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Abstract

Background

We hypothesized that a decrease in frequency of controlled breaths during biphasic positive

airway pressure (BIVENT), associated with an increase in spontaneous breaths, whether

pressure support (PSV)-assisted or not, would mitigate lung and diaphragm damage in mild

experimental acute respiratory distress syndrome (ARDS).

Materials and methods

Wistar rats received Escherichia coli lipopolysaccharide intratracheally. After 24 hours, ani-

mals were randomly assigned to: 1) BIVENT-100+PSV0%: airway pressure (Phigh) adjusted

to VT = 6 mL/kg and frequency of controlled breaths (f) = 100 bpm; 2) BIVENT-50+PSV0%:

Phigh adjusted to VT = 6 mL/kg and f = 50 bpm; 3) BIVENT-50+PSV50% (PSV set to half the

Phigh reference value, i.e., PSV50%); or 4) BIVENT-50+PSV100% (PSV equal to Phigh refer-

ence value, i.e., PSV100%). Positive end-expiratory pressure (Plow) was equal to 5 cmH2O.

Nonventilated animals were used for lung and diaphragm histology and molecular biology

analysis.
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Results

BIVENT-50+PSV0%, compared to BIVENT-100+PSV0%, reduced the diffuse alveolar dam-

age (DAD) score, the expression of amphiregulin (marker of alveolar stretch) and muscle

atrophy F-box (marker of diaphragm atrophy). In BIVENT-50 groups, the increase in PSV

(BIVENT-50+PSV50% versus BIVENT-50+PSV100%) yielded better lung mechanics and less

alveolar collapse, interstitial edema, cumulative DAD score, as well as gene expressions

associated with lung inflammation, epithelial and endothelial cell damage in lung tissue, and

muscle ring finger protein 1 (marker of muscle proteolysis) in diaphragm. Transpulmonary

peak pressure (Ppeak,L) and pressure–time product per minute (PTPmin) at Phigh were

associated with lung damage, while increased spontaneous breathing at Plow did not pro-

mote lung injury.

Conclusion

In the ARDS model used herein, during BIVENT, the level of PSV and the phase of the

respiratory cycle in which the inspiratory effort occurs affected lung and diaphragm damage.

Partitioning of inspiratory effort and transpulmonary pressure in spontaneous breaths at

Plow and Phigh is required to minimize VILI.

Introduction

Inappropriate mechanical ventilation settings in patients with the acute respiratory distress

syndrome (ARDS) may result in ventilation-induced lung injury (VILI). VILI is believed to

involve a proinflammatory response, leading to lung structural and peripheral organ damage

[1]. The use of protective low tidal volume under controlled mechanical ventilation is the only

ventilator strategy known to reduce mortality in ARDS [2]. However, controlled mechanical

ventilation may lead to diaphragmatic weakness [3,4], thus delaying the weaning process [3].

Partial ventilatory support can be implemented in mild-to-moderate forms of ARDS [5–7].

Since it requires less sedation and no neuromuscular blockade, it prevents muscle atrophy [8]

and is associated with better cardiovascular performance [9,10], shorter time on mechanical

ventilation, and shorter intensive care unit (ICU) stay [10,11]. On the other hand, spontaneous

breathing during assisted mechanical ventilation may aggravate lung injury, since it can

increase patient-ventilator asynchrony and work of breathing, leading to so-called patient self-

inflicted lung injury (P-SILI) [12–14]. In recent decades, different partial ventilatory support

modes have been proposed [15]. During biphasic positive airway pressure ventilation

(BIVENT), a combination of time-cycled controlled breaths at two levels of continuous posi-

tive airway pressure and spontaneous breathing is allowed at both low and high airway pres-

sure phases [16]. In experimental ARDS, Saddy et al. reported reduced lung and diaphragm

damage with lower frequency of controlled breaths during BIVENT [17]. The combination of

BIVENT with pressure support ventilation (PSV), when compared with pressure controlled

ventilation, has been found to reduce lung damage [18]. We hypothesized that a decrease in

frequency of control breaths during BIVENT, associated with an increase in spontaneous

breaths, whether pressure support (PSV)-assisted or not, would mitigate lung and diaphragm

damage in ARDS. The present study evaluated respiratory variables, histology, biological

markers associated with VILI, and markers of diaphragmatic injury under different frequen-

cies of control breaths and PSV in a rat model of experimental mild ARDS.
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files. The MATLAB files and LabVIEW diagram

block are available at https://github.com/

PedroLolo81/Matlab_Routines_for_Lung.git.
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Materials and methods

Study approval

This study was approved by the Ethics Committee of the Healthy Science Center (CEUA no.

103/16), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. All animals received

humane care in compliance with the “Principles of Laboratory Animal Care” formulated by

the National Society for Medical Research and the Guide for the Care and Use of Laboratory

Animals prepared by the U.S. National Academy of Sciences. The present study followed the

ARRIVE guidelines for reporting of animal research [19]. Animals came from the Breeding

Facility of Healthy Science Center of Federal University of Rio de Janeiro. Conventional ani-

mals were housed at a controlled temperature (23˚C) and controlled light–dark cycle (12–12

h), with free access to water and food. No acclimation was done.

Animal preparation and experimental protocol

Forty male Wistar rats (mean weight 292±20g) were anesthetized under spontaneous breath-

ing with 1.5–2.0% isoflurane (Isoforine1; Cristália, Itapira, SP, Brazil) and subjected to intra-

tracheal instillation of 9.6×106 EU/mL Escherichia coli lipopolysaccharide (Merck Millipore,

Burlington, Massachusetts, USA), diluted in 200 μL of 0.9% saline solution.

After 24 h, animals were premedicated intraperitoneally (i.p.) with midazolam (1–2 mg/kg)

and anesthetized with ketamine (100 mg/kg, i.p.). An intravenous (i.v.) catheter (Jelco 24G,

Becton, Dickinson and Company, New Jersey, NJ, USA) was inserted into the tail vein, and

anesthesia induced and maintained with midazolam (2 mg/kg/h) and ketamine (50 mg/kg/h).

During spontaneous breathing, anesthetic depth was evaluated by the response to light touch

with a fingertip on the rat’s whiskers (0 = awake, fully responsive to surroundings; 1 = not

responsive to surroundings, rapid response to whisker stimulation; 2 = slow response; 3 = unre-

sponsive to whisker stimulation) [20],.pupil diameter, position of the nictitating membrane,

and movement in response to tail stimulation [21,22]. Experiments were started when

responses to a noise stimulus (handclap), whisker stimulation, and tail clamping were absent.

