity [23,24]. DELLAs
negatively regulate GA signaling through protein-protein interactions with several transcriptional
regulators [19,20,25–28]. In Arabidopsis there are five DELLAs, of which RGL2 has a major role in
regulating germination, since its loss-of-function mutants are able to restore germination of GA-deficient
seeds [29,30]. Regarding the two Arabidopsis GID2 proteins, SLY1 seems to have the dominant role in
germination, since SNE/SLY2 overexpression does not produce a decrease in RGL2 protein levels [31].
For the three GID1 genes found in Arabidopsis, a double mutant gid1ac had to be obtained to observe
defects on germination [32], whereas GID1b has an ABA-independent role in AR [33].

The key enzymes involved in ABA biosynthesis are NCED dioxygenases, while CYP707A
monooxygenases are central to ABA catabolism through 8’-hydroxylation [34,35]. In particular, the loss
of function of two ABA biosynthetic enzymes, NCED6 and NCED9, results in dormancy reduction [36]
while mutation of the CYP707A2 gene decreases germination potential [37–39]. As in the case of
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GAs, three main components are involved in early ABA perception and signaling: the ABA receptor
(PYR/PYL/RCAR) proteins and the SnRK2 protein kinases, which are positive regulators of the pathway,
and PP2Cs protein phosphatases as negative regulators. ABA-bound receptors are able to bind and
inhibit PP2Cs which, in turn, allow phosphorylation and activation of SnRK2s [35,40–42]. Activated
SnRK2s phosphorylate downstream targets, such as the ABI5 and other members of the AREB/ABFs
bZIP transcription factors (TF) family [43], among others, to activate the ABA response in plants [35].
In the seed, responses to ABA and related physiological processes are mainly under the control of ABI5
together with two other non-bZIP TFs, ABI3 (B3 family TF) and ABI4 (ERF family TF) [35,42]. Among
these regulators, ABI3 is the one acting upstream ABI5 and ABI4 and is essential for ABI5 expression in
germination arrest [44], whereas ABI4 acts as a repressor of lipid breakdown in the embryo [45]. Both
TFs are positive regulators of the expression of ABI5 during seed germination [44,46]. Furthermore,
ABI5 activates its own expression by binding to its own promoter [47].

2.2. Hormone Dynamics and Transport

The spatio-temporal action of plant hormones is crucial for proper development and
germination [48–51]. Compelling evidence of temporal and tissue-specific regulation of hormone
metabolism and signaling in seeds have been obtained, and recent results are improving our view on
hormone transport in this organ [11,45,52–62]. For instance, the release of ABA from the endosperm
into the embryo controls its growth and maintains its dormancy in dry seeds, a role that requires RGL2
function [63]. It has also been found that temperature shifts alter the spatial distribution of GAs and
ABA in dormant embryos, suggesting that crosstalk mediated by hormone transport occurs between
cell types in the embryonic axis [61]. Four AtABCG transporters expressed specifically in seed tissues
were found to act in concert to correctly deliver ABA to control seed germination: AtABCG25 and
AtABCG31 export ABA from the endosperm to the embryo, whereas AtABCG30 and AtABCG40
import ABA into the embryo from the endosperm. Consequently, it has been proposed that radicle
extension and subsequent embryonic growth are suppressed by the coordinated activity of multiple
ABA transporters expressed in different seed tissues [64].

The AtSWEET13 and AtSWEET14 transporter proteins were found to mediate cellular GA uptake
when expressed in yeast and oocytes [65]. The sweet13/sweet14 double mutant exhibits altered long
distance transport of exogenously applied GAs and their wild type (WT) versions are required for
proper development of seeds and seedlings. SWEET family proteins were initially identified as sugar
transporters and specific members of the family are involved in seed filling [66–68]. However, their
role as GA transporters during seed development may not be so relevant for germination. In fact, GAs
stored in dry seeds are not, or not sufficiently, transmitted to the offspring to successfully complete
germination under permissive conditions, since de novo synthesis of GAs is required at this stage [69].
An intriguing observation is that the seeds produced by sweet13/sweet14 plants were larger than WT
seeds but less sensitive to inhibition of germination by ABA or paclobutrazol (PAC, a GA biosynthesis
inhibitor). If the SWEET proteins promoted GA influx into seed tissues, their loss of function would
be expected to reduce seed size and increase sensitivity to ABA and PAC-mediated inhibition of
germination [65].

The NPF3 gene encodes a protein targeted to the plant cell membrane where it functions as a GA
influx transporter [70,71]. NPF3 belongs to the NPF gene family previously reported to encode nitrate
or peptide transporters, some of which are also able to transport hormones [72,73]. Whereas NPF3 is
expressed during seed development, npf3 mutants do not show altered germination under standard
conditions, maybe due to genetic redundancy. Yet, these mutants showed a reduced germination
response to GAs under nitrogen-limiting conditions [70,71]. NPF3 is also an ABA transporter in vitro
and its expression is upregulated by low nitrogen, light and ABA and downregulated by high GA
levels [70,71]. Interestingly, enhanced expression of NPF3 has been associated with a greater propensity
to break dormancy. This effect has been proposed to be related to altered ABA/GA balance due to
enhanced capacity for GA intake [61]. These findings suggest a role for NPF3 as a negative regulator of
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dormancy subjected to GA negative feedback. Another member of this family previously known as a
low-affinity nitrate transporter (NPF4.6/AIT1/NRT1.2) [74], also mediates ABA uptake in yeast and
insect cells. Compared with WT plants, the npf4.6/ait1/nrt1.2 mutant was less sensitive to exogenously
applied ABA during seed germination and/or post-germination growth [75]. The fact that NPF proteins
may act in vivo as dual transporters of nitrate and hormones, along with the dependence of their
mutants on nitrogen availability to show altered germination responses, suggests the existence of
molecular crosstalk that adapts germination to the nutrient environment. NLP6 TF is a NIN-like
(NLP) protein that was found to control gene expression in response to the nitrate signal in vegetative
stages [76]. NLP6 as well as other NLP family proteins bind a specific cis-element (NRE) in the promoters
of nitrate-responsive genes and activate their expression. Genes involved in nitrate assimilation (NIA,
NIR1) and transport (NRT1.1, NRT2.1) as well as regulatory genes of both processes are targets of
NLP6 [76,77]. When nitrate is fed to the mother plant, seeds have reduced levels of dormancy, partly
because ABA levels are reduced [78]. Not surprisingly, the CYP707A2 gene is induced by nitrate and,
when mutated, seeds are less sensitive to nitrate-induced dormancy release [79]. Recently, a direct link
between nitrate and ABA metabolism was found by revealing the role of NLP8, a TF that reduces ABA
levels in a nitrate-dependent manner by directly binding to the promoter of CYP707A2 [80].

In summary, it is now clear that seeds respond to the nutrient environment perception by linking
transport of nitrogen to hormones. By using specific nitrogen-dependent regulators, seeds can also
modify gene networks and hormonal balance to modulate dormancy and germination. Additional
information on this regulation can be found at the end of the next section.

2.3. Environmental Influence of Transcriptional Regulation: Expanding the Regulatory Breadth
of Known/Classic TFs

The antagonism between GAs and ABA fine tunes seed germination to environmental conditions.
The regulation exerted by the ABI5 TF (Figure 1) is one of the central nodes of this antagonism [81].
Expression of ABI5 is stimulated by ABA, water stress and high salinity, a response that relies on three TFs
that bind to and activate its promoter, namely HY5/HYH, RSM1 and AGL21. Loss-of-function mutants
of these genes decrease sensitivity to ABA, salinity and water stress during seed germination [82–84].
Although HY5 and BBX21 TFs are positive regulators of photomorphogenesis, their interaction
counteracts HY5 upregulation of the ABI5 promoter. This mechanism is also used by BBX21 to interfere
with ABI5 upregulation of its own promoter [85]. Similarly, VQ18 and VQ26, which belong to a recently
identified family of plant-specific transcriptional regulators [86], bind to ABI5 to interfere with its
transcriptional activity [87]. Reduction of ABI5 function is also controlled through negative feedback
by the ABI5-induced AHT1, a BTB/POZ-domain containing protein which is a potential receptor for
the proteasome CRL3 complex [88].
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Figure 1. Interplay between core components of molecular mechanisms controlling seed dormancy 
and germination with hormones and environmental signals. (A) Hormonal and molecular regulatory 
networks involved in dormancy and germination. DOG1 increases abscisic acid (ABA) sensitivity 
through sequestration of PP2Cs (AHG1/3) and genetically interacts with ABI3 to ensure ABA 
signaling during seed maturation and the establishment of dormancy. DOG1 expression is regulated 
by ethylene (ETH) signaling through the ETR1/ERF12 pathway and has an impact on dormancy 
release through the control of two antagonistic miRNAs. Other hormones such as auxin (AUX) by the 
ARF10/16 pathway and karrikins (KR) have a role in dormancy by altering ABA content or signaling. 
ABI5 plays a key role in ABA signaling to repress germination. ABI5 expression is upregulated under 
conditions unfavorable for germination by several TFs (ABA-related TFs or NF-YC3/4/9). Negative 
feedback by RAV1 and WRKY18/40/60 or conditions promoting germination counteract this 
upregulation. Also, other hormonal signaling pathways (gibberellins, GAs; brassinosteroids, BRs; 
cytokinins, CKs) interfere with ABI5-mediated transcription or stability through several regulatory 
proteins (DELLAs, ICE1, BES1, BIN2 or ARR4/5/6). (B) Effects of environmental factors on the 
regulation of seed dormancy and germination. PIL5 represses germination in the absence of light. It 

