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Introduction
Despite its unquestionable success at reducing HIV replication
and improving the quality of life of many people living with
HIV/AIDS, combination antiretroviral therapy (ART) does not
eradicate the virus [1,2], due to the early establishment of a
long-lived viral reservoir [3–5]. The best clinical evidence for the
existence of a reservoir for HIV is provided by the rapid viral
rebound observed in the vast majority of individuals who interrupt
ART. HIV persistence during ART is the reason why current
therapies are not curative and has been the subject of intense
research during the past 15 years since ART was implemented.

There are multiple reasons underlying HIV persistence during ART,
which include the following:

▶ residual levels of viral replication that may not be fully
suppressed in drug-privileged anatomical compartments;

▶ the persistence of a small pool of cells carrying silent
integrated genomes that can be reactivated and reignite
infection;

▶ persistent immune dysfunctions that fail at controlling
residual replication and reactivation from latently infected
cells.

The use of the word ‘reservoir’ to define the pool of cells in which
replication-competent HIV persists during ART is still a matter of
debate, as there is no consensus on the main mechanism by which
HIV persists during ART. None the less, viral reservoirs can be
defined as cell types or anatomical sites in association with which
replication-competent forms of the virus persist with more stable
kinetic properties than the main pool of actively replicating virus
[6,7]. Identifying these cells and tissues and characterising the
mechanisms by which HIV persists in these sites is a prerequisite
to the design of therapeutic strategies aimed at eradicating HIV.

When is the reservoir established?
Soon after the implementation of ART in 1996, the possibility

that ART initiated very early in infection could prevent the
establishment of the long-lived HIV reservoir and shorten the
duration of HIV persistence after prolonged therapy was
proposed [8]. The rationale for this intervention originates from
the fact that the latent reservoir is not created but rather revealed
by ART, as latently infected CD4+ T cells are generated during
untreated HIV infection (Figure 1). Therefore, a reasonable
hypothesis is that by reducing the duration of exposure to the
virus through early ART initiation, one would limit the overall
number of infected cells, thereby reducing the possibility for some
of them to revert to a resting state or to directly establish latency.

By 1998, Chun et al. demonstrated that initiation of ART in
infected individuals as early as 10 days after the onset of
symptoms of primary infection does not prevent the generation
of latently infected CD4+ T cells carrying infectious virus [8]. This
is in line with recent data generated in the non-human primate
model of SIV infection, in which institution of ART as early as
3 days post infection could not prevent the establishment of a
viral reservoir, evidenced by viral rebound after ART
interruption [9]. Importantly, the time to viral rebound correlates
with total viraemia during acute infection and with proviral DNA
at the time of ART discontinuation [10], suggesting that the size
of the reservoir is a critical parameter that can predict a clinical
readout such as the time to viral rebound. Although these two
studies suggest that even very early ART intervention may not be
able to prevent the establishment of a reservoir for HIV, the
capacity of early ART to reduce the size of this persistent reservoir
has been demonstrated in several independent studies, using a
variety of virological readouts [11–15]. The precise timing at
which the reservoir is established is difficult to determine, as
latency is likely to occur primarily in tissues that are difficult to
access in recently infected individuals. The ‘when’ question may
be easier to address if considered together with the ‘how’
question: the well-accepted model of the generation of latently
infected cells proposes that they originate from activated cells,
most likely specific for HIV antigens [16,17], that are infected
and differentiate into long-lived resting memory cells [18]. As a
consequence, the latent reservoir may not be established before
the generation of memory CD4+ T cells. In contrast, if HIV latency
can be directly established in resting CD4+ T cells without the
need for these cells to go through an activation state [19,20],
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Abstract