The depth of the anesthesia was monitored via mean arterial pressure, heart rate and respira-

tory rate throughout the experiment.

Body temperature was maintained at 37.5 ± 1˚C with a heating bed (EFF 421, INSIGHT1,

Brazil). After local infiltration of 0.4 mL lidocaine (1%), a tracheostomy was performed and a

polyethylene cannula (PE 240, Intramedic1, Clay-Adams Inc, New York, USA; internal diame-

ter 1.8 mm, length 7.5 cm) was introduced into the trachea. A second catheter (18G; Arrow

International, USA) was then placed in the right internal carotid artery for blood sampling and

gas analysis (Radiometer ABL80 FLEX, Copenhagen NV, Denmark), as well as monitoring of

mean arterial pressure (MAP) (Networked Multiparameter Veterinary Monitor LifeWindow

6000 V; Digicare Animal Health, Boynton Beach, FL, USA). Animals were adapted to an airway

pressure transducer (UT-PDP-70; SCIREQ, Canada) and a two-sidearm pneumotachograph

(internal diameter 2.7 mm, length 25.7 mm, internal volume 0.147 ml, airflow resistance 0.0057

cm H2O�ml-1�s-1) [23] connected to a differential pressure transducer (UT-PDP-02, SCIREQ,

Montreal, QC, Canada), for airflow (V’) measurement. A 30-cm-long water-filled catheter (PE-

205; Becton, Dickinson and Company) with side holes at the tip, connected to a differential

pressure transducer (UT-PL-400; SCIREQ, Canada), was used to measure the esophageal pres-

sure. Briefly, the esophageal catheter was passed into the stomach and then slowly returned into

the esophagus; its proper positioning was assessed using the “occlusion test” [24].

Animals were mechanically ventilated (SERVO-i; MAQUET, Solna, Sweden) in assisted

pressure-controlled ventilation (A-PCV) with ΔP set to achieve a tidal volume (VT) of 6 mL/
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kg, positive end-expiratory pressure (PEEP) of 0 cmH2O, I:E (inspiratory: expiratory ratio) of

1:2, respiratory rate (RR) of 100 breaths per minute (bpm), and FiO2 (inspired oxygen frac-

tion) of 0.4 at BASELINE-ZEEP, to evaluate whether the degree of lung damage was similar

between ARDS groups. Flow trigger sensitivity was adjusted at BASELINE-PEEP (INITIAL)

for adequate inspiratory effort, according to esophageal pressure variation (ΔPes). No addi-

tional changes to flow trigger sensitivity were made at any point during the experiment [25].

Shortly thereafter (defined as the INITIAL time point), animals were randomly assigned to

one of four groups of BIVENT:

1. BIVENT-100+PSV0% (n = 8) with Phigh to achieve VT = 6 mL/kg, time at high and low pres-

sures (Thigh, and Tlow, respectively) of 0.3 s, RR 100 bpm;

2. BIVENT-50+PSV0% (n = 8), with Phigh to achieve VT = 6 mL/kg, Thigh and Tlow of 0.3 and

0.9 s, respectively, RR 50 bpm;

3. BIVENT-50+PSV50% (n = 8) with Phigh to achieve VT = 6 mL/kg, pressure support ventila-

tion of half the Phigh value (PSV50%), Thigh and Tlow of 0.3 and 0.9 s, respectively, RR 50

bpm;

4. BIVENT-50+PSV100% (n = 8), with Phigh to achieve VT = 6 mL/kg, pressure support ventila-

tion equal to Phigh (PSV100%), Thigh and Tlow of 0.3 and 0.9 s, respectively, RR 50 bpm (Fig

1A).

Phigh was adjusted across all groups to achieve VT = 6 mL/kg, while PSV adjustments were

50% or 100% of the Phigh level adjusted for each animal. Spontaneous breathing activity was

allowed during all ventilatory strategies, including BIVENT-100+PSV0%. Sedation and anes-

thesia were adjusted to keep adequacy of inspiratory efforts during mechanical ventilation.

The Plow level, which reflects PEEP, was set at 5 cmH2O, based on previous observations from

our group showing that higher PEEP levels would lead to deterioration in respiratory mechan-

ics in a similar rat model of ARDS [26]. We did not discriminate whether PSV occurred at

Plow vs. Phigh, since the SERVO-i ventilator enables PSV only during Tlow. In all groups, FiO2 =

0.4 was maintained for 1 hour, at which time blood gas analysis (Radiometer, Copenhagen,

Denmark) and mechanical data were obtained (timepoint FINAL) (Fig 1B). At timepoint

FINAL, heparin was injected (1,000 IU i.v.), and animals were euthanized by overdose of

sodium thiopental (60 mg/kg i.v.; Cristália, Brazil). The trachea was clamped at Plow = 5

cmH2O, lungs were removed en bloc for histology and molecular biology analysis, and a surgi-

cal line was placed in the left bronchus to maintain lung volume at Plow = 5 cmH2O. The right

lung was immediately frozen in liquid nitrogen for molecular biology analyses. The diaphragm

was also removed at the end of the experiments. Eight of 40 rats were instilled with E. coli LPS,

but not ventilated (NV); these animals were used for molecular biology analysis.

Data acquisition and respiratory system mechanics

Airflow, airway pressure (Paw), and Pes were recorded continuously throughout the experi-

ments by a computer running custom-made software written in LabVIEW (National Instru-

ments, USA). All signals were amplified in a three-channel signal conditioner (TAM-DHSE

Plugsys Transducers Amplifiers, Module Type 705/2, Harvard Apparatus, Holliston, Massa-

chusetts, USA) and sampled at 200 Hz with a 12-bit analog-to-digital converter (National

Instruments; Austin, Texas, USA). All mechanical data were computed offline by a routine

written in MATLAB (Version R2007a; The Mathworks Inc., USA) (Please see in the
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supplement custom-made software written in LabVIEW and routine written in MATLAB for

data analysis).