Figure 1. Interplay between core components of molecular mechanisms controlling seed dormancy
and germination with hormones and environmental signals. (A) Hormonal and molecular regulatory
networks involved in dormancy and germination. DOG1 increases abscisic acid (ABA) sensitivity
through sequestration of PP2Cs (AHG1/3) and genetically interacts with ABI3 to ensure ABA signaling
during seed maturation and the establishment of dormancy. DOG1 expression is regulated by ethylene
(ETH) signaling through the ETR1/ERF12 pathway and has an impact on dormancy release through
the control of two antagonistic miRNAs. Other hormones such as auxin (AUX) by the ARF10/16
pathway and karrikins (KR) have a role in dormancy by altering ABA content or signaling. ABI5 plays
a key role in ABA signaling to repress germination. ABI5 expression is upregulated under conditions
unfavorable for germination by several TFs (ABA-related TFs or NF-YC3/4/9). Negative feedback by
RAV1 and WRKY18/40/60 or conditions promoting germination counteract this upregulation. Also,
other hormonal signaling pathways (gibberellins, GAs; brassinosteroids, BRs; cytokinins, CKs) interfere
with ABI5-mediated transcription or stability through several regulatory proteins (DELLAs, ICE1,
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BES1, BIN2 or ARR4/5/6). (B) Effects of environmental factors on the regulation of seed dormancy and
germination. PIL5 represses germination in the absence of light. It increases the ABA/GA balance
partly through direct upregulation of SOM, DELLAs (RGA/GAI) and DAG1 transcription. ABI3/5 and
DELLAs also participate in the upregulation of SOM gene transcription. Upon light perception, PIL5
activity is counteracted by different mechanisms mostly mediated by phytochromes (PhyB): increased
degradation and reduced transcription in response to higher NO levels and reduced function through
HFR1 competitive interaction. NO has also an effect on the stability of class VII ERFs, mediating
their degradation and thus reducing ABI5 expression. In addition, activated Phys also reduce DELLA
(RGL2) expression and increases its degradation by reducing the expression of circadian genes (RVE1/2).
DOG1 integrates temperature cues to regulate dormancy release in fresh-harvested seeds. In dry
seeds, SPT negatively regulates germination in the absence of low temperatures. SPT activates ABI5
and represses MFT expression. MFT induces dormancy in fresh seeds but promotes germination
in AR seeds, and it is a convergence point between PIL5 and SPT regulation. Pathogen perception
triggers DELLA-dependent and GA-independent ABI5 expression to block germination in anticipation
of potential seedling damage. Drought and salinity stimulate ABA biosynthesis and induce ABI5
expression, a response mediated by HY5, RSM1 and AGL21 and counteracted by BBX21.

Additional proteins participate in the negative regulation of ABA signaling in germinating seeds:
(1) the RAV1 TF represses ABI5 expression when is phosphorylated by SnRK2 kinases, in sharp contrast
with the positive effect that these kinases have on the ABA pathway through phosphorylation of
some early signaling components [89]; (2) a loss-of-function mutant of an MDN1 domain-containing
protein (SAG) shows higher levels of ABI5 and ABI3 mRNAs in the presence of ABA [90]; (3) three
WRKY-domain TFs (WRKY18, WRKY40, and WRKY60) repress ABI4 and ABI5 expression by direct
binding to their gene promoters [91,92]; (4) ABI5 mRNA levels increase in the AtMyb7 TF loss-of-function
mutant [93].

A clear example of ABA and GA signaling integration during seed germination is provided by the
interaction between the RGL2 DELLA protein and three NF-YC TF homologs (NF-YC3, NF-YC4 and
NF-YC9). This module directly upregulates ABI5 gene expression through specific binding to CCAAT
elements in the ABI5 promoter [94]. Another example is the ICE1 TF, previously known for its positive
role in cold-induced responses [95]. It has been reported that ICE1 binds to ABI5 and interferes with
its transcriptional activity. In addition, DELLAs interact with ICE1 to repress its effect on ABI5 [96].

The central role of the ABA/GA balance in seed biology is integrated with other hormones, such as
brassinosteroids (BRs) and cytokinins (CKs). The binding of ABI5 to the BIN2 kinase, a key repressor of
BR signaling, promotes its phosphorylation and stability [97]. On the other hand, the positive regulator
of BR signaling BES1 TF interacts with ABI5 to interfere with its transcriptional activity [98]. These
findings are in line with the role proposed for BRs in reducing ABA sensitivity during germination [99].
The A-type ARR TF proteins are primary targets of cytokinin signaling and negative feedback
regulators of the pathway. Specific members of this family (ARR4, ARR5 and ARR6) were found to
interact with ABI5 and reciprocally downregulate their transcription [100]. After germination sensu
stricto, cytokinin promotes the proteasomal degradation of ABI5 and regulates cotyledon greening,
mainly via ARR12 [101]. Pathogens also influence germination. A biotic compound released by
Pseudomonas aeruginosa is perceived by the seed and triggers DELLA-dependent and GA-independent
ABI5 expression to block germination in anticipation of potential seedling damage [102]. In summary,
current knowledge suggests that ABI5 is an important hub protein, regulated at different levels, where
several hormonal and environmental signals converge. The roles of additional hormones are reviewed
elsewhere in the text.

Light is one of the most important environmental cues and molecular links have been found
between seed responses to adverse light conditions and ABA-mediated repression of seed germination.
In AR seeds and under unfavorable conditions, ABI5, DELLAs and ABI3 form a complex that directly
activates the transcription of the SOM TF. This factor then negatively regulates seed germination by
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increasing the ABA/GA balance [103–105]. ABI3 also interacts with PIL5/PIF1 TF to collaboratively
activate SOM expression by binding to its promoter [104]. PIL5 represents a link between hormonal
signaling and light-regulated germination [106]. Phytochromes (Phy) are a class of plant photoreceptors
that enter the nucleus upon light activation, recruiting PIL5 away from its DNA-binding sites and
triggering fast PIL5 degradation, and hence seed germination [107–109]. PIL5 degradation under
light conditions is mediated by the COP1–SPA1–CUL4 E3 ubiquitin ligase (CUL4 complex) [110],
where SPA1 is necessary for PIL5 phosphorylation and subsequent ubiquitination by the CUL4
complex [111]. In addition to CUL4 complex-mediated degradation, PIL5 is polyubiquitinated and
subsequently degraded by the KELCH F-box protein CTG10 in association with an E3 ubiquitin ligase
(SCF-complex) [112,113]. When light influx is low, Phy-mediated signaling is not enough to remove
PIL5 [108]. Under these conditions, the HFR1 TF is able to effectively sequester the remaining PIL5,
so its transcriptional activity is suppressed to ensure rapid germination [114]. In darkness, Phys are
inactive and the COP10–DET1–DDB1–CUL4 E3 ligase complex targets and degrades HFR1 by using
DET1 and COP10 as substrate receptors. Moreover, DET1 and COP10 directly interact with PIL5 to
prevent its 26S proteasome-mediated degradation and favor its stability [115]. PIL5 then directly binds
to and activates the GAI and RGA promoters [116]. It also represses GA biosynthesis (GA3ox1 and
GA3ox2) and activates GA catabolism (GA2ox) partly through promoter binding and activation of
SOM and DAG1 TFs transcription [103,117–119]. PIL5 typically binds to G-box elements in target
promoters [116,120], but it can target additional binding sites depending on its interaction with other
TFs [121]. Another aspect of the germination response to light is that far-red light inactivates PhyB
mainly in the endosperm, initially preventing germination through PIL5 stabilization. Simultaneous
activation of PhyA in the embryo leads to a slow destabilization of PIL5, accompanied by a weakening
of ABA-dependent responses and eventually to germination in the absence of testa rupture [122–124].
PhyA-mediated germination has been interpreted as the last opportunity for seeds to develop a
seedling despite the presence of unfavorable light conditions (e.g., far-red-enriched canopy light).
The expression of several genes involved in this response has been found to be independent of PIL5,
suggesting that PhyA action is regulated by additional TFs [125,126]. Interestingly, the PIF8/UNE10 TF
inhibits phyA-induced seed germination without affecting phyB-mediated responses, suggesting a
role as an attenuator of the photomorphogenic development under long term far-red conditions [127].
Besides PIL5 and PIF8, PIF6/PIL2 TF also plays a role in seeds. It is expressed strongly during seed
development and its loss increases primary dormancy [128]. Less studied phytochromes such as
PhyD and PhyE, stimulate germination under high far-red light fluence, probably by promoting PhyA
action [129,130]. PhyD also has a role in relieving secondary dormancy in seeds exposed to high
temperature through PIL5 removal [131]. Oppositely, PhyC negatively regulates seed responses to
light, a function that depends on other phytochromes and the formation of heterodimers between
them [130,132,133]. However, these phytochromes play minor roles compared with PhyB [130].