Advances in the treatment of HIV infection have dramatically reduced the death rate from AIDS and improved the quality
of life of many HIV-infected individuals. However, the possible long-term toxicity associated with antiretroviral therapy
(ART), stigma and cost, all contribute to the necessity of finding a cure for HIV infection. In infected individuals taking
ART, HIV persists in a small number of cells that can survive for the lifetime of the infected person. These persistently
infected cells, usually referred as the ‘reservoirs for HIV infection’, are the main barriers to a cure. The diversity of the tissues
and cellular types in which HIV persists, as well as the multiplicity of the molecular mechanisms contributing to HIV
persistence, complicate the efforts to develop a safe, effective, and globally accessible cure for HIV. In this review, we
summarise recent data that contribute to our understanding of HIV persistence during ART by addressing three questions
pertaining to the HIV reservoir: (1) when is the reservoir established; (2) where is the reservoir maintained; and (3) how
does the reservoir persist?
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the reservoir may be seeded in the first days following infection.
Identifying the precise timing during which the latent reservoir is
established is technically challenging as at the early stages the
bulk of infected cells are likely to be productively infected, which
complicates the effort to identify the minute fraction of latently
infected CD4+ T cells.

In addition to the quantitative restriction by early ART, the
reservoir is less genetically diverse in subjects who start ART early
in infection [21]. More importantly, it may be more easily targeted
by autologous HIV- specific CD8+ T cell responses, as viruses
archived at a later stage of the disease are more likely to present
escape mutations [22]. Therefore, the benefits of early ART
intervention in the context of curative strategies are both
qualitative and quantitative.

Of note, early ART is the only currently available intervention
that limits the size of the latent HIV reservoir and leads to clinical
benefits in HIV- infected individuals. A prime example is the case
of the ‘Mississippi child’ who started ART by 2 days of life for
18 months and was able to remain virally suppressed for
27 months in the absence of ART [23]. Similarly, ‘post-treatment
controllers’ from the VISCONTI cohort of adults started ART
within the first 2 months of infection and were able to control
viraemia without ART for more than 5 years [24,25]. The
mechanisms by which early ART can lead to natural viral control
in a subset of individuals are still under investigation. Although
the mechanisms are likely to differ between individuals who are
able to control replication-competent virus for different periods
of time (‘Boston patients’ [26], Mississippi child [23],
post- treatment controllers [25], elite controllers [27]), a reduced
frequency of infected cells is common to all. This reinforces the
clinical relevance of early ART interventions, which greatly limit
the size of the reservoir, in curative strategies.

Where is the reservoir maintained?

Cellular reservoirs

Although alternative reservoirs may contribute to HIV persistence
(detailed below), CD4+ T cells represent the best-characterised
reservoir for HIV in virally suppressed subjects on long- term
ART [3,4,28,29]. CD4+ T cells can be further subdivided into
subsets according to their memory status or their effector
functions upon stimulation (Figure 2).

Within the CD4 compartment, naïve cells and recent thymic
emigrants can carry HIV DNA and replication- competent HIV
[30≤32], but their frequency of infection is usually much lower
than that of memory CD4+ T cells [21,29,33,34]. Within the
memory compartment, central (T&0 ), transitional (T7 0 ) and
effector memory (T( 0 ) cells are the three major reservoirs for HIV
in individuals on suppressive therapy and harbour
replication- competent virus [29], although their contribution to
the functional reservoir may vary [35]. In addition, two groups
have recently shown that the recently identified CD4+ T memory
stem cells (T6 & 0 ) harbour high per-cell levels of HIV-1 DNA and
make increasing contributions to the total reservoir measured by
HIV DNA over time [36,37].