VT was calculated by digital integration of the flow signal. Coefficient of variation (CV) of

VT was determined among 600 sampled cycles by the ratio of standard deviation divided by

mean values of VT. The total respiratory rate (RR) was calculated from the Pes swings as the

frequency per minute of each type of breathing cycle. Mean transpulmonary pressure (Pmean,

L) and peak transpulmonary pressure (Ppeak,L) were calculated as the difference between tra-

cheal and esophageal pressure. Inspiratory time divided by total respiratory cycle time (Ti/

Ttot) was calculated. The pressure–time product per minute (PTPmin) was calculated as the

Fig 1. A. Experimental design. BIVENT-100+PSV0% (n = 8) with Phigh to achieve VT = 6 mL/kg, Time at high and

low pressures (Thigh and Tlow, respectively) = 0.3 s, RR = 100 bpm; BIVENT-50+PSV0% (n = 8), with Phigh to achieve

VT = 6 mL/kg, Thigh and Tlow = 0.3 and = 0.9 s, respectively, RR = 50 bpm; BIVENT-50+PSV50% (n = 8) with Phigh

to achieve VT = 6 mL/kg, pressure support ventilation of half value of Phigh (PSV50%), Thigh and Tlow = 0.3 and 0.9 s,

respectively, RR = 50 bpm; and BIVENT-50+PSV100% (n = 8) with Phigh to achieve VT = 6 mL/kg, pressure support

ventilation equal Phigh (PSV100%), Thigh and Tlow = 0.3 and = 0.9 s, respectively, RR = 50 bpm. ARDS: Acute respiratory

distress syndrome; BIVENT: Biphasic positive airway pressure; NV: Nonventilated; LPS: Lipopolysaccharide; Phigh:

High level of continuous positive airway pressure; Plow: Low level of continuous positive airway pressure. Thigh: Time

spent in Phigh; Tlow: Time spent in Plow; RR: Respiratory rate; PSV: Pressure support ventilation. B. Timeline of the

experiments. i.t.: Intratracheal; VT: Tidal volume; I:E: Inspiratory-to-expiratory ratio; PEEP: Positive end-expiratory

pressure; FiO2: Fraction of inspired oxygen.

https://doi.org/10.1371/journal.pone.0256021.g001
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integral of ΔPes over one minute. The ΔPes reflects the total variation of esophageal pressure

during the inspiratory effort. All mechanical parameters were extracted from four different

types of breathing cycles as follows: 1) mixed respiratory cycles (M), i.e., negative Pes swings

with simultaneous ventilator inspiratory cycling; 2) spontaneous breath cycles, without PSV, at

high airway pressure (Phigh), i.e., negative Pes swings at Phigh not followed by ventilator cycling;

3) spontaneous breath cycles, without PSV, at low airway pressure (Plow), i.e., negative Pes

swings at Plow not followed by ventilator cycling; and 4) spontaneous breath at pressure sup-

port (PSV), only present in groups BIVENT-50+PSV50% and BIVENT-50+PSV100% during the

Tlow phase (Fig 2).

Histology

Diffuse alveolar damage. The left lung was fixed in 4% formaldehyde solution and

embedded in paraffin. Sections (4 μm thick) were cut longitudinally from the central zone

with a microtome and stained with hematoxylin–eosin for histologic analysis. Photomicro-

graphs at magnifications of ×25, ×100, and ×400 were obtained from eight non-overlapping

fields of view per section under a light microscope (Olympus BX51; Olympus Latin America

Inc., Brazil). Diffuse alveolar damage (DAD) score was quantified by an expert in lung pathol-

ogy (V.L.C.) blinded to group assignment [27]. Briefly, scores of 0 to 4 were used to represent

overdistension, interstitial edema, and alveolar collapse, with 0 standing for no effect and 4 for

maximum severity. Additionally, the extent of each scored characteristic per field of view was

determined on a scale of 0 to 4, with 0 standing for no visible evidence and 4 for complete

involvement. Scores were calculated as the product of severity and extent of each feature, on a

range of 0 to 16. The cumulative DAD score was the sum of these three features and thus ran-

ged from 0 to 48 [28].

Electron microscopy. Three slices measuring 2×2×2 mm were cut from three different

segments of the right lung and from the right diaphragm and fixed in 2.5% glutaraldehyde and

Fig 2. Original tracheal, esophageal and transpulmonary pressure tracings.

https://doi.org/10.1371/journal.pone.0256021.g002
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0.1 M phosphate buffer (pH = 7.4) for transmission electron microscopy (TEM) (JEOL 1010

Transmission Electron Microscope, Tokyo, Japan). Each TEM image (20 per animal) was ana-

lyzed for damage to epithelial and endothelial cells, basement membrane, and extracellular

matrix at three different magnifications. Pathologic findings were graded on a 5-point semi-

quantitative severity-based scoring system as follows: 0 = normal lung parenchyma, 1 = changes

in 1% to 25% of examined tissue, 2 = changes in 26% to 50% of examined tissue, 3 = changes

in 51% to 75% of examined tissue, and 4 = changes in 76% to 100% of examined tissue [29].

For diaphragm analysis, the following aspects were assessed on TEM: 1) myofibril abnormali-

ties, defined as disruption of myofibril bundles or disorganized myofibrillar pattern with

edema of the Z-disc and 2) mitochondrial injury with abnormal, swollen mitochondria and

abnormal cristae. The pathologic findings were again graded on a 5-point semiquantitative

severity-based scoring system, as follows: 0 = normal diaphragm, 1 = changes in 1% to 25%,

2 = changes in 26% to 50%, 3 = changes in 51% to 75%, and 4 = changes in 76% to 100% of

examined tissue. The pathologist working on light microscopy and TEM images (V.L.C.) was

blinded to group assignment.

Molecular biology analysis of lung and diaphragm tissue. Quantitative real-time reverse

transcription polymerase chain reaction was performed to measure biological markers associ-

ated with inflammation (tumor necrosis factor [TNF]-α), alveolar stretch (amphiregulin), epi-

thelial cell damage (club cell protein 16), endothelial cell damage [vascular cell adhesion

molecule (VCAM)-1], and extracellular matrix damage (decorin) in lung tissue, as well as

markers of muscle proteolysis [muscle RING finger-1 (MuRF-1) and muscle atrophy F-

box (MAFbx/atrogin-1)] in the right diaphragm. The primer sequences are listed in S1 Table.

Central slices of right lung and right diaphragm were cut, collected in cryotubes, flash-frozen

by immersion in liquid nitrogen, and stored at −80˚C. Total RNA was extracted from frozen

tissues using the RNeasy Plus Mini Kit (Qiagen, Hilden, Germany), following the manufactur-

er’s recommendations. The RNA concentration was measured by spectrophotometry in a

Nanodrop ND-2000 system. First-strand cDNA was synthesized from total RNA using a

Quantitec reverse transcription kit (Qiagen, Hilden, Germany). Relative mRNA concentra-

tions were measured with a SYBR green detection system using ABI 7500 real-time polymerase

chain reaction (Applied Biosystems, Foster City, CA, USA). Samples were measured in tripli-

cate. For each sample, the expression of each gene was normalized to that of the housekeeping

gene 36B4 (acidic ribosomal phosphoprotein P0) and expressed as fold change relative to NV,

using the 2-ΔΔCt method, where ΔCt = Ct (reference gene)–Ct (target gene). All analyses were

performed by two authors (M.A.A., C.L.S.), who were blinded to group assignment.