Besides light, other environmental factors such as the presence of nitrate or low temperatures
stimulate the biosynthesis of GAs and promote germination of mature seeds [11,78]. In the absence of
low temperatures the light-stable SPT TF suppresses the expression of GA3ox and represses germination.
SPT is degraded upon cold treatment thus removing the repression of germination [134]. In the absence
of light and cold stimuli PIL5 and SPT block germination in a complementary manner [135]. In addition,
SPT binds the ABI5 and MFT (phosphatidylethanolamine-binding protein) promoters, activating ABI5
and repressing MFT expression, respectively [136]. Interestingly, while MFT induces dormancy in
freshly-harvested seeds, it promotes germination in AR seeds through negative feedback on the ABA
signaling pathway [136,137]. An interaction between light and cold signaling has also been observed
in the control of germination. It has been proposed that MFT functions as a convergence point between
light and cold regulation since its expression is promoted by PIL5 under far red light and, in the absence
of cold stimulus, repressed by SPT under red light. This is in agreement with the observation that PIL5
downregulates SPT expression, an additional checkpoint to block germination in the dark [135].
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Nitrate is the major nitrogen source for most plant species and plants sense the nutritional
environment through nitric oxide (NO) synthesis from nitrate. NO has been indeed proposed as
the key signaling element mediating nitrogen responses which promotes dormancy breaking and
germination [138,139]. PhyB activation has been linked to the stimulation of nitrate reductase (NR)
activity and NO accumulation [140]. In turn, NO signals downregulate the transcription of PIL5 and
stabilize HFR1 protein to intensify the HFR1-PIL5 interaction, which counteracts the inhibitory effect
of PIL5 on its target genes [140]. NO also reduces ABA sensitivity at least by promoting CYP707A2
synthesis, probably through enhanced transcription mediated by NLP8 [80], thus leading to ABA
degradation [141]. Molecular evidence of the crosstalk between NO and ABA signaling was provided
by showing that ABI5 expression is reduced through the NO-mediated activation of the N-end rule
pathway targeting class VII ERFs TFs for degradation [142]. Another study found that NO controls
ABI5 protein stability through S-nitrosylation, which triggers ABI5 ubiquitination by the KEG E3 ligase
and degradation by the 26S proteasome [143]. Interestingly, ABA antagonizes this effect by promoting
KEG degradation [144]. In addition, NO produces S-nitrosylation and inactivation of SnRK2 kinases
required for phosphorylation and activation of ABI5 [145].

2.4. Germination Control by the Epigenome

Several studies have revealed that epigenomic mechanisms are able to modulate the expression of
genes related to dormancy, maturation and germination. Specific chromatin modifiers and remodelers
have been shown to promote seed dormancy or germination by enhancing and/or repressing the
expression of specific gene subsets (Table 1).

A number of chromatin modifications which alter transcription initiation and elongation positively
regulate the expression of dormancy-related genes. The HUB1/RDO4 E3 ubiquitin ligase gene, like its
homolog HUB2, is required for H2B histone monoubiquitination and expression of dormancy-related
genes [146]. The H2B monoubiquitination is a chromatin modification associated with promoting
transcription initiation and early elongation events [147]. RDO2 encodes a transcription elongation
factor (TFIIS) and, similarly to hub1, the rdo2 single mutant has reduced dormancy and share with it
about 30% of downregulated genes [148,149]. The reduction of DOG1 levels, a central regulator of
dormancy (discussed below), partly explains the phenotype of the rdo2 mutant [150]. Arabidopsis
ATXR7 is a H3K4 methyltransferase that, when mutated, produce similar effects on dormancy as
those described for hub1 and rdo2 mutants [149]. Interestingly, the human counterparts of these genes
interact with the RNA Polymerase II-Associated PAF1C factors and mutations in the Arabidopsis
PAF1C-associated genes also produce early flowering, thereby linking two important developmental
transitions, flowering time and seed dormancy [149]. The PIL5 promoter is also a target for histone
modification, since the EFS methyltransferase increases the level of H3K36me2 and H3K36me3 to
promote recruitment of RNA polymerase II and thus enhance PIL5 transcription [151]. Acetylation
is another chromatin modification associated with active gene expression. Mechanisms involving
deacetylation of genes with a negative effect on dormancy have been observed. In particular, members
of the SNL deacetylation complex regulate key genes involved in ABA, ethylene and auxin pathways.
The expression of SNL1 and SNL2 increases gradually during embryo development and seed maturation,
causing a decrease in the acetylation level (H3K9/K18 and H3K14) of ABA hydrolytic genes (CYP707A1
and CYP707A2) and some ethylene-related genes (ACO1 and ACO4). This favors higher ABA levels and
blocks the ethylene pathway [152]. During imbibition of AR seeds, the expression of SNL1 and SNL2
declines, causing an increase in the acetylation levels of auxin pathway genes (e.g., the auxin importer
AUX1). Subsequent activation of AUX1 transcription leads to increased auxin levels and signaling,
followed by enhanced cell division that promotes seed germination [153]. The plant homeodomain
(PHD) motif-containing EBS is involved in the control of flowering time by binding to H3K4me2/3
and recruiting histone deacetylases (HDACs) to H3 [154]. It was shown that the ebs mutant also
showed a reduction in seed dormancy independent of DOG1 [155]. In addition, PIL5 recruits HDA15
deacetylase to decrease the H3 acetylation levels of its target gene promoters to repress germination
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in the dark [156]. Furthermore, the LUH protein, a member of the Groucho family of transcriptional
corepressors (known to recruit either HDAC or mediator complexes [157]), acts as PIL5 corepressor
in the dark [158]. Another deacetylase, HDA9, negatively influences germination and promotes
dormancy. HDA9 is involved in the transcriptional repression of genes related to the transition from
seed to seedling during seed development, probably through H3K9 deacetylation [159].

The HDA9 function is opposite to that of its homologous genes HDA6 and HDA19, which have been
reported to repress embryonic properties upon seed imbibition, probably via H3K9 deacetylation [160].
This is another indication that active chromatin modifications are required to promote germination.
A similar effect is produced by Arabidopsis PHD-domain H3K4me3-binding AL proteins. AL6 and
AL7 are able to interact and build complexes with PRC1 polycomb proteins around H3K4me3 marks,
leading to a switch from the H3K4me3-associated active to the H3K27me3-associated repressive
transcription state of genes associated to seed development (e.g., ABI3, DOG1, CRU3, CHO1) during
seed germination [161]. Additional repressors of seed maturation genes have been found in vegetative
organs and germinating seeds [162]. These include the polycomb EMF2-PRC2 complex combined
with the SDG8 methyltransferase, which are required to maintain the H3K27me3 repressive mark
in seedlings [163]; two ZRF proteins that contribute to PCR1-mediated repression by binding to
monoubiquitinated H2As and H3K27me3 [164]; the SUVH5 methyltransferase mediating repressive
dimethylation of H3K9 [165]; LDL1/2 demethylases, which potentially remove activating histone
modifications (H3K4me2/3) from seed dormancy genes [166,167]. Finally, deacetylation of H2B by the
HD2B deacetylase is associated with reduced dormancy and increased GA levels in imbibed seeds.
HD2B expression is upregulated by cold or AR in accessions of Arabidopsis with low dormancy
(Columbia-0; Col-0), and correlates with a reduction in the expression levels of GA inactivating genes
(GA2ox2) as well as increased expression of GA biosynthetic genes (GA3ox1/2). This upregulation
of HD2B expression is significantly suppressed in Arabidopsis accessions showing high dormancy
(Cape Verde Islands; Cvi-0) [168]. Several TFs have also been found to recruit some of these modifiers
to negatively regulate specific dormancy-associated chromatin locations. The BES1 TF is able to form a
transcriptional repressor complex with the TPL corepressor and HDA19 at the ABI3 locus [169]; the
SCL15 TF recruits HDA19 at a subset of embryonic-specific loci in vegetative tissues [170]; the HSI2
TF recruits HDA6 to repress seed maturation genes upon post-germination [171]. Some of these
chromatin changes may also affect TF loci. The repressive role of the H3K27me3 mark on specific
negative regulators of germination such as DOG1, DAG1 or SOM, seems to be particularly important
for developmental phase transitions, especially from the embryonic to seedling stage [172,173]. During
germination, the SANT domain-containing protein PWR, previously reported to act in a complex
with HDA9 in leaves [174], suppresses ABI3-dependent SOM transcription by accelerating histone
H3 deacetylation levels and H2A.Z deposition at the SOM locus. Seed imbibition under high
temperature stress blocks PWR transcription and triggers secondary dormancy [175]. H3 deacetylation
of SOM is also a target in carbon monoxide (CO) signaling. Light and PhyB-mediated germination
increase transcription of HY1 oxygenase for CO production (a molecular signal with a positive role in
stress-mediated germination) by inducing antioxidant metabolism as well as the degradation of storage
reserves [176–178]. CO signaling recruits HDA6 to the promoter of SOM to decrease its expression by
H3 deacetylation [178].