As an alternative to the CD4+ T cell subsets that distinguish
different stages of T cell differentiation (T&0 , T7 0 and T( 0 ), the
CD4 compartment can be divided into subsets that demarcate
different functional programs and homing capacities including
Th1, Th2, Th17, regulatory T cells (Tregs) and follicular T helper
cells (Tfh). It is well established that the effector function of
CD4+ T cells, which is based on the expression of particular
transcription factors, chemokine receptors and cytokine secretion
upon stimulation, influence the capacity of this particular cell to
serve as a long-term reservoir for HIV during ART [38,39]. In
particular, regulatory Tregs [40] and Tfh cells [41] may represent
preferential cellular reservoirs for HIV in virally suppressed
individuals. CD4+ T cells expressing CCR6, a marker of Th17 cells
with homing capacity to the gut, are highly sensitive to HIV
infection [42≤44]. This could be attributed to the intrinsic nature
of Th17 cells rather than to their homing potential, since CD4+
T cells expressing the integrin beta 7, another marker for homing
potential, do not display this increased sensitivity to HIV
infection [38]. Indeed, the majority of HIV type 1 DNA in
circulating CD4+ T lymphocytes is present in non-gut-homing
resting memory CD4+ T cells [45].

In addition to CD4+ T cells, non-conventional cellular HIV
reservoirs have been described. They include CD8+ T cells [46,47],
the double negative CD3+CD4-CD8-subset [48,49] and cells
from the myeloid lineage including circulating monocytes [50≤53].
In the NHP model of SIV infection, myeloid cells containing viral
DNA show evidence of T cell phagocytosis in vivo, suggesting that
their viral DNA may be attributed to phagocytosis of infected T
cells [54], questioning the role of myeloid cells as a major source

Figure 1. Clinical definition of the HIV reservoir. Untreated HIV infection is characterised by high levels of viral replication that can be measured in the plasma of HIV-infected
individuals. ART reduces viral replication  to undetectable levels by standard viral load measurements. When ART is interrupted, HIV replication resumes, revealing that HIV
persisted in cellular and anatomical ‘reservoirs’ during ART and that these reservoirs can re-ignite infection.
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of SIV in vivo. The contribution of these potential alternative
reservoirs to HIV persistence in humans is difficult to assess, as the
majority of these cells may reside in tissues that are not easily
accessible. Furthermore, obtaining sorted myeloid cells with
sufficient yield and purity from these tissues is very challenging.
Nevertheless, in HIV- infected humans, a few lines of evidence
suggest that cells from the myeloid lineage could serve as a long-
term reservoir for the virus in mucosal tissues such as the lung
[55,56] and duodenum [57]. Of note, these studies usually only
demonstrate the presence of viral nucleic acids or viral proteins in
myeloid cells isolated from blood and tissues. Whether replication-
competent virus can persist in these cells after prolonged ART is
largely unknown.

Anatomical reservoirs

As mentioned above, HIV primarily infects CD4+ T cells and cells
from the myeloid lineage. Although these cells are found in the
circulating blood, the bulk of the cellular targets for HIV primarily
reside in lymphoid tissues [58]. Most of the studies aimed at
measuring viral persistence (both residual viral replication and
latency) have been conducted in the peripheral blood, although
it is clear that tissue reservoirs such as the gut and lymph nodes
are important sites for HIV persistence [59,60]. Studies in mice
have revealed the existence of tissue-resident memory T cells that
play an important role in protective immunity to site-specific
pathogens and mucosal sites, such as lung and intestine, contain
tissue-retained memory populations that do not
recirculate [61,62]. In humans, a recent study conducted in
blood, lymphoid and mucosal tissues obtained from organ donors
revealed that the subset composition and phenotype of
peripheral blood T cells does not reflect that of spleen, lymph
nodes or mucosal tissues, suggesting that blood is a distinct
compartment [63]. This reinforces the importance of conducting
studies aimed at understanding the mechanism of HIV
persistence and quantifying persistent HIV directly in tissue
samples because these reservoirs may not be reflected in the
circulating blood. Most of the studies conducted in tissue
reservoirs for HIV have used PCR-based assays to assess the levels

of HIV persistence, as recovering replication- competent HIV from
these sites is technically challenging.