Statistical analysis

The sample size was judiciously calculated to minimize the use of animals. A sample of 8 ani-

mals per group would provide the appropriate power (1-β = 0.8) to identify significant (α =

0.05) differences in alveolar collapse between BIVENT-100+PSV0% and BIVENT50+PSV0%

[17], taking into account an effect size d = 1.72, a two-sided test, and a sample size ratio of 1

(G�Power 3.1.9.2, University of Düsseldorf, Germany). The Kolmogorov–Smirnov test with

Lilliefors’ correction was used to assess normality of data, while the Levene median test was

used to evaluate the homogeneity of variances. For comparisons between BIVENT-100 and

BIVENT-50 groups, either Student’s t-test or the Mann–Whitney U test was used as appropri-

ate. For comparisons within BIVENT-50 groups, one-way ANOVA with Holm-Šı́dák’s post-

hoc test (<0.05) or the Kruskal-Wallis test followed by Dunn’s test were used. All tests were

performed in GraphPad Prism v8.4.0 (GraphPad Software, La Jolla, CA, USA). Significance

was established at P < 0.05 (two-sided).
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Results

There were no missing data at any time point in the study. Two animals died due to hemody-

namic compromise during the pilot phase. At BASELINE ZEEP, PaO2/FiO2 was lower than

300 mmHg in all groups (S2 Table). MAP was higher than 70 mmHg throughout the experi-

ments. At timepoint FINAL, PaO2/FiO2, pHa, PaCO2, and HCO3
- did not significantly differ

between BIVENT-100+PSV0% and BIVENT-50+PSV0%, nor among the BIVENT-50+PSV0%,

BIVENT-50+PSV50%, and BIVENT-50+PSV100% groups (S3 Table). The amount of fluid

infused did not differ between groups (S3 Table). Adjusted Phigh and PSV levels are shown in

S4 Table.

BIVENT-100+PSV0% vs BIVENT-50+PSV0% group

The CV of VT was lower in BIVENT-100+PSV0% than BIVENT-50+PSV0% (Table 1). Among

the mixed cycles, BIVENT-100+PSV0% presented higher Ti/Ttot and RR compared to

BIVENT-50+PSV0%. No significant changes were observed in PTPmin and ΔPes between

groups.

NV animals showed higher alveolar collapse and cumulative DAD score compared to

BIVENT-100+PSV0% and BIVENT-50+PSV0%. The score of overdistension and interstitial

edema was higher in NV than BIVENT-50+PSV0%. BIVENT-100+PSV0% cumulative DAD

score compared to BIVENT-50+PSV0% (Fig 3, Table 2).

Endothelial cell damage was greater in NV compared to than BIVENT-50+PSV0% (Fig 4

and Table 3).

BIVENT-100 + PSV0% group showed increased amphiregulin gene expression in compari-

son to BIVENT-50+PSV0% (Fig 5).

Myofibril abnormality score was higher in BIVENT-100+PSV0% than NV and BIVENT-50

+PSV0%, mitochondrial injury did not differ among NV, BIVENT-100+PSV0% and BIVENT-

100+PSV50% (Fig 6 and Table 4).

MAFbx gene expression was higher in BIVENT-100+PSV0% than BIVENT-50+PSV0% (Fig

7).

Comparisons among the BIVENT-50 + PSV0%, BIVENT-50 + PSV50%, and

BIVENT-50 + PSV100% groups

Among total cycles, the CV of VT was lower in BIVENT-50+PSV50% than BIVENT-50+PSV0%

and BIVENT-50+PSV100% groups. In addition, Pmean,L, PTPmin, and ΔPes were lower in

BIVENT-50+PSV100% than BIVENT-50 + PSV50% animals (Table 1). Among Plow cycles, VT,

airflow, RR, and PTPmin were lower in BIVENT-50+PSV100% than BIVENT-50+PSV0%.

Among Phigh cycles, RR, Ppeak,L, and PTPmin were higher in BIVENT-50+PSV50% than

BIVENT-50+PSV0%. Among mixed (M) cycles, Ti/Ttot was higher, while Pmean,L was lower

in BIVENT-50+ PSV100% compared to BIVENT-50+PSV50%. Among PSV cycles, ΔPes was

lower in BIVENT-50+PSV100% than BIVENT-50+PSV50% animals. Overdistension, alveolar

collapse, and cumulative DAD score were higher in BIVENT-50+PSV50% than BIVENT-50+-

PSV0%, while BIVENT-50+PSV100% showed less interstitial edema and alveolar collapse, as

well as a lower cumulative DAD score, compared to BIVENT-50+PSV50% (Fig 3, Table 2).

BIVENT-50+PSV50% showed more damage to epithelial and endothelial cells, basement mem-

brane, and extracellular matrix compared to BIVENT-50 + PSV0%. The BIVENT-50

+ PSV100% group exhibited less basement membrane damage compared to BIVENT-50+-

PSV50% (Fig 4 and Table 3).
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Table 1. Respiratory mechanical parameters at timepoint FINAL.