Derepression of gene expression is also required during germination. Two histone arginine
demethylases (JMJ20/JMJ22) have been shown to be positive regulators of light-induced germination
through the removal of repressive H4R3me2s at GA3ox1/GA3ox2 resulting in increased GA levels.
This regulation is mediated by light, as JMJ20/JMJ22 are directly repressed by SOM when PhyB is
inactive [179].

Chromatin structure can also be changed by ATP-dependent remodeling complexes [180]. Several
of their components have been found to repress dormancy genes or embryonic traits in post-germinative
growth, such as BRM (SWI2/SNF2 subgroup ATPase [181]) and PKL (CHD3 class [182]). In seeds,
BRM promotes germination and directly associates with the promoters of two positive regulators
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of GA signaling, GA3ox1 and SCL3 TF [183]. PKL is required for about 80% of the gene expression
changes triggered by GAs [184]. On the other hand, the repression of the CHR12/23 genes (SWI2/SNF2
subgroup ATPases) is required for full germination since their overexpression represses germination
by elevating the levels of maturation-related genes [185].

DNA methylation is another epigenetic modification usually associated with transcriptional
repression. Extensive gain of CHH methylation during seed development and drastic loss of CHH
methylation during germination have been observed. These findings hint at dynamic DNA methylation
reprogramming events as probable mechanisms regulating both developmental stages [186]. Such
notion was corroborated in another study detecting large-scale CHH demethylation levels towards
the end of germination. However, it cannot be ruled out that these events are the result of passive
demethylation, as they coincide with the onset of DNA replication and hence could not be strongly
associated with gene expression changes [187].

Table 1. Modifiers and remodelers altering the chromatin status of genes promoting dormancy
and germination.

Effect: Promotes Dormancy

Modification Modifier Targets
(dormancy genes) Reference

H2B-Ubq HUB1/2 DOG1, ATS2, NCED9,
PER1, CYP707A2 [146]

H3K4me ATXR7 FLC [149]
H3K36me2/me3 EFS PIL5 [151]

Modification Modifier Targets
(germination genes) Reference

H3K9/K18/K14deAc HDA19+SNL1/2 CYP707A1/2, ACO1/4 [152]
H3deAc HDA15+PIL5 PIL5 target genes [156]

H3K9deAc HDA9 Photosynthesis genes [159]

Effect: Promotes Germination

Modification Modifier Targets
(dormancy genes) Reference

H3K9deAc HDA6/19 LEC1/2, FUS3, ABI3 [160]

H3K4me3 to H3K27me3 AL6/7-PRC1 ABI3, DOG1, CRU3,
CHO1 [161]

H3K27me3 maintenance SDG8-EMF2-PRC2 ABI3, FUS3, LEC1/2 [163]
H2Aub1 and H3K27me3 ZRF1a/b-PRC1 ABI3, CRU3, CHO1 [164]

H3K9me2 SUVH5 ABA1/3, NCED6, ABI5,
DOG genes [165]

H3K4me2/3 demethylation LDL1/2 DOG1, ABA2, ABI3 [167]
H2BdeAc HD2B GA3ox1, GA3ox2 [168]

H3K9deAc BES1-TPL-HDA19 ABI3 [169]
H3K9deAc SCL15+HDA19 CRA1, δ-VPE, α-TIP [170]
H3K9deAc HSI2-HDA6-MED13 LEC1, LEC2, FUS3, ABI3 [171]

H3deAc and H2A.Z deposition PWR-HDA9 SOM [175]
H3deAc HDA6-CO signaling SOM [178]

Modification Modifier Targets
(germination genes) Reference

H4R3me2 demethylation JMJ20/22 GA3ox1/2 [179]
ATP-depending remodeling BRM GA3ox1, SCL3 [181]

ATP-depending remodeling PICKLE GA3ox1, GA20ox1,
GID1A, GID1B, SCL3 [184]

2.5. Germination Control by Small RNAs and Post-Transcriptional Regulation

Small RNAs are known to regulate gene expression in developing and germinating seeds. Several
gene mutations related to small RNA biogenesis display severe defects in embryogenesis and seed
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development. Likewise, mutants of miRNA coding genes have altered levels of regulatory genes
controlling seed dormancy and germination [188,189]. Transcriptional profiling of miRNAs during
seed production of two Arabidopsis accessions with contrasting dormancy levels has revealed that
the more dormant accession contains higher levels of miRNAs. Although computational analyses
identified specific TFs involved in hormone signaling as putative miRNA targets, these predictions
remain to be validated [190]. Additional studies on the role of miRNAs upon seed imbibition have
found several miRNAs belonging to different families which are up- and down-regulated during
this process [191–193]. Various miRNAs have also been described to influence seed germination
under various abiotic stresses [189] and specific links have been proposed between miRNAs and
TFs mediating hormone signaling during seed germination [194–196]. In addition, miR166 has been
shown to contribute to the repression of maturation and dormancy genes in vegetative tissues [197].
On the other hand, many maternally expressed siRNAs transcribed by the NRPD1 polymerase
(the largest subunit of RNA polymerase IV) during seed development have recently been found to
regulate temporal and spatial expression of endosperm genes [198–201]. For instance, the regulation
of AGL40/91 TF mRNA levels by several siRNAs is responsible for changes in seed size [201]. One
type of siRNAs, the trans-acting siRNAs (ta-siRNA), have also been implicated in plant development.
Ta-siRNAs are generated from the Trans-Acting SiRNA locus (TAS) gene resulting in non-coding
transcripts through specific miRNA guided cleavage [189,202]. miR390 is required for the processing
of a functional ta-siRNA-ARF that targets and negatively regulates auxin response TFs (ARF2, ARF3,
and ARF4) in early stages of seed germination, indicating a crosstalk of ta-siRNAs and miRNAs in this
process [193].

A less studied molecular event controlling germination is mRNA stability. It is well known that dry
seeds accumulate extant RNAs whose abundance change during AR towards a “germination-friendly”
transcriptome [203–206]. Taking into account that very low or no transcription is supported by quiescent
seeds, it makes sense that the up and down-regulation observed for sets of AR regulated genes correlates
with their mRNA decay rates [207–209]. Moreover, several groups have obtained evidence supporting
a role of active mRNA degradation in the control of dormancy/germination responses. Thus, a 3’-5’
exonuclease (RRP41L), a subunit of the core exosome in Arabidopsis, is responsible for cytoplasmic
degradation of specific mRNAs related to ABA signaling. Therefore, rrp41L loss-of-function seeds and
seedlings showed ABA-hypersensitive phenotypes [210]. Evidence suggesting the involvement of 5’-3’
RNA decay in the control of dormancy and germination has also been found. It was observed that
two 5’-3’ RNA decay mutants (xrn4 and vcs8) have altered and opposite dormancy and germination
phenotypes. Moreover, transcript abundance of specific ABA/GA metabolism and signaling genes
was modified accordingly to their phenotypes, suggesting that they could be direct targets of those
exoribonucleases [208]. In another study, several loss-of-function mutants of the Arabidopsis 5′-3′

mRNA decay machinery were found to have enhanced ABA sensitivity. While the DCP5 (decapping)
component of this machinery affected seed germination, the LSM1 (decapping activation) and XRN4
(exonucleolytic degradation) components impacted early stages of vegetative growth. The DCP5
and LSM1 components were found to have a negative effect on mRNA and protein levels of specific
PYL/PYR ABA receptors, but only the lsm1 mutants showed higher levels of the SnRK2.6 kinase
mRNA and protein [211]. It is worth mentioning that not all the components of the 5′-3′ mRNA decay
machinery showed the same responses at the phenotypic and molecular level, and that discrepancies
were observed for the xrn4 mutant in two studies [208,211]. Therefore, the degree of functional/genetic
redundancy under different growth conditions thus remains an open question. Thus, the existence of
additional mechanisms controlling mRNA turnover in seeds, like the targeted oxidation reported in
sunflower [212], cannot be ruled out.