As mentioned above, T cell homeostasis driven by cytokine or
T cell receptor-mediated signals in T cell subsets varies with their
differentiation stage and their tissue localisation, and cannot be
inferred from blood [64]. T( 0 CD4+ T cells producing IL-2
predominate in mucosal tissues and accumulate as T&0 cells in
lymphoid tissue [63]. In the gut, high frequencies of activated
cells [63] as well as persistent elevated levels of inflammation
may favour residual viral replication even after prolonged ART.
Conversely, the high frequency of the relatively quiescent T&0
cells in lymph nodes [63,65], which are in constant interactions
with stromal cells and antigen-presenting cells to ensure the
homeostasis of the CD4 compartment, may promote the survival
of latently infected cells in this site. Most HIV DNA and RNA in
the blood is found in T&0 cells, whereas in ileum and rectum,
most HIV DNA and RNA was found in T( 0 cells [66]. The
characterisation of the mechanisms of HIV persistence in these
anatomical reservoirs will require the use of assays that can
distinguish residual viral replication from latency and sorting
procedures that will ensure high levels of purity of the cell
population examined in different anatomical sites.

The importance of the gastrointestinal tract as a privileged site for
HIV persistence after prolonged ART is still debated. In the blood,
the majority of HIV DNA is present in non-gut-homing resting
memory CD4+ T cells [45]. Several studies have directly examined
the frequency of infection in biopsies obtained from different
regions of the gastrointestinal tract. In some studies, infection
frequencies measured in the gastrointestinal tract are higher than
in the matched blood samples [59,60], whereas other
investigators found no significant differences in the frequency of
infection of blood and rectal CD4+ T cells [67]. Similar to
peripheral blood mononuclear cells (PBMCs), the decay in the
frequency of infected cells in the gastrointestinal tract appears
to be minimal [68,69] and the frequencies found in the two
compartments are well correlated [29,70]. This questions the
existence of a compartmentalisation between the blood and gut

Figure 2. Contribution of CD4+ T cell subsets to the HIV reservoir during ART. CD4+ T cell subsets can be classified according to their differentiation and memory status (top) or to
their effector functions (bottom). Cell-surface markers and the production of specific cytokines can be used to identify each individual subset. The relative contribution of
each subset to the HIV reservoir is indicated.

Figure 2. (Adapted from Geginat et al. Semin Immunol 2013; 25: 252–262; Geginat et al. Front Immunol 2014; 16 Dec 2014.)
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reservoirs. Compartmentalisation is suggested by the existence
of gut-residing CD4+ T cells [63] and the fact that different HIV-1
quasispecies populate different parts of the gut [71]. In addition,
several studies suggest that HIV DNA resides in cells other than
CD4+ T cells, including myeloid cells [72] and more specifically
tissue macrophages [57] in the gastrointestinal tract, although
this may partially be attributed to contamination by T cells [21],
at least in some of the samples tested. The contributions of the
gut reservoir to viral rebound upon ART interruption is still unclear
[73,74]. Of note, the relative contribution of viral latency and
residual replication to viral persistence during suppressive ART in
the gut are largely unknown, for the technical reasons mentioned
above.

Replication-competent virus has been recovered in cells isolated
from lymph nodes in virally suppressed individuals [28,41] and
non-human primates [75]. The recent identification of follicular
T helper cells, which reside in the germinal centres of lymph
nodes, as a major compartment for HIV production, and perhaps
persistence [41], will most probably refocus attention around
these lymphoid organs. Interestingly, a recent study indicates that
B cell follicles constitute ‘sanctuaries’ for persistent SIV replication
in the presence of potent antiviral CD8 responses, as a result of
the relative exclusion of cytotoxic T lymphocytes (CTL) from this
site [76]. Moreover, concentrations of antiretroviral drugs are
much lower in lymph nodes than in peripheral blood, which
correlates with continued virus replication measured by detection
of viral RNA in productively infected cells [77]. Therefore, lymph
nodes may play a major role in HIV persistence through residual
levels of viral replication in Tfh cells. In addition, TCM cells, which
represent a preferential cellular subset for latent HIV, are enriched
in lymph nodes. Therefore, lymph nodes could contribute to HIV
persistence both through residual levels of viral replication and
latency.