Parameter Cycle BIVENT-100 + PSV0% BIVENT-50

BIVENT-50+PSV0% BIVENT- 50+PSV50% BIVENT-50+PSV100%

VT (mL/kg) M 5.8 ± 0.9 5.9 ± 1.0 6.2 ± 0.8 5.5 ± 0.9

PSV - - 4.8 ± 1.0 5.0 ± 0.7

Plow 2.5 ± 1.4 3.9 ± 1.8 - 1.7 ± 0.6#

Phigh - 5.8 ± 0.9 7.2 ± 2.0 -

Total 5.8 ± 1.3 5.2 ± 1.2 5.8 ± 0.7 5.0 ± 0.6

CV of VT (%) M 14 ± 11 15 ± 13 12 ± 8 13 ± 3

PSV - - 12 ± 5 16 ± 5

Plow 18 ± 20 23 ± 13 - 39 ± 18

Phigh - 51 ± 9 36 ± 19 -

Total 4 ± 4 32 ± 11�� 12 ± 6# 28 ± 9†

Airflow (mL/s) M 12.1 ± 3.6 11.9 ± 3.5 11.8 ± 1.9 11.5 ± 2.3

PSV - - 8.5 ± 1.9 10.2 ± 1

Plow 6.4 ± 3.1 8.0 ± 2.7 - 3.7 ± 2.1#

Phigh - 10.2 ± 1.9 6.8 ± 1.8

Total 11.6 ± 1.8 10.5 ± 2.5 10.8 ± 1.7 10.2 ± 1.4

RR (bpm) M 96 ± 4 51 ± 4�� 51 ± 2 49 ± 2

PSV - - 48 ± 10 51 ± 9

Plow 18 ± 9 45 ± 16 - 9 ± 2#

Phigh - 5 ± 1 8 ± 1# -

Total 110 ± 6 93 ± 25 81 ± 28 113 ± 19

Ppeak, L (cmH2O) M 15.6 ± 3.8 13.7 ± 1.6 13.9 ± 2.9 14.6 ± 3.1

PSV - - 12.1 ± 1.7 13.9 ± 3.2

Plow 11.8 ± 3.8 10.5 ± 2.3 - 10.6 ± 1.5

Phigh - 15.3 ± 1.2 22.1 ± 3.0# -

Total 15.5 ± 3.4 12.3 ± 1.7 13.1 ± 2.1 13.8 ± 3.0

Pmean, L (cmH2O) M 5.9 ± 0.9 6.8 ± 1.4 7.4 ± 1.7 5.4 ± 0.6†

PSV - - 3.1 ± 0.5 3.4 ± 0.5

Plow 2.4 ± 1.3 3.5 ± 2.0 - 1.9 ± 0.6

Phigh - 2.8 ± 0.1 3.1 ± 0.4 -

Total 5.6 ± 1.1 4.9 ± 1.3 6.1 ± 2.6 4.1 ± 0.3†

Ti/Ttot (s) M 0.6 ± 0.1 0.5 ± 0.1�� 0.4 ± 0.1 0.6 ± 0.1#†

PSV - - 0.5 ± 0.1 0.5 ± 0.1

Plow 0.6 ± 0.1 0.6 ± 0.1 - 0.6 ± 0.1

Phigh - 0.6 ± 0.1 0.6 ± 0.1 -

Total 0.6 ± 0.1 0.5 ± 0.1 0.4 ± 0.1 0.6 ± 0.1†

PTPmin (cmH2O�sec/min) M 53 + 37 44 ± 20 42 ± 15 27 ± 16

PSV - - 46 ± 16 35 ± 8

Plow 19 ± 19 43 ± 22 - 10 ± 2#

Phigh - 2 ± 1 9 ± 4# -

Total 67 ± 30 62 ± 26 50 ± 18 26 ± 18#†

(Continued)
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TNF-α, VCAM-1, amphiregulin, and decorin gene expressions were higher in BIVENT-50

+ PSV50% than BIVENT-50+PSV0%. On the other hand, BIVENT-50+PSV100% showed

reduced TNF-α, CC-16, and VCAM-1 gene expression compared to BIVENT-50+PSV50%

Table 1. (Continued)

Parameter Cycle BIVENT-100 + PSV0% BIVENT-50

BIVENT-50+PSV0% BIVENT- 50+PSV50% BIVENT-50+PSV100%

ΔPes (cmH2O) M 1.7 ± 1.4 1.4 ± 1.1 1.3 ± 1.2 1.7 ± 1.4

PSV - - 3.3 ± 1.0 0.8 ± 0.5†

Plow 4.2 ± 2.9 3.7 ± 1.5 - 3.8 ± 1.5

Phigh - 4.4 ± 0.3 7.3 ± 3.6 -

Total 2.1 ± 1.5 1.9 ± 1.1 2.7 ± 0.9 1.2 ± 0.6†

Values are given as mean ± standard deviation (SD) of 8 animals in each group. Comparisons between BIVENT-100+PSV0% and BIVENT-50+PSV0% groups were done

using Student t-test (p<0.05).

��vs. BIVENT-100+PSV0%. Comparisons among BIVENT-50 groups were done using One-Way ANOVA followed by Holm-Šı́dák post hoc test (p<0.05)

# vs BIVENT-50 + PSV0%

† vs BIVENT-50+PSV50%.

BIVENT: Biphasic positive airway pressure at different rates of time-cycled controlled breaths: 100 and 50 breaths/min; PSV0%:no pressure support ventilation; PSV50%:

Pressure support ventilation 50% Phigh; PSV100%: Pressure support ventilation 100% Phigh; M = mixed, assisted breaths; Phigh = spontaneous breaths at high continuous

positive airway pressure; Plow: Spontaneous breaths at low continuous positive airway pressure; PSV: Pressure support ventilation; Total: Mean data for mixed, PSV,

Plow, and Phigh; VT: Tidal volume; CV of VT: Coefficient of variation of tidal volume; RR: Respiratory rate; Ppeak, L: Transpulmonary peak pressure; Pmean, L:

Transpulmonary mean pressure; Ti/Ttot: Inspiratory time divided by total respiratory cycle time; PTPmin: Pressure–time product per minute; ΔPes: Esophageal pressure

swing.

https://doi.org/10.1371/journal.pone.0256021.t001

Fig 3. Representative photomicrographs of lung parenchyma stained with hematoxylin–eosin. NV (nonventilated), BIVENT-100+PSV0% and BIVENT-50+PSV0%:

The frequency of control breaths is 100 and 50 breaths/min, respectively. BIVENT-50+PSV50%: PSV set to half the value of Phigh (PSV50%). BIVENT-50+PSV100%: PSV

equal to the value at Phigh (PSV100%). Note the preserved microscopic architecture of the lung parenchyma in BIVENT-50+PSV50% animals. AD: Alveolar duct.

Asterisk: Interstitial edema. Arrows: Areas of alveolar collapse. Scale bar = 50 μm.

https://doi.org/10.1371/journal.pone.0256021.g003
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(Fig 5). The BIVENT-50+PSV100% group exhibited higher amphiregulin expression than

BIVENT-50+PSV0% animals.

BIVENT-50+PSV50% showed more myofibril abnormalities than BIVENT-50+PSV0% and

BIVENT-50+PSV100% (Fig 6, Table 4). The mitochondrial injury score was higher in

BIVENT-50+PSV50% than BIVENT-50+PSV0% and BIVENT-50+PSV100%. MURF-1 gene

expression was higher in BIVENT-50+PSV50% than in BIVENT-50+PSV0% and BIVENT-50+-

PSV100% (Fig 7). No significant changes were observed in MAFbx expression among BIVENT-

50 groups (Fig 7).