Several studies have found that differential recruitment of mRNAs by ribosomes adds an extra
layer of regulation in both dormant and nondormant seeds [213,214]. More dynamic changes in
polysomal occupancy were observed for nondormant seeds upon imbibition than for dormant seeds.
GC content and the number of upstream open reading frames (uORFs) were identified as transcript



Plants 2020, 9, 703 12 of 41

features with a possible role in this selective translation. Polysomal RNAs associated with germination
fell essentially into the cell wall, hormone metabolism, and redox pathway categories, while mRNAs
related to stress responses and hormone metabolism pathways were associated with polysomal RNAs
connected to dormancy. These results along with the absence of correlations between transcriptome and
translatome led to propose that the transition from dormancy to germination is regulated mainly at the
translational level [214]. In agreement with these results, large changes in polysome occupancy were
found to occur upon seed imbibition, being mainly associated to the transition from dry to hydrated
seed (6 h after imbibition; hai) and from 26 hai to a germinated seed (48 hai) [215]. However, the same
authors found that polysomal mRNAs do not change between imbibed dormant and AR seeds treated
with a transcriptional inhibitor. Since both conditions block germination, this result suggests a relevant
role of transcriptional regulation and transcript abundance in controlling the germination onset [216].
These apparently contradictory results underscore that more information is needed to assess the
specific roles of transcription and translation in the control of germination. In dry seeds, ribosomes are
mainly present in the monosome form and certain transcript features (i.e., uORFs, length, stability)
differed significantly between the polysome populations associated to specific germination stages [215].
It has been shown that most mRNAs in dry seeds are stored as monosomes forming complexes with
mRNA-binding proteins, stress granules (SG), and P-body proteins. About 17% of those mRNAs are
translationally up-regulated during seed germination and transcribed during seed maturation [217].
Moreover, mRNAs are not likely to be translated when found as monosomes, or are translated at low
levels, since levels of translation usually correlate with ribosome density [218]. All these pieces of
evidence suggest a possible scenario in which environmental conditions may modulate regulated
packing of mRNAs in dry seeds to impact on their translational fate and rate upon imbibition.

Lastly, regarding post-translational modifications, changes in the phosphorylation levels of proteins
during seed germination have been reported in rice, mainly during the first 12 hai. The first 12 hai are
critical not only for posttranslational processes but also for transcription and metabolic changes, because
the decision making for germination occurs during this period in rice [219]. Moreover, alterations in
the phosphorylation/dephosphorylation patterns affect germination [219–221]. Besides the changes
in phosphorylation status of early components of the ABA signaling pathway previously described,
additional phosphorylation events have an impact on germination. FyPP1 and FyPP3 PP6 phosphatases
act antagonistically with SnRK2 kinases, dephosphorylating and destabilizing ABI5 [222]. The Raf10
and Raf11 MAP3Ks are positive regulators of dormancy and ABI3 and ABI5 expression [223]. Specifically,
Raf10 phosphorylates subclass III SnRK2s, which in turn phosphorylate ABI5, ABF2 and ABI3 TFs to
enhance their activity [224]. TAP46 is a PP2A phosphatase-associated protein that binds and stabilizes
the active phosphorylated form of ABI5, preventing its PP2A-mediated dephosphorylation [225].
Phosphorylation also affects GA signaling. Under salt stress, the GARU E3 ubiquitin ligase suppresses
germination by ubiquitination of the GID1 GA receptor. The GID1-GARU interaction is counteracted
by the phosphorylation of GARU by the TAGK2 Tyr-kinase [226]. DELLA stability is also associated
with phosphorylation, since TOPP4 PP1 phosphatase directly binds and dephosphorylates the RGA
and GAI DELLA proteins, promoting their GA-dependent destabilization [227]. The MYB44 TF
activity on germination is also dependent of its phosphorylation by MPK3 and MPK6 kinases [228],
conversely to RAV1 TF, which is deactivated upon phosphorylation by SNRK2 kinases [89]. Protein
ubiquitination is another important protein modification known to negatively affect the stability of
proteins with a crucial role in germination, such as DELLAs [14,229], ABI3 [230] and ABI5 [231,232].
Changes in ubiquitination were detected in more than 1000 proteins during rice seed germination and
most changes occurred at 12 hai, as observed previously for phosphorylation [233]. Sumoylation has
also been demonstrated to play a role in this process by providing stability to ABI5 and MYB30 TFs.
Sumoylation protects ABI5 from degradation but makes it inactive [234], suggesting a protective role
by maintaining a degradation-resistant inactive pool of ABI5 in the absence of ABA [235]. MYB30
is a negative regulator of ABA responses that seems to provide a balance for the positive regulation
exerted by ABI5. Interestingly, both regulators are sumoylated at specific amino acid residues by the



Plants 2020, 9, 703 13 of 41

same SUMO E3 ligase (SIZ1) [234,236]. ABI5 sumoylation site is in the same domain (K391) as the
lysine residue required for KEG-E3-ligase-dependent turnover (K344) [235]. This suggests that ABI5
sumoylation or ubiquitination depends on a direct physical competition of enzymatic activities. Other
posttranslational modifications in key regulators of plant growth and development may be important
in germination. It is the case of DELLA O-fucosylation and O-GlucosylNAcetylation. RGA DELLA
protein interactions with BZR1, PIF3 and PIF4 TFs is promoted by mono-O-fucosylation mediated by
the O-fucosyltransferase SPY [237]. On the contrary, RGA interactions with BZR1, PIF3, PIF4 and JAZ1
TFs are inhibited by O-GlucosylNAcetylation mediated by the SEC O-GlcNAc transferase [238].

3. Genetic Control from Dormancy to Germination Stages

3.1. Dormancy

The interaction between the maternal environment and the genetic makeup of the mother
plant will determine primary seed dormancy levels during seed maturation. One of the regulatory
routes for the establishment and maintenance of physiological dormancy involves the ABA/GA
hormonal balance [10,239,240]. Most mutations altering the metabolism, perception and early signaling
of these hormones show effects on dormancy levels [239,241,242]. Additional regulators of this
hormonal crosstalk have been described. It is the case of ABI4 TF, which increases ABA/GA balance
in freshly-harvested seeds and post-germinative stages through direct binding to promoters of
some of their metabolic genes [243,244]. The CHO1 TF gene also contributes to ABI4-mediated
regulation [245,246]. MYB96 TF also increases ABA/GA balance and seed dormancy by directly
activating NCED2 and NCED6 and indirectly repressing GA3ox1 and GA20ox1 expression [247]. DOF6
TF promotes dormancy by enhancing ABA-related gene expression [248] and by activating GATA12 TF
expression upon complex formation with the RGL2 protein [249]. Other proteins regulating dormancy
are involved in feedback hormone control. The AtSdr4L gene encodes a protein of unknown function
which is required for the negative feedback control of GA biosynthetic genes, with an impact on
dormancy and germination [250]. The WRKY41 TF directly upregulates ABI3 expression, a function
requiring ABA but subjected to negative feedback regulation when the concentration of hormone is
sufficiently high [251]. Additionally, circadian clock genes have been shown to play roles in dormancy
control [252]. For instance, RVE1 and RVE2 TFs accumulate during seed development to promote
seed dormancy but their transcription is repressed by light-mediated activation of PhyB to allow
germination [253]. This regulation is counteracted by the ability of RVE1 to interact with RGL2,
reducing its interaction with the SLY1 F-box protein and increasing RGL2 stability. In return, RGL2
enhances RVE1 transcriptional activity, which directly represses GA3ox2 expression [253,254].

