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Abstract

Gene expression profiling has been used to characterize prognosis in various cancers. Earlier studies had shown that side
population cells isolated from Non-Small Cell Lung Cancer (NSCLC) cell lines exhibit cancer stem cell properties. In this study
we apply a systems biology approach to gene expression profiling data from cancer stem like cells isolated from lung cancer
cell lines to identify novel gene signatures that could predict prognosis. Microarray data from side population (SP) and main
population (MP) cells isolated from 4 NSCLC lines (A549, H1650, H460, H1975) were used to examine gene expression
profiles associated with stem like properties. Differentially expressed genes that were over or under-expressed at least two
fold commonly in all 4 cell lines were identified. We found 354 were upregulated and 126 were downregulated in SP cells
compared to MP cells; of these, 89 up and 62 downregulated genes (average 2 fold changes) were used for Principle
Component Analysis (PCA) and MetaCoreTM pathway analysis. The pathway analysis demonstrated representation of 4 up
regulated genes (TOP2A, AURKB, BRRN1, CDK1) in chromosome condensation pathway and 1 down regulated gene FUS in
chromosomal translocation. Microarray data was validated using qRT-PCR on the 5 selected genes and all showed robust
correlation between microarray and qRT-PCR. Further, we analyzed two independent gene expression datasets that
included 360 lung adenocarcinoma patients from NCI Director’s Challenge Set for overall survival and 63 samples from
Sungkyunkwan University (SKKU) for recurrence free survival. Kaplan-Meier and log-rank test analysis predicted poor survival
of patients in both data sets. Our results suggest that genes involved in chromosome condensation are likely related with
stem-like properties and might predict survival in lung adenocarcinoma. Our findings highlight a gene signature for
effective identification of lung adenocarcinoma patients with poor prognosis and designing more aggressive therapies for
such patients.
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Introduction

Lung cancer remains the leading cause of cancer-related deaths

worldwide [1]. Non-small cell lung cancer (NSCLC) accounts for

85% of all lung cancers and the average 5 year relative survival

rate among NSCLC patients is only 15% [2]. The recurrence rate

ranges from 35–50% among early stage non-small cell lung cancer

patients. To date, there is no fully-validated and clinically applied

prognostic gene signature for personalized treatment [3]. It

remains a critical challenge to determine the risk for recurrence

in early-stage cancer patients. Most important challenge in lung

cancer studies is identifying patients at high risk for recurrence

after surgical resection, as well as patients who would benefit from

adjuvant treatment [4].

The emerging use of biomarkers enables to make treatment

decisions based on the specific characteristics of individual patients

and their tumor, instead merely on population statistics [5]. The

prevalence of lung cancer as the primary cause of cancer death in

the United States has led to renewed efforts to obtain biomarker

signatures that provide either prognostic or predictive information

to guide therapy for individual patients (i.e., ‘‘personalized

medicine’’) [6]. Multiple genome-wide expression studies have

demonstrated the usefulness of this approach for lung cancer

prognosis [7].

Gene-expression profiling by means of microarrays and reverse-

transcriptase polymerase chain reaction (RT-PCR) is useful for

classifying tumors and predicting prognosis for patients with

various types of cancer, including lung cancer [8,9,10]. However

the use of microarrays in clinical practice is limited by the large

number of genes used in gene profiling and lack of both

reproducibility and independent validation [11,12,13]. Although

microarray has been successfully used to predict clinical outcomes

and survival, gene-expression profiles can vary according to the

microarray platform and the analytic strategy used [14,15].
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Cancer cells with stem cell like properties in particular have

been proposed to play a critical role in metastatic progression and

resistance to commonly used chemotherapeutic agents [16]. These

cells can be identified by various functional assays and using

specific cell-surface markers. While cell surface markers have been

used to identify stem like cells in various cancers, such markers

have been difficult to identify in non-small cell lung cancers. In

addition to cell surface markers, stem like cells have been isolated

by their ability to efflux Hoechst 33342 dye and are referred to as

the ‘‘side population’’ (SP) cells [17]. Side population cells have

been shown to be enriched for tumor-initiating [17] and

chemotherapy-resistant cells [18]. Flow cytometric analysis can

be used to isolate SP or non-SP cells (Main population cells MP),

which are more differentiated and has low tumor initiating

properties.- Recent studies indicate that SP is an enriched source

of lung tumor–initiating cells with stem cell like properties and

may be an important target for effective lung cancer therapy [19].

In this study, we performed a gene expression analysis to assess

whether gene expression profiles of side population and main

population cells might have clinical relevance in predicting

prognosis. Identification of gene signatures for outcomes can be

expected to improve the clinical management of non-small cell

lung cancer, since patients predicted to have poor prognosis can be

subjected to more aggressive therapeutic strategies or closer

surveillance. To achieve this, a list of genes whose expression was

statistically different in SP and MP cells was generated and their

clinical relevance tested on publicly available lung adenocarcino-

ma microarray data from the s NCI Director’s Challenge set [20]

and Sungkyunkwan University (SKKU) dataset [21]. A functional

pathway analysis then revealed that the signature genes had

interactions with well-established chromosome condensation

pathways, indicating potential roles of the signature genes

incancer. Studies have shown that multiple biochemical steps in

chromosome condensation pathways are altered in cancer. These

include modifications of histones and aberrations in Holliday

junctions [22,23]. Mitotic cell death can also occur as a result of

premature chromosome condensation [24,25]. Hence we hypoth-

esize that since defects in chromosome condensation are correlated

with cancers, it is probable that our signature genes might be

contributing to oncogenesis. Quantitative RT-PCR analyses on

the isolated SP and MP cells confirmed the gene expression

patterns observed in the microarray data. In this study we show a

five-gene signature that is closely associated with survival of

patients with NSCLC. Further, the five-gene signature is an

independent predictor of relapse-free and overall survival.

Results

Microarray analysis
A flowchart showing the different steps followed in finding the

gene signature is shown in Figure 1. Four lung cancer cell lines

A549, H1650, H460 and H1975 were subjected to FACS

(Fluorescence activated cell sorting) analysis for sorting SP and

MP cells. A representative sorting for A549 cells is shown in

Figure 2A; inclusion of fumitremorgin C abolishes the SP

(Figure 2B); this allowed setting the gate for sorting only SP cells

accurately. Figures 2C and 2D show the sorted SP and MP cells

respectively. The mRNA expression profiles were measured using

Affymetrix Expression ConsoleTM software and the data were

analyzed. We found 354 up and 126 down-regulated genes

common in all 4 cells lines (summarized in Table 1). Further we

selected 89 upregulated (average 2 fold changes) and 62

downregulated (average 2 fold changes) genes out of which only

64 genes (58 upregulated and 6 downregulated) matched with the

NCI Directors challenge set Affymetrix platform 133A. The heat

map shows the expression levels of these genes in MP and SP for

the 4 cell lines. The heat map represents two distinct clusters,

cluster I representing the 6 downregulated genes and cluster II

representing 58 upregulated genes (Figure 3). Further, the data

Figure 1. Flow chart showing the methodology followed for identifying gene signatures. Microarray was performed on 4 lung cancer cell
lines A549, H1650, H460 and H1975. Total RNA extracted from SP and MP samples were used to generate cRNA targets, which were subsequently
hybridized to Human Genome U133A plus 2.0 oligonucleotide arrays. Raw data was processed by log2 transformation of the expression values, and
the mean center expression level for each gene was determined. Further obtained genes that were over or under-expressed in all 4 cell lines, whose
expression was at altered least two fold. Further pathway analysis was carried out using MetaCoreTM pathway database.
doi:10.1371/journal.pone.0043589.g001
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Figure 2. Sorting of SP and MP cells in A549 cells by FACS analysis. Appearance of SP cells as a tail emerging from main population is shown
in (A). Inhibition of ABCG2 activity by Fumitremorgin C displayed complete loss of SP phenotype and confirmed the SP identity as well as gating
strategy (B). Panel (C) shows sorted SP cells and panel (D) shows MP cells.
doi:10.1371/journal.pone.0043589.g002

Table 1. Microarray analysis data from 4 cell lines (A549, H1650, H460 and H1975).

MICROARRAY DATA SET UP REGULATED DOWN REGULATED

MUTANT EGFR CELL LINES H1650, H1975 1083 673

MUTANT K-RAS CELL LINES A549, H460 1128 314

ALL 4 CELL LINES 354 126

AVERAGE 2 FOLD CHANGE 89 62

The data analyzed resulted in 354 up-regulated and 126 down-regulated genes in (SP) common in all 4 cells lines. An average fold change of 2 was used for Principle
Component analysis (PCA) and for identifying gene signatures.
doi:10.1371/journal.pone.0043589.t001
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from the microarray experiment was also used to assess if there

were any significant pathways associated with those genes. For this

analysis, the 89 upregulated (average 2 fold changes) and 62

downregulated (average 2 fold changes) were used for MetacoreTM

pathway analysis and this resulted in top 10 pathways with

significant p values (Table 2). Results from the analysis showed that

the signature genes interact with major pathways. The top

pathway represented by chromosome condensation pathway

showed 4 upregulated genes in (Table 3, Figure 4) and 1 down

regulated gene FUS represented in chromosomal translocation

pathway. The 5 significant genes obtained from pathway analysis

were TOP2A, AURKB, BRRN1, CDK1 and FUS.

Real Time PCR validation
PCR primers were designed for the selected 5 genes and

validated by Real Time PCR. Two internal controls 18S

(Figure 5A–D) as well as GAPDH (Figure 5E–H) were used along

with ABCG2, which acted as a control for SP phenotype. All 4 cell

lines (A549, H1650, H460 and H1975) showed significant

correlation with that of the microarray data for the 5 genes.

PCA analysis
The 89 upregulated and 62 down regulated genes were used for

Principle Component Analysis (PCA). The NCI Director’s

Challenge Set was derived using the Affymetrix Human Array

133A whereas our microarray was performed on Affymetrix

Human Array Plus2.0 and hence we were able to match only 64

genes across the platform;these 64 genes were subjected to PCA.

The PCA was performed to find the first principle component

along which the samples show the largest variation. Using the

Evince 2.5.5 software PCA was computed for the 64 genes and the

risk scores for validation were tabulated for all the 64 genes.

Figure 3. Heat map showing the expression pattern of 64
genes in lung adenocarcinoma. Differentially expressed genes in SP
vs. MP cells in 4 NSCLC cell lines. A total of 64 genes (58 upregulated
and 6 downregulated) with expression levels that showed at least two
fold difference across 4 cell lines were selected for hierarchical
clustering analysis. Two clusters shown here represent downregulated
(I) and upregulated genes (II). The 5 genes that predicted significant
prognosis are marked in the map by numbers. The color in red or green
reflects relative high or low expression levels, respectively as indicated
in the scale bar (log2 transformed scale).
doi:10.1371/journal.pone.0043589.g003

Table 2. Top 10 significant pathways for the differentially
regulated genes.

Pathway Maps pValue Ratio

1 Cell cycle: Chromosome condensation in
prometaphase

1.2E-09 5 21

2 Cell cycle: Transition and termination of DNA
replication

5.841E-07 4 28

3 Cell cycle: Role of APC in cell cycle regulation 0.000001 4 32

4 Cell cycle: Role of SCF complex in cell cycle regulation 0.002 2 29

5 Cytoskeleton remodeling: Reverse signaling by
ephrin B

0.002 2 31

6 Cell cycle: Spindle assembly and chromosome
separation

0.003 2 33

7 Cell cycle: The metaphase checkpoint 0.003 2 36

8 Apoptosis and survival: BAD phosphorylation 0.004 2 42

9 Development: WNT signaling pathway 0.007 2 53

10 Cell adhesion: Role of CDK5 in cell adhesion 0.022 1 9

For this analysis, the 89 up regulated (average 2 fold changes) and 62 down
regulated genes (average 2 fold changes) were used for MetacoreTM pathway
analysis and this resulted in top 10 pathways with significant p values.
doi:10.1371/journal.pone.0043589.t002

Table 3. List of five gene signatures from the microarray data.

Gene Symbol Gene Description

1 TOP2A DNA topoisomerase II, alpha

2 AURKB Aurora Kinase B

3 CDK1 Cyclin-Dependent Kinase 1

4 BRRN1 Non-SMC condensin I complex, subunit H

5 FUS Fused in Sarcoma

The microarray data was examined to assess whether there are any significant
pathways associated with those genes. Results from the analysis showed that
the signature genes interact with major pathways. The top pathway
represented by chromosome condensation pathway showed 4 up regulated
genes in chromosome condensation pathway and 1 down regulated gene FUS
represented in chromosomal translocation pathway.
doi:10.1371/journal.pone.0043589.t003
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Through this PCA analysis we first established a 64 gene signature

for the 4 NSCLC cell lines.

Prognosis prediction
A subset (n = 360) of the larger lung adenocarcinoma dataset

was used for the study. The probe set IDs of the 89 up and 62

down regulated genes obtained using Human Genome U133A

Plus 2.0 platform was compared with the probe set IDs of the

NCI’s dataset (used Human Genome U133A platform). This

resulted in a total of 64 genes that matched with the other

platform. Through the PCA analysis the risk score was dichoto-

mized at the optimal cutoff and the 64 gene signature classified

into low and high risk groups, respectively with significant

difference in overall survival (p = 0.0002, Figure 6).

The 5 genes from the most significant pathways were then used

for independent survival prediction. Median expression values

were used to dichotomize into low and high expression levels for 5

genes. Kaplan-Meier analysis of overall survival showed a

significant trend for 5 genes namely AURKB, TOP2A, CDK1,

BRRN1 and FUS in 360 NCI Director’s challenge set (Figure 7).

The survival prediction that