Table 2. Diffuse alveolar damage score.

Features of diffuse alveolar damage score NV BIVENT-100+PSV0% BIVENT-50

BIVENT-50+PSV0% BIVENT-50+PSV50% BIVENT-50+PSV100%

Overdistension (0–16) 4 (4–6) 4 (2–4) 2.5 (2–4)� 6 (4.5–8.25)# 5 (3.25–7.5)

Interstitial Edema (0–16) 6 (6–8.75) 4 (3–8.25) 4 (3.25–4)� 5 (4–6) 2 (2–4)†

Alveolar Collapse (0–16) 9 (6.5–11.25) 5 (4–6)� 3 (2–4)� �� 6 (4–8.75)# 2 (2–3.5)†

Cumulative DAD score (0–48) 20 (19–22) 12.5 (11–18.5)� 9 (8.25–12)� �� 18 (14.5–21)# 10.5 (7.75–12)†

Cumulative diffuse alveolar damage score (scores arithmetically averaged from two independent investigators) representing injury from variables: Overdistension,

interstitial edema, and alveolar collapse. Values are given as median (interquartile range) of 8 animals in each group. Comparisons among NV, BIVENT-100+PSV0%,

and BIVENT-50+PSV0% groups as well as among BIVENT-50 groups were done by Kruskal-Wallis followed by Dunn’s test. (p<0.05) �vs NV

��vs BIVENT-100+PSV0%

#vs BIVENT-50+PSV0%, †vs BIVENT-50+PSV50%. DAD: Diffuse alveolar damage. NV: Nonventilated. BIVENT: Biphasic positive airway pressure at different rates of

time-cycled controlled breaths (100 and 50 breaths/min); PSV0%: No pressure support ventilation; PSV50%: Pressure support ventilation 50% Phigh; PSV100%: Pressure

support ventilation 100% Phigh; Phigh = spontaneous breaths at high continuous positive airway pressure.

https://doi.org/10.1371/journal.pone.0256021.t002

Fig 4. Photomicrographs of electron microscopy of the lung. The ultrastructure of the alveolar–capillary barrier shows varying degrees of

injury to epithelial/endothelial cells and the basement membrane, as well as collagen fiber deposition in the septal interstitium. NV:

Nonventilated. Note that BIVENT-50+PSV50% induced more epithelial (Ep) and endothelial cell (Ed) apoptosis, irregularity and thickness of

the basement membrane (arrows), and collagen fiber deposition (�) in the alveolar-capillary barrier than BIVENT-50+PSV0%. In contrast,

less epithelial (Ep) and endothelial cell (Ed) apoptosis, greater basement membrane integrity (arrows), and less collagen fiber deposition (�)

can be seen in BIVENT-50+PSV100% compared to BIVENT-50+PSV50%.

https://doi.org/10.1371/journal.pone.0256021.g004

PLOS ONE PSV-induced lung damage during BIVENT in ARDS

PLOS ONE | https://doi.org/10.1371/journal.pone.0256021 August 20, 2021 11 / 20

https://doi.org/10.1371/journal.pone.0256021.t002
https://doi.org/10.1371/journal.pone.0256021.g004
https://doi.org/10.1371/journal.pone.0256021


Discussion

In the rat model of mild ARDS used herein, at a low protective VT (6 mL/kg), we found that

the decrease in the frequency of controlled breaths (BIVENT-100+PSV0% versus BIVENT-50

Table 3. Semiquantitative analysis of lung electron microscopy.

Features of lung electron microscopy NV BIVENT-100+PSV0% BIVENT-50

BIVENT-50+PSV0% BIVENT-50+PSV50% BIVENT-50+PSV100%

Endothelial cell damage 3 (2–3.25) 2.5 (2–3) 2 (1.75–2)� �� 3 (2.75–3.25)# 2.5 (2–3)

Epithelial cell damage 3 (2–3.25) 3.5 (2–4) 2 (1.75–2.25)�� 3.5 (3–4)# 3 (2.75–4)

Basement membrane damage 3 (2–4) 3 (2.75–3.25) 2 (1.75–2.25)�� 3.5 (2.75–4)# 2 (1.75–2.25)†

ECM damage 2.5 (2–3) 3 (2–3) 2 (1–3) 3.5 (3–4)# 2.5 (1.75–3)

Ultrastructure features of electron microscopy of the lung (scores arithmetically averaged from two independent investigators) representing injury from variables:

Endothelial apoptosis, epithelial apoptosis, basement membrane damage and cumulative score. Values are given as median (interquartile range) of 8 animals in each

group. Comparisons among NV, BIVENT-100+PSV0%, and BIVENT-50+PSV0% groups as well as among BIVENT-50 groups were done by Kruskal-Wallis followed by

Dunn’s test. (p<0.05) �vs NV

��vs BIVENT-100+PSV0%.

#vs BIVENT-50+PSV0%

†vs BIVENT-50+PSV50%. ECM: Extracellular matrix. NV: Nonventilated. BIVENT: Biphasic positive airway pressure at different rates of time-cycled controlled breaths

(100 and 50 breaths/min); PSV0%: No pressure support ventilation; PSV50%: Pressure support ventilation 50% Phigh; PSV100%: Pressure support ventilation 100% Phigh;

Phigh = spontaneous breaths at high continuous positive airway pressure.

https://doi.org/10.1371/journal.pone.0256021.t003

Fig 5. Real-time polymerase chain reaction analysis of biological markers for inflammation (tumor necrosis factor [TNF]-α), epithelial cell

damage (club cell secretory protein [CC-16]), endothelial cell damage (vascular cell adhesion molecule [VCAM]-1), alveolar stretch

(amphiregulin), and extracellular matrix damage (decorin). Box plots represent the median and interquartile range of 8 animals. Relative gene

expression was calculated as a ratio of the average gene expression levels compared with the reference gene (36B4) and expressed as fold change

relative to respective NV (nonventilated). Comparisons between BIVENT-100+PSV0% and BIVENT-50+PSV0% groups were done by the Mann–

Whitney U test (p<0.05). For comparisons within BIVENT-50 groups, the Kruskal-Wallis test with Dunn’s post-hoc test was used (p<0.05).

https://doi.org/10.1371/journal.pone.0256021.g005
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+PSV0%) reduced DAD score, amphiregulin expression in lung tissue and MAFbx expression

in diaphragm. In BIVENT-50 groups, the increase in PSV (BIVENT-50+PSV50% versus
BIVENT-50+PSV100%) yielded better lung mechanics and less alveolar collapse, interstitial

edema, cumulative DAD score, basement membrane damage, as well as gene expressions of

TNF-α, CC-16, and VCAM-1 in lung tissue, and MURF-1 expression in diaphragm. Transpul-

monary peak pressure (Ppeak,L) and pressure–time product per minute (PTPmin), both at

Phigh, were associated with lung damage, while increased rate of spontaneous breaths at Plow

was not. In short, total values of PTPmin (inspiratory effort) and Ppeak,L (transpulmonary

pressure) did not contribute towards reduction of VILI; however, partitioning of these param-

eters between spontaneous breaths at Plow and at Phigh is required during BIVENT to optimize

ventilator settings.