Besides the hormonal control of dormancy, other pathways have been linked to this process, like
those involving DOG1 and RDO5. These dormancy-specific genes were identified by quantitative
trait loci analyses (QTL) of natural variation in Arabidopsis [255–257]. DOG1 was identified as a
key effector of dormancy and has therefore been intensely characterized in recent years [258–260].
Its expression in seeds is controlled at four different levels, namely, transcriptional elongation [150],
alternative splicing [261,262], alternative polyadenylation [263], and transcriptional suppression by a
non-coding cis antisense transcript [264]. Different genetic and transcriptomic analyses suggested that
DOG1 exerts its dormancy function in parallel to, but independent of ABA function. Among other
pieces of evidence, it has been observed that the non-dormant mutant dog1 has a normal germination
sensitivity to treatments with exogenous ABA [256] and that a high accumulation of ABA or DOG1
protein in the seed cannot compensate for the absence of function of DOG1 or ABA metabolism genes,
respectively [265]. These results indicate that both routes are required for an efficient block of dormancy
release [265]. Besides dormancy, a genetic interaction between DOG1 and ABI3 has been described
during seed maturation, as well as the control of ABI5 expression by DOG1, revealing a dual role for
DOG1 in dormancy and seed development [266].
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Lately, new convergences have emerged between ABA and DOG1 routes regarding dormancy [260].
DOG1 binds to AHG1 and AHG3, two clade A protein phosphatases 2C (PP2Cs) [267,268] which
negatively regulate of ABA signaling and dormancy [269–271]. Both phosphatases have redundant
roles in dormancy release and are epistatic to DOG1 [267,268]. It seems that DOG1 has a role in
increasing ABA sensitivity through an AHG1 and AHG3 sequestration mechanism, analogous to
the perception and initiation of ABA signaling [260,267]. Unlike AHG3 and other members of PP2C,
AHG1 is resistant to inhibition by PYR/PYL/RCAR receptors [272]. Some authors have argued
that by sequestering this phosphatase, DOG1 might play a role in safeguarding ABA signaling to
ensure dormancy until it is inactivated after AR. This would explain why overexpressing DOG1 in
ABA-deficient mutants or increasing ABA levels in the dog1 mutant provoke reduced dormancy [265].
Likewise, the activity of non-sequestered PP2Cs in these ABA-deficient mutants would be sufficient to
promote germination [260,267]. It has been recently discovered that DOG1 is a heme-binding protein
and such binding is essential for its functionality in dormancy [268]. This may establish a role for
DOG1 as an integrator of environmental signals, since heme-binding proteins act as oxygen and NO
sensors [260,268].

In addition to the roles in dormancy and seed maturation, other functions have been identified for
DOG1. One of them relies on the regulation of DOG1 expression by temperature with an impact on
flowering time and dormancy release. Thus, DOG1 is able to modify the levels of two antagonistic
miRNAs: miR156, which delays flowering and dormancy release, and miR172, which produces the
opposite effect [273]. This coordinated regulation of two developmental phase transitions seems to
conform a plant strategy to adapt its life cycle to seasonal environmental conditions [265,273–277].
Finally, in addition to its functionality in reproductive and germinative growth, a role has been
proposed for DOG1 in vegetative growth based on the drought-sensitive phenotypes observed in
its loss-of-function mutants [278]. Dormancy and drought responses show many similarities at
the molecular level regarding ABA signaling. The antisense of DOG1, asDOG1/1GOD, silences
DOG1 expression in seeds and leaves, causing dormancy release [264] and drought responses [278],
respectively. Upon ABA accumulation, DOG1 transcript levels increase due to suppression of asDOG1
expression [274,278,279].

RDO5/DOG18/IBO is, together with DOG1, another dormancy-specific gene identified by QTL
analyses [257,280,281]. As dog1, the rdo5 mutant shows loss of dormancy, identifying RDO5 as a
positive regulator of this process [280]. RDO5 encodes a PP2C without phosphatase activity which
probably controls phosphorylation levels by hampering dephosphorylation during imbibition [281,282].
In addition, RDO5 seems to act independently of ABA, since its loss of function does not affect ABA
levels or sensitivity to the hormone [280], and does not produce changes in phosphorylation levels of
ABA signaling regulators [282].

In addition to the main regulatory routes (ABA, DOG1, RDO5), other hormones and their
associated molecular mechanisms have been involved in dormancy control. Ethylene reduces
dormancy and improves seed germination in several plant species by counteracting ABA effects
through the regulation of ABA metabolism and signaling pathways [283–285]. Recently, one of the
mutants previously identified for exhibiting a reduced dormancy phenotype, rdo3 [286], was shown to
be a loss of function of the ETR1 ethylene receptor [287]. Although ETR1 does not require the canonical
ethylene signaling pathway to act in this process, it is involved in the induction of ABA signaling
genes [288]. Thus, when ETR1 function is lost, ERF12 TF is upregulated by an unknown transduction
pathway which probably involves MAP kinases, and forms a repression complex with TPL that binds
the DOG1 promoter and represses its expression [287].

Auxins also have a role in dormancy in an ABA-dependent manner, since treatment with exogenous
indole-3-acetic acid (IAA) in combination with ABA enhances dormancy. In addition, ARF TF mutants,
components of the auxin response, have reduced dormancy levels and are less sensitive to ABA
treatments [289]. ARF10 and ARF16 have been identified as positive regulators of dormancy through
indirect regulation of ABI3 expression [289]. These results seem contradictory with those obtained
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by another study, which describes that in dormant seeds of near-isogenic Arabidopsis lines carrying
the Cvi-0 DOG1 loci introgressed in a Landsberg erecta (Ler) genetic background, the latter being a less
dormant accession than Cvi-0, tryptophan-dependent auxin biosynthesis and related pathways are
strongly repressed compared to germinating seeds [216].

One interesting aspect of dormancy is the fact that forest fires generate chemical signals that
can stimulate the germination of certain dormant seeds in the soil. These compounds include
cyanohydrins [290] and karrikins [291–293]. Arabidopsis and other seeds of Brassicaceae respond
to karrikins [294] by using the KAI2 receptor, a paralogue of the D14 strigolactone receptor [295].
The binding of karrikins to KAI2 leads to their interaction with the MAX2 F-box protein, which targets
TFs such as SMAX1 for degradation [296]. Consequently, the loss-of-function mutants kai2 and max2
show enhanced dormancy [295,297–299], probably by negatively affecting CYP707A expression [300].
Such phenotype is reverted by the loss of SMAX1 function [296]. Interestingly, while GAs or nitrate
always stimulate dormancy release, karrikins promote dormancy when combined with abiotic stresses
such as NaCl, mannitol and elevated temperature [298]. This dual role of karrikins, as dormancy
enhancers or repressors depending on environmental conditions, suggests that karrikin signaling
factors may function as safeguards to prevent germination until conditions are optimal.

Effects on dormancy by jasmonate (JA) had rarely been reported. The best studied case is that of
the JA precursor 12-oxo-phytodienoic acid (OPDA), which produces an increase in dormancy upon
accumulation in the comatose (cts) mutant through a positive feedback with other positive dormancy
regulators (i.e., ABA, RGL2 and MFT) [301,302]. Additionally, the maternal herbivory, defined as the
maternal experience of herbivore feeding during flowering and seed development seems to have an
effect on dormancy through JA pathway regulation [303]. The accumulation of JA-isoleucin (JA-Ile)
during seed development, either by maternal herbivory or overexpression of the AOS JA biosynthesis
enzyme, produces a reduction in dormancy. This phenotype is associated with increased GA content
and reduced ABA sensitivity, a response absent in a JA-Ile-deficient (jar1-1) mutant [303].

Herbivory is not the only process that regulates dormancy maternally. The level of seed dormancy
is highly influenced too by the environmental conditions experienced by the mother plant. In this
case, FLC TF [304–306], RGL2 and the phosphatidylethanolamine-binding protein FT [305,307] play
important roles, unlike other key dormancy proteins such as DOG1 [305]. In siliques, the expression of FT
and FLC responds to temperature in the maternal tissues but not in those of the seed. Accordingly, under
cold conditions, the maternal FT protein expressed in the silique phloem controls dormancy through
inhibition of proanthocyanidin synthesis in the seed, thus altering the levels of testa tannins [305,308].
Maternal inheritance is also evidenced during genomic imprinting, the preferential expression of a
given parental allele over the other [309]. The importance of this process in the maternal inheritance of
seed dormancy has recently been described. A set of genes were found to be imprinted in endosperm
cells and the maternal alleles were preferentially expressed upon seed imbibition [310]. For instance,
in the case of the ALN gene, cold stimulates the differential methylation of the promoter of the paternal
allele to promote dormancy [311].

3.2. After-ripening and Longevity

In dry seeds, the cytoplasm reaches a highly viscous glassy state which severely limits molecular
diffusion and the occurrence of chemical and enzymatic reactions, but maximizes seed survival [312,313].
Despite apparent inactivity, seeds continue to undergo physiological changes such as loss of dormancy,
or even loss of longevity, defined as the total time span during which seeds remain viable.