In addition to the gut and lymph nodes, several other tissue
compartments could serve as a long-term reservoir for HIV. While
it is still unclear if the brain could serve as a long-lived reservoir
for replication-competent HIV during suppressive ART [78], it
clearly contains cells with an integrated provirus in untreated HIV-
infected individuals [79,80]. The male [81] and female [82,83]
genital tracts could also serve as long-lived reservoirs for HIV
during ART. Other previously neglected potential reservoirs such
as the kidney [84] and the liver, which may play an important role
in viral persistence, at least in the humanised mouse model [85],
warrant additional studies. In all cases, it would be important to
demonstrate that these potential reservoirs fulfil the criteria of a
long-lived viral reservoir during ART, including the replication
competency of the persistent viral genomes.

How is the reservoir maintained?

Residual viral replication during ART

ART achieves prolonged suppression of viral replication; however,
through the use of highly sensitive PCR assays that are able to
detect single copies of HIV RNA, residual plasma viraemia has
been shown to exist even in patients who have been virally
suppressed for prolonged periods of time [18,86,87]. This residual
viraemia could originate from reactivation of virus in latently
infected memory CD4+ T cells that are undergoing antigenic
stimulation. Interestingly, activated CD4+ T cells in the peripheral
blood have been shown to spontaneously release viral particles
even in the absence of stimuli [88]. Viraemia could also come
from productively infected CD4+ T cells sequestered in lymphoid
tissues. Low levels of viral replication in lymphoid organs can play
a role in HIV persistence via the spread of virus through cell-to-

cell contact in the virological synapse [89]. Significantly, residual
plasma viraemia in virally suppressed individuals was shown to
correlate with the size of the CD4+ T cell reservoir, but not with
markers of immune activation, suggesting that immune system
activation alone is not responsible for the observed low-level
viraemia [90].

Maintenance of latently infected cells

The persistence of HIV in memory CD4+ T cell subsets is ensured
by T cell survival and homeostatic proliferation in response to
interleukin-7 (IL-7) signalling [29]. IL-7 mediates the
proliferation of latently infected CD4+ T cells without disrupting
latency [91], and when administered to virally suppressed
subjects, induces a modest but significant expansion of the
reservoir [92]. In addition to homeostatic proliferation, latently
infected CD4+ T cells undergo proliferation in response to
antigenic stimulation, as suggested by phylogenetic analyses
showing high numbers of identical sequence expansions in virally
suppressed individuals [93,94]. Recently, several groups
sequenced the integration sites of the HIV genome within the
host DNA and found that specific HIV-integration sites are linked
to clonal expansion [95–97]. These studies also indicate that
integration of the viral DNA into cancer genes contributes to
persistent infection [96]. While the majority of these expanded
integrated viral genomes is likely to be incompetent for HIV
replication [97,98], it is possible that these defective integrants
retain the capacity to generate viral RNA and perhaps viral
proteins that could contribute to abnormally elevated levels of
immune activation in virally suppressed individuals.

Molecular mechanisms of HIV latency

In maintaining the HIV reservoir, latently infected resting memory
CD4+ T cells potentially have the greatest clinical significance.
Their long life-span ensures that the virus can be maintained in
quiescent cells for years. Resting memory CD4+ T cells support a
favourable environment for the maintenance of HIV latency, and
multiple molecular mechanisms have been proposed to mediate
its induction, including the site of viral integration, transcriptional
interference, chromatin remodelling, restriction of transcription
host factors and requirements for the HIV accessory protein Tat
(transactivator of transcription).

In a study of viral integration sites in resting CD4+ T cells from
virally suppressed individuals, a surprising 93% of proviruses were
found in actively transcribed genes [99]. This site preference is
most likely due to interaction of the pre-integration complex with
cellular host factors associated with gene transcription.
Integration into actively transcribed genes can lead to
transcriptional interference caused by the elongating RNA
polymerase II complex transcribing through the 5’ LTR. This leads
to interference with pre-initiation complex formation and
silencing of HIV transcription [100] that could only be partially
reversed through cellular activation by TNF-α [101]. Studies in a
primary cell-based model of HIV latency have shown that latent
proviruses have an orientation bias when compared to
productively infected cells within the same model system [102].
These data suggest that mechanistically transcriptional
interference is a significant factor in silencing HIV transcription.