We used a model of mild lung injury induced by intratracheal instillation of E. coli lipopoly-

saccharide (E. coli LPS) because it reproduces several characteristics of mild human ARDS

[30]. We observed mean PaO2/FiO2 < 300 mmHg at BASELINE-ZEEP; nevertheless, in small

animals, changes in lung function and histology (alveolar collapse, neutrophil infiltration, and

edema) are more closely related to the degree of lung damage than oxygenation levels are [30].

The model used herein is a two-hit model: endotoxin (first hit) induced alveolar and interstitial

edema, alveolar–capillary barrier changes, and elevated markers of inflammation within the

first hour after tracheal instillation, increasing progressively until the 24-h timepoint, when

Fig 6. Electron microscopy of the diaphragm. Photomicrographs are representative of data obtained from diaphragm sections of eight animals per group.

Myofibril damage with Z-disc edema and mitochondrial injury (Mt) was greater in BIVENT-100+PSV0% compared to BIVENT-50+PSV0%. Diaphragmatic

mitochondrial damage was more intense in BIVENT-50+PSV50% than BIVENT-50+PSV100%. Sarcomere disarrangement (double arrows) and Z-disc

edema were more pronounced during BIVENT-50+PSV50% compared to BIVENT-50+PSV100%. NV: Nonventilated.

https://doi.org/10.1371/journal.pone.0256021.g006

Table 4. Semiquantitative analysis of diaphragm electron microscopy.

Features of diaphragm electron microscopy NV BIVENT-100+PSV0% BIVENT-50

BIVENT-50+PSV0% BIVENT-50+PSV50% BIVENT-50+PSV100%

Myofibril abnormality 2 (1–2) 2.5 (2–3)� 2 (1.25–2)�� 3 (2–3)# 1.5 (1–2)†

Mitochondrial injury 2 (2–2) 2.5 (2–3) 2 (2–2) 3 (3–4)# 2 (1–2)†

Ultrastructure features of electron microscopy of the diaphragm (scores arithmetically averaged from two independent investigators) representing injury from these two

variables: (1) myofibril abnormalities, defined as disruption of myofibril bundles or disorganized myofibrillar pattern with Z-disk edema, and (2) mitochondrial injury

with abnormal swollen mitochondria and abnormal cristae. Values are given as median (interquartile range) of 8 animals in each group. Comparisons among NV,

BIVENT-100+PSV0%, and BIVENT-50+PSV0% groups as well as among BIVENT-50 groups were done by Kruskal-Wallis followed by Dunn’s test. (p<0.05) �vs NV

��vs BIVENT-100+PSV0%.

#vs BIVENT-50+PSV0%

†vs BIVENT-50+PSV50%. NV: Nonventilated. BIVENT: Biphasic positive airway pressure at different rates of time-cycled controlled breaths (100 and 50 breaths/min);

PSV0%: No pressure support ventilation; PSV50%: Pressure support ventilation 50% Phigh; PSV100%: Pressure support ventilation 100% Phigh; Phigh = spontaneous breaths

at high continuous positive airway pressure.

https://doi.org/10.1371/journal.pone.0256021.t004
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mechanical ventilation strategies (second hit) were analyzed [30,31]. After the first hit, both

the lung [32,33] and diaphragm [34] are more prone to injury. BIVENT is characterized by

two levels (Phigh and Plow) of continuous positive airway pressure with unrestricted spontane-

ous breathing [17,18,35]. Additionally, BIVENT can be combined with PSV, as classically

done in previous studies [18,36,37]. Adding PSV is expected to achieve a reduction in work of

breathing [38] and increased alveolar recruitment. By gradually increasing the pressure sup-

port according to Phigh (0, 50%, and 100%) within BIVENT-50 groups, a “U-shaped” response

was observed according to histological and molecular biology parameters: lung and diaphragm

protection was observed in BIVENT-50+PSV0% and BIVENT-50+PSV100% groups, whereas

BIVENT-50+PSV50% impaired both lungs and the diaphragm.

BIVENT at different controlled breaths without PSV (BIVENT-100+PSV0%

vs BIVENT-50+PSV0%)

BIVENT-100+PSV0% was associated with a lower CV of VT than BIVENT-50+PSV0%. This

can be explained by the higher number of mandatory cycles. The CV of VT achieved at

BIVENT-50+PSV0% was 32%, which may reduce lung damage [39,40]. Accordingly, the

increased rate of spontaneous breathing at Plow during BIVENT-50+PSV0% was associated

with reduced cumulative DAD score, mainly due to less alveolar collapse, less damage to epi-

thelial/endothelial cells and basement membrane, and lower amphiregulin gene expression,

which denotes less alveolar stretch [41]. Oxygenation did not differ between groups. This is

consistent with the fact that oxygenation was associated with a balance between alveolar col-

lapse and overdistension. Moreover, during assisted breathing, not only lung morphology but

also regional perfusion distribution may play a relevant role in oxygenation [36].

By reducing the number of controlled cycles from BIVENT-100+PSV0% to BIVENT-50+-

PSV0%, spontaneous breathing cycles may occur, mainly at Plow within a protective VT range.