Primary dormancy is acquired during seed maturation and is gradually lost during dry
storage (or AR), a process that depends on the relationship between seed moisture content and
temperature [212,314–317]. Loss of dormancy has been associated with an accumulation of reactive
oxygen species (ROS), which would lead to oxidation of proteins and mRNAs [212,318–320].
Non-enzymatic oxidative reactions have been associated with low moisture content (below ~0.12
g H2O g dw–1) while metabolic reactions would prevail under high moisture conditions [314]. No
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active transcription is required in Arabidopsis during the AR process [321]. Like in wheat and
sunflower, there is hardly any change in the abundance of transcripts between dry dormant and AR
non-dormant seeds [204,322,323]. In addition, although a clear correlation between transcriptome
and translatome upon seed imbibition has not been found, there is a selective recruitment of mRNAs
into polysomes [213,214]. Thus, in Arabidopsis, one-third of the polysome-associated transcripts
are similar at 16 and 24 hai in dormant seeds, while only around 4% are common in nondormant
seeds between 16 and 24 hai [214]. It has also been suggested that oxidation of specific mRNAs
during AR might reduce their translation during seed imbibition, even if they are still present in the
transcriptome [212,322–324]. In the same line, specific recruitment of mRNAs is thought to be based on
features of the 5’-UTR [214,325]. These findings, along with the fact that the germination program is
activated in non-dormant seeds after 8–24 hai, suggest that there is a developmental checkpoint during
the first hours of imbibition [325]. In this way, a selective translation of mRNA during imbibition
will maintain or not the inhibition of germination, depending on the oxidative imprinting of the seed.
Certain components may be particularly sensitive to oxidation as part of such imprinting.

When environmental conditions impose a long block on germination, the viability of dry seeds,
and therefore their longevity, can be reduced due to excessive oxidation-derived damage of molecular
components. Seeds have different mechanisms to favor longevity and some genetic factors involved in
this process have been identified by QTL analysis using natural variation in Arabidopsis [326–328].
Many of these factors have functions related to protection of different biomolecules from ROS [329–332].
Among these factors are vitamin E (tocopherols and tocotrienols), which prevents the non-enzymatic
oxidation of lipids [333], protein L-isoaspartyl methyltransferase, with a role in the repair of damaged
proteins [334], metallothioneins [335], methionine sulfoxide reductase [336], lipoxygenase [337],
the glycosylase/apurinic/apyrimidinic lyase DNA [338], and the prolyl isomerases rotamase FKBP 1
and 2 [339]. Noteworthy are the mitochondrial NADH dehydrogenase ferric-chelate reductase 1 [326]
and the NADP-malic enzyme 1, whose function losses produce a reduction in longevity, and, for the
latter mutant, enhanced protein carbonylation in aged seeds [340,341]. Likewise, it has been observed
that seed-storage proteins buffer seed biomolecules from oxidative stress [328]. One of the cellular
components damaged during prolonged dry state is DNA, with double-strand breaks (DSBs) being
rate-limiting for germination [342]. Plants have a specific response to integrate the germination progress
of aged seeds with the monitoring of genome integrity. This mechanism is the DNA damage signaling
or DNA damage response, in which the checkpoint kinases ATM and ATR play key roles [343,344].
Aged atr and atm mutant seeds germinate faster than aged WT seeds and show earlier activation of
DNA replication and extensive chromosomal abnormalities. Thus, ATM and ATR contribute to the
control of germination by inhibition of DNA replication in aged seeds upon imbibition, partly through
the transcriptional up-regulation of the SMR5 cell cycle inhibitor by ATM [343].

Other regulatory proteins with an impact on these processes have also been identified. This is
the case for PhyA and PhyB phytochromes [345], the RSL1 E3 ubiquitin ligase [346], and the TFs
CDF4/DOF2.3 [345], ATHB25 [347] and COG1/DOF1.5 [345]. The composition and structure of the
seed coat are critical factors for seed longevity by providing chemical and mechanical protection [348].
The longevity effects of mutations in ATHB25, as well as in phytochromes and COG1, correlate with
accumulation of mucilage and suberine, respectively [345,347]. The loss of TT10 laccase function, which
is involved in seed coat lignin biosynthesis [349,350], also produces a reduction in longevity [351].
Additionally, because longevity is induced during seed maturation [352–354], mutations altering
seed development (e.g., lec1, lec2, fus3, abi3 [326]), and DOG1 (e.g., dog1 [256,266]), also produce
longevity defects.

3.3. Seed Bank and Secondary Dormancy

Most studies on germination are made under controlled laboratory conditions with minimal
environmental variation. However, seeds shed in the field are exposed to a journey of uncertain
duration under shifting environmental conditions. During the year, seeds in the soil (seed bank) are
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repeatedly imbibed and dried, suffering temperature shifts during variable periods of time. Under
this state of continuous change, the seed bank must be capable of sensing external conditions and
adjusting their germination potential accordingly. That is why non-dormant seeds can retrieve the
dormancy program as a protective measure upon encountering inadequate conditions. This ability is
called secondary dormancy and can be lost and gained repeatedly until germination occurs or viability
is lost. The molecular processes underlying this dormancy cycling in the seed bank have been less
studied than those involved in primary or secondary dormancy in the laboratory. However, several
publications have started shedding light on this ecological process from a physiological [355] and a
molecular standpoint [316,356,357]. For a winter annual plant, the beginning of winter coincides with
an increase in dormancy. This dormancy correlates with higher ABA/GA ratios supported by enhanced
expression of ABA biosynthetic and GA catabolic genes, followed by a subsequent increase of gene
expression related to ABA signaling [358,359]. This leads to a stage of deep dormancy, reinforced
by the increased expression of DOG1 and MFT [358–360]. Reversion of these events is linked with
dormancy release, starting in spring and leading to a shallow dormancy state [358,359]. This cycle
of transitions between deep and shallow dormancy corresponds to a temporal sensing of seasonal
changes. Germination is also fine-tuned during shallow dormancy stages by increasing sensitivity
to light and nitrate and upregulating DELLA expression (RGL2/RGA). In this way seeds can couple
spatial sensing information with the onset of germination [358–360].

3.4. Regulation of Germination from a Spatial and Mechanical Perspective

Another important aspect of seed germination relates to the interplay of mechanical forces
between seed tissues. The ability of seeds to germinate is thought to result from a balance between
physical restrictions imposed by the embryo-surrounding tissues (testa and endosperm) and the
ability of the embryo to grow and protrude [3,361]. The decline in the mechanical resistance of the
micropylar endosperm, which covers the radicle tip, leads to endosperm weakening and appears to be
a general prerequisite for radicle protrusion (germination sensu stricto) [362–364]. Previous studies
with non-dormant seeds have shown that the expression of many Cell Wall Remodeling Enzymes
(CWREs) are upregulated by GAs, in correlation with endosperm weakening and embryo radicle
protrusion. These findings point at the composition of cell walls and their mechanical properties as
relevant targets to control germination [3,363–365].

Xyloglucans (XyGs), the major components of hemicelluloses in the primary cell walls,
have been found to play a role in wall remodeling. Mutant seeds lacking functional XYL1,
an α-xylosidase involved in XyG biosynthesis, were able to germinate on PAC and had reduced
dormancy, thermoinhibition-resistant germination and alterations in specific genes involved in ABA/GA
metabolism, all characteristics resembling ABA-deficient mutants [366,367]. In addition, the mutants
showed changes in the composition of endosperm cell walls resulting in reduced strength, which
supports the notion that XYL1 is a negative regulator of germination [366]. Moreover, different results
have shown a localization of XyGs compatible with a role in germination. Thus, immunolocalization
experiments in germinating seeds indicated a reduction of xyloglucans (XyG) in the elongation zone of
the embryonic axis but not in the cotyledons or root tips [366]. A promoter:GUS fusion also revealed
low XYL1 expression in endosperm, as expected for a tissue required to reduce mechanical resistance
to embryo growth upon imbibition [367]. XTH endotransglycosylases/hydrolases are another type of
XyG-related enzymes that can cleave and reconnect XyG chains and several of them are upregulated
upon seed imbibition of non-dormant seeds [3,365]. One of them, XTH31, is thought to reinforce
endosperm cell walls, since its loss of function led to faster germination [365].

Other important components of cell walls, pectins and pectin methylesterases (PMEs), have been
associated with promoting seed germination mainly acting on testa permeability [368]. Although PME
activity is usually linked to enhanced pectin de-esterification and increased wall rigidity, it can produce
the opposite effect in combination with appropriate enzymatic activities [369]. Genetic redundancy
may be a problem when ascribing roles to PME members in the regulation of germination. One
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example is the pme58 mutant that shows normal germination despite having altered seed-coat mucilage
structure [369].

Wherever cells are growing or modifying their walls, one or more expansin genes are usually active,
promoting primary cell wall relaxation [370]. These proteins are thought to specifically modify the
interactions between XyG and cellulose microfibrils. EXPA2 encodes a GA-induced endosperm-specific
α-expansin with a proven genetic role in enhancing germination [371].