Another contribution to HIV latency is establishment of a
repressive chromatin environment. Epigenetic modifications alter
the physical structure of chromatin and affect transcription levels
including CpG methylation and histone methylation. A Jurkat
model demonstrated that initiation of HIV latency was associated
with CCAAT-box binding transcription factor 1
(CBF-1)-dependent histone deacetylase (HDAC)-1 recruitment
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to the 5’LTR and histone H3 lysine 9 (H3K9) trimethylation
[103,104]. H3K9/27 trimethylation was also shown to be
involved in the establishment of latency in primary cells [105].
DNA methylation at CpG islands is a repressive epigenetic
modification that can inhibit transcription factor binding and can
recruit HDAC-2 for histone deacetylation. The role of DNA
methylation in HIV latency, however, is controversial. In studies
using Jurkat cell lines or an in vitro primary CD4+ T cell model of
latency, densely methylated proviral DNA was associated with a
reduced capacity to reverse latency [106]. Subsequent studies
using resting CD4+ T cells isolated from a cohort of virally
suppressed HIV-infected individuals demonstrated very low levels
of CpG dinucleotides within the 5’LTR, suggesting DNA
methylation may not have a significant role in the maintenance
of HIV latency [107]. In addition, the role of histone modification
in HIV latency has also been of interest, and has led to the recent
clinical trials using HDAC inhibitors as an eradication
strategy [108–110]. Histone deacetylases are a family of enzymes
functioning to remove the acetyl groups from lysine residues, one
of the signals required for binding of activating transcription
factors [111,112]. HDAC activity has been associated with the
repression of HIV transcription [113,114]. Among the different
classes of HDACs, the class I HDACs, HDAC-1, -2 and -3, are
recruited to the HIV-1 LTR in cell-line models of HIV-1
latency [111,113–115]. In support of the role of HDACs in HIV
latency, class I HDAC inhibitors have been shown to induce HIV
expression in both in vitro cell models of latency and in resting
CD4+ T cells from HIV-infected patients [116–120]. Although
promising conceptually as an eradication strategy, therapeutically,
the results have been mixed. The HDAC inhibitors vorinostat and
panobinostat induced a significant increase in cell-associated HIV
RNA in the clinical setting [108–110]. However, these drugs had
no effect on the size the of the latent HIV reservoir. One of the
assumptions made in HIV eradication strategies is that latent
provirus reactivation will induce either cell death in the now
productively infected cell, or allow it to be recognised by HIV-
specific CTL. Of note, a recent study showed that HDAC inhibitors
have a negative impact on CTL activities by impairing IFN-γ
production and their ability to recognise and eliminate HIV-
infected target cells in vitro [121]. These data highlight the
importance of considering how the anti-latency compounds will
influence multiple arms of the immune response to maximise
clinical effectiveness.

HIV latency is also affected by the availability of host transcription
factors. The specific recruitment of factors such as NF-κB, Sp1
and NFAT are required for HIV transcription. NF-κB binds to the
HIV 5’ LTR and initiates pre-initiation complex formation and
transcription initiation [113]. Phosphorylation of RNA polymerase
II on the serine 5 position in the heptapeptide repeats of its
C-terminal domain (CTD) promotes transcription initiation but
not transcript elongation. In order for efficient elongation to
occur, sustained activation of NF-κB expression is required to
lead to the synthesis of the HIV Tat protein. Tat functions to
recruit P-TEFb, which results in the phosphorylation of serine 2
of the RNA polymerase II CTD and transcription elongation.