Both the appropriate degree of variability of respiratory pattern and better maintenance of

respiratory muscle tone may improve recruitment and maintenance of airway patency through

the modulation of different airway pressures and inspiratory times, ultimately maximizing

lung recruitment and stabilization [40,42,43], without causing diaphragm injury. In this line,

we may further infer that the maintenance of respiratory muscle tone during BIVENT-50

Fig 7. Real-time polymerase chain reaction analysis of biological markers for proteolysis [muscle RING finger-1

(MuRF-1) and muscle atrophy F-box (MAFbx/atrogin-1)]. Box plots represent the median and interquartile range of

8 animals. Relative gene expression was calculated as a ratio of the average gene expression levels compared with the

reference gene (36B4) and expressed as fold change relative to respective NV (nonventilated). Comparisons between

BIVENT-100+PSV0% and BIVENT-50+PSV0% groups were done by the Mann–Whitney U test (p<0.05). For

comparisons within BIVENT-50 groups, the Kruskal-Wallis test with Dunn’s post-hoc test was used (p<0.05).

https://doi.org/10.1371/journal.pone.0256021.g007
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+PSV0%, but not in BIVENT-100+PSV0%, may have contributed to low diaphragm score and

decreased expression of proteolysis markers. Accordingly, spontaneous breathing, compared

to controlled mechanical ventilation, did not result in a significant decline in diaphragm pro-

tein synthesis [44], which corroborates our hypothesis.

BIVENT-50 at different PSV (BIVENT-50+PSV0%, BIVENT-50+PSV50%,

and BIVENT-50+PSV100%)

In BIVENT-50+PSV50%, compared to BIVENT-50+PSV0%, VT did not change; however,

Ppeak,L was higher at Phigh, reflecting vigorous efforts, which may have contributed to increase

the level of PTPmin and ΔPes. The PTPmin was calculated as the integral of ΔPes over one min-

ute and may better reflect inspiratory effort than esophageal pressure swing per se. Total respi-

ratory rate did not differ among groups. Total ΔPes (variation of esophageal pressure during

the inspiratory effort) was higher in BIVENT-50+PSV50% compared to BIVENT-50+PSV100%,

mainly due to the increase during PSV (assisted and spontaneous breaths). In BIVENT-50+-

PSV50%, for the same airway pressure set on the ventilator, the higher the ΔPes at Phigh

(7.3 ± 3.6 cmH2O), the higher the Ppeak,L (22.1 ± 3.0 cmH2O). On the other hand, when no

pressure support was given (BIVENT-50+PSV0%), the lower the ΔPes at Phigh (4.4 ± 0.3

cmH2O), the lower the Ppeak,L (15.3 ± 1.2 cmH2O). We hypothesized that the increased

expression of genes implicated in lung inflammation, extracellular matrix damage, and alveo-

lar stretch in BIVENT-50+PSV50% animals may be attributed to increased Ppeak,L and PTPmin

at Phigh. Moreover, since BIVENT-50+PSV50% animals exhibited greater atelectasis and over-

distension, the increase in Ppeak,L might also reflect a reduction in lung compliance. Increased

inspiratory effort may lead an imbalanced diaphragm length-tension relationship [45] and

thus culminate in diaphragmatic injury. In this line, Ppeak,L is an important driver of lung

damage also when PSV (without BIVENT) is gradually reduced [38,46].

On the other hand, during BIVENT-50+PSV0%, animals showed inspiratory effort at spon-

taneous breathing mainly in the Plow phase, which may protect the lungs against overdisten-

sion and triggering of biological markers. We may infer that the presence of spontaneous

breathing activity at Plow may mitigate VILI.

Animals tended to breathe spontaneously more at Plow than at Phigh when the level of pres-

sure support increased from 50 to 100%. In this line, the SERVO-i ventilator allows PSV

breaths only at Plow and not at Phigh. Therefore, in BIVENT-50+PSV50%, 8 ± 1 (mean ± SD)

spontaneous breaths occurred at Phigh, whereas in BIVENT-50+PSV100%, 9 ± 2 spontaneous

breaths occurred at Plow. In this context, if the level of pressure support is low, spontaneous

breaths (assisted or not) are favored at higher lung volumes. On the other hand, if the level of

pressure support is high (BIVENT-50+PSV100%), spontaneous breaths tend to be favored at

lower lung volumes, resulting in less lung stretch and diaphragm injury, which is consistent

with the literature [18,38]. BIVENT-50+PSV100% seems to be the most promising ventilation

mode.

Possible clinical implications of study findings

The findings of the present study expand the knowledge based on assisted mechanical ventila-

tion strategies by showing that, during BIVENT, both the frequency of controlled breaths and

the levels of pressure support (0%, 50% and 100%) affect lung and diaphragm damage differ-

ently. In addition, lung injury was worse if the ventilator was set to promote spontaneous

efforts at Phigh level, such as observed at BIVENT-50+PSV50%. When BIVENT is set with dif-

ferent mandatory (controlled) and spontaneous breaths (PSV-assisted or not), PTPmin (as a

surrogate of inspiratory effort) and Ppeak,L need to be measured during spontaneous breaths
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at Phigh and Plow. In this line, animals ventilated at BIVENT-50+PSV0% and BIVENT-50+-

PSV100% tended to breathe at lower pressures (Plow), whereas during BIVENT-50+PSV50%,

they adapted at higher pressures (Phigh), resulting in VILI and diaphragmatic damage. This

reinforces the concept of the utility of esophageal pressure measurement at the bedside to opti-

mize assisted breathing when targeted to minimize lung and diaphragm injury.

Limitations

Some limitations of this study must be noted. First, an experimental model of mild pulmonary

ARDS induced by intratracheal E. coli LPS instillation was used, which does not reproduce all

features of human ARDS, does not apply to other degrees of ARDS severity, and is not repre-

sentative of extrapulmonary ARDS. Second, the extent of alveolar permeability (measured by

the protein content in bronchoalveolar lavage fluid) was not evaluated. Third, we chose not to

ventilate healthy animals in order to avoid an overly large number of groups, and then

increased the number of animals per group to maintain the power of the study. Finally, the

ventilation period was limited to 1 hour, since longer periods of ventilation would have

required infusion of additional fluids or even vasopressors to maintain MAP, which might

have confounded the readouts. Therefore, we cannot guarantee that similar alterations would

be maintained for longer periods. Nevertheless, 1 hour of mechanical ventilation was enough

to observe molecular changes in key biological markers related to VILI and diaphragmatic

proteolysis.

Conclusions

In the ARDS model used herein, during BIVENT, the level of PSV and the phase of the respira-

tory cycle in which the inspiratory effort occurs affected lung and diaphragm damage. Lung

injury was not influenced by the total values of inspiratory effort or transpulmonary pressure.

Partitioning of these parameters in spontaneous breaths at Plow and Phigh is required to mini-

mize VILI.
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