In addition to cell walls, a thick cuticle layer was discovered to be tightly associated with the outer
surface of the endosperm cell layer of Arabidopsis seeds [372]. It was later found that this cuticle had a
maternal origin, deriving from a specific layer of the ovule integuments that becomes associated to the
endosperm at late stages of seed development [373]. This cuticle regulates permeability and has an
impact on seed dormancy and viability. Mutants defective in cutin biosynthesis (e.g., lacs2, bdg1) are
unable to block endosperm cell expansion and testa rupture under adverse conditions [372]. It has been
suggested that this cuticle could prevent integument-endosperm fusion during seed development,
keeping unwanted developmental signals from entering the endosperm [373]. Indeed, it has been
shown that the endosperm plays an important role in linking the perception of environmental signals
to the control of dormancy and its cycling by modulating ABA released to the embryo and controlling
gene expression [63,64,357].

Several publications have established a link between germination and cell wall remodeling and
cell expansion (Figure 2). It was found that GA signaling in the Arabidopsis embryo epidermis along
the embryonic axis is required for proper germination. A DNA sequence (L1 box) conserved in the
promoters of epidermis-specific genes is bound by two homeodomain (HD-ZIP) TFs (ATML1 and
PDF2) and mediates GA-induced transcription of these genes. Since the function of these TFs is
blocked by physical interactions with DELLA proteins, increased GA levels produced upon imbibition
would cause DELLA degradation. Subsequent release of these TFs will enhance cell elongation and
germination mediated by CWRE genes like EXP8 [59]. The elongation of the epidermal cells is likely to
be coordinated with those of inner tissues by activating additional HD-ZIP target genes involved in the
biosynthesis of very-long-chain fatty acids (VLCFAs) [59], a mechanism demonstrated for vegetative
stages [374]. Indeed, imaging studies on germinating embryos demonstrated that cell surface area
increases mainly in the epidermis and moves progressively towards inner layers [60]. Firstly, cell
expansion in the lower embryonic axis contributes to testa rupture and then expansion of its upper
part promotes protrusion of the radicle through the seed coverings [60]. By combining spatio-temporal
gene expression information with promoter analyses, another homeodomain TF (ATHB5) was found
to control the expression of the expansin gene EXPA3. This control takes place mainly in cortical cell
layers of the upper embryonic axis, suggesting a tissue-specificity and partially overlapping roles of
homeodomain genes [59,60]. Many morphological features related to elongation events and cell wall
remodeling in the embryo seem to be conserved between species [375–377]. Moreover, the epidermal
HD-ZIP-DELLA-L1 box regulatory module was found to be conserved in cotton where it controls fiber
cell elongation [378], indicating that it has been recruited by other developmental stages. Another
study demonstrated that expansion-promoting gene expression in embryo radicle tips, including GA
biosynthetic genes, is induced very early after seed imbibition (1–3 hai). However, due to mechanical
constraints cell expansion is observed mainly in the upper limits of the radicle, which extends along the
embryonic axis during subsequent stages of germination. These results are a clear indication that cell
geometry and the interplay of mechanical forces between cells have an influence on genetically specified
growth [379]. The embryo radicle tip was also found to be an important place where temperature
has an impact on gene expression by influencing tissue/cell-specific ABA/GA balance. This dynamic
regulation largely determines whether a seed germinates or remains dormant in the soil [61].
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Figure 2. Spatial and mechanical regulation of seed germination. The seed coat protects living tissues
from mechanical and oxidative damage. In addition, a cuticle layer associated with the outer surface
of the endosperm regulates permeability, modulating seed physiology. Despite these seed coverings,
embryo inner cells are able to continuously sense the environment and decide when to germinate.
A specific area within the embryonic radicle acts as a decision-making center inducing changes in
ABA/GA in response to variable temperature. In the endosperm, DOG1 couples temperature with the
regulation of GA metabolism to control CWRE gene expression required for the weakening of cell walls.
Endosperm also controls embryo growth in dormant seeds by RGL2-dependent release of ABA and
seed specific ABCG transporters. Once germination is triggered, there is an interplay of mechanical
forces as the embryo pushes against its surrounding tissues. GA biosynthetic and expansion-promoting
gene expression is induced very early in the radicle tip upon imbibition. Due to mechanical constraints,
cell expansion is observed mainly in the upper limits of the radicle, extending afterward along
the embryonic axis. This expansion is required for germination and depends on GA-responsive
epidermis-specific gene expression mediated by two HD-ZIP proteins, ATML1 and PDF2. They activate
CWRE and VLCFA genes to coordinate epidermal cell expansion with that of inner tissues. ATHB5 also
controls cell expansion, but mainly in cortical cell layers of the upper embryonic axis. Cell expansion
along the embryonic axis contributes to testa rupture and germination. Endosperm cells elongate at
different rates to accommodate embryo growth. This process is controlled mainly by GA signaling
mediated by NAC25 and NAC1L, which upon the perception of an unknown embryonic signal activates
CWRE expression. Communication between embryo and endosperm to coordinate germination also
occurs during seed development by two mechanisms: (1) A peptide-mediated bidirectional signaling
controls the deposition of an embryo cuticle to minimize water loss (embryo secreted TWS1 peptide;
endosperm-specific ALE1 subtilase; GSO1/GSO2 receptor-like kinases); (2) An endosperm-derived
peptide triggers deposition of the embryo sheath, which facilitates coat shedding and seedling
establishment (KRS endosperm-specific peptide).
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Although the structure of cell walls differs between the endosperm and the embryo, cell wall
architecture of Brassicaceae and Solanaceae species is similar in the micropylar endosperm [380].
Differential gene expression in the endosperm is concentrated in the micropylar end and involves key
genes for cell wall function, many of them induced by GAs [3,58]. Genetic manipulation of specific
cell wall components or cell wall-related enzymes in the endosperm is known to have an impact on
seed germination [362,365,372,380,381]. DOG1 impacts germination by coupling temperature with
GA metabolism to control the CWRE gene activity required for the biomechanical weakening of the
endosperm [382]. Endosperm expansion during imbibition was also identified as a necessary key step in
the regulation of germination and is controlled by an embryo-initiated gene network [62,382]. By using
3D geometry cell reconstruction, it was observed that all endosperm cells expand during imbibition,
but at different rates, to accommodate embryo growth and to facilitate germination. A molecular
mechanism underlying endosperm cell expansion was found to be controlled by two NAC TFs (NAC25
and NAC1L) that, when released from repression by the RGL2 DELLA protein, perceived appropriate
signals from embryo and activated the expression of a cohort of CWREs [62].

Although the regulatory signals that move from embryo to endosperm remain elusive,
endosperm-derived signals triggering a deposition of hydrophobic and anti-adhesive barriers on the
embryo surface have been recently discovered. Peptide-mediated bidirectional signaling controls
the deposition of the embryo cuticle that prevents organ fusion during seed development and
excessive water loss in young plants to maximize seedling survival at germination [383–388]. Finally,
the ZOU/RGE1 TF is also responsible for the production of the KRS endosperm-specific peptide, which
triggers deposition of the embryo sheath, a layer of endosperm-derived material rich in extensin-like
molecules [389]. This sheath is deposited outside the embryonic cuticle reducing the adhesion to
the endosperm during germination and thus facilitating seed-coat shedding and rapid seedling
establishment [390].

4. Future Directions

Despite our extensive knowledge of seed biology, many important questions remain to be
answered. For example, the contribution of cell division between seed imbibition and seed germination
is still unclear. Whereas in Arabidopsis and most species no cell division is observed before germination,
genome duplications and activation of cell cycle genes are known to occur at late germination stages,
contributing to germination speed [391–394]. This may be a strategy to guarantee genome integrity by
allowing DNA damage responses to scan and repair the genome, but more studies are needed. Another
interesting question is how the described transport activities are coordinated and linked to hormone
metabolism and signaling. In this respect, the study and development of hormone sensors and tagged
hormones [395–397] should provide helpful information. Novel transporters may participate in the
precise control of hormonal balances in seeds (probably not only for ABA/GA). The fact that mutations
in proteins involved in transcriptional elongation only seem to alter seed dormancy and flowering
remains a puzzling issue. A link between these two developmental stages has been underscored
by mutations in DOG1 and FT, two genes that independently regulate dormancy [273,305]. Despite
increasing data on the regulation of germination by mechanisms affecting RNA dynamics, this topic has
received much less attention than other molecular layers of regulation. In particular, RNA modifications
with a profound impact on RNA activity, such as N6 or N1 adenosine methylation, have not yet been
reported to play a role in seeds. Finally, the discovery of tissue-specific signaling mechanisms and
supra-cellular structures is providing a more complex picture of the control of seed germination. Such
a picture will be fine-tuned in the near future with studies at the single-cell level.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/6/703/s1,
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