Sequestering of NF-κB and other factors required for
transcription initiation, such as NFAT, in the cytoplasm of
quiescent CD4+ T cells also contributes to establishment of HIV
latency [122,123]. P-TEFb becomes incorporated into an inactive
complex with HEXIM and 7SK RNA, which restricts availability
of P-TEFb for efficient transcription elongation [124,125]. The
sequestering of P-TEFb plays a significant role in limiting Tat
synthesis, a critical factor in HIV transcription.

The HIV Tat protein functions in transcriptional elongation. In the

absence of Tat, the majority of the RNA polymerase II complexes
prematurely terminate transcription near the promoter [126]. Tat
binds to the transactivation response element (TAR), a sequence
in the 5’-non-coding region of HIV mRNA that forms a stable
stem-loop structure. Efficient elongation of HIV transcripts
requires the recruitment of a complex of proteins comprising
CycT1 and CDK9/P-TEFb [127]. CycT1 induces CDK9/P-TEFb
kinase activity to facilitate phosphorylation of a number of
proteins within the elongating transcription complex, including the
RNA polymerase II CTD [128]. In addition to recruiting factors for
transcriptional elongation, Tat also functions to counteract the
activities of negative elongation factors such as the RNA-binding
NELF complex associated with RNAPII pausing [129,130].
Without efficient elongation, host cell factors such as Setx, Srn2
59–39 exonuclease and microprocessor complexes function to
prematurely terminate HIV transcripts [131], setting up a negative
feedback loop that further downmodulates HIV transcription and
induces latency [132]. Interestingly, two recent studies by the
Weinberger group suggested that rather than a limiting factor that
unnecessarily restricts viral replication, Tat activity functions as a
regulation mechanism that mediates viral latency for HIV survival
[133,134]. Using a computer modelling approach, they
demonstrated that the state of HIV expression could be separated
from the state of activation of the host cell, and that the two
processes were in fact independent [133]. They then used a
synthetic biology approach to alter either Tat expression or cellular
activation and found that Tat expression was the controlling
factor of virus expression irrespective of the host cell state.
Mathematical modelling was further applied to explain that the
function of Tat to control viral expression may have evolved to
promote cell survival and, consequently, enhanced virus
propagation [134]. After initial entry of the virus at mucosal
surfaces, productive infection of all target cells would induce
rapid cell death and therefore limit the capability of the virus to
efficiently establish infection. Induction of viral latency would
promote cell survival and allow the virus to be spread to other sites
in the body when those cells migrated to other tissues. Their
mathematical model predicted that establishment of latency
benefited the virus over continued productive infection, and
resulted in higher infection rates. Interestingly, these data would
suggest that latency is one of the earliest steps in HIV infection,
in order to limit the death of target cells. Although the implication
for intervention strategies is that there may not be a clinical
intervention early enough that could block the establishment of
a latent reservoir, the aim of limiting the size of the reservoir to
preserve immune system function and reduce inflammation is
well documented.

Conclusion
The interdependency of residual replication, proviral latency and
immune dysfunction complicates our understanding of the
mechanisms by which HIV persists in virally suppressed
individuals. Indeed, the pool of latently infected CD4+ T cells can
be replenished by ongoing replication, a phenomenon that is not
fully controlled by the host immune response. Recent data also
suggest that viral latency (as defined by the lack of virion
production) and transcriptional latency (no transcriptional activity
of the LTR) may not always overlap. This concept of ‘leaky
latency’ is attracting lots of interest, as it does not only question
the widely accepted model of latency, but also suggests that the
so-called ‘latent reservoir’ may produce low amounts of viral
products (RNA and perhaps proteins) that could contribute to
the persistent immune dysfunctions seen in virally suppressed
individuals.
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While the virological mechanisms of HIV persistence have been
extensively investigated in many cohorts of HIV-infected
individuals receiving suppressive ART, only a few studies have
evaluated the antiviral immune response (both innate and
adaptive) during ART and how they influence HIV persistence.
This neglected area is now getting much more attention,
particularly in the context of ‘shock and kill’ strategies to reduce
the size of the reservoir, which will most probably require an
immune component to be successful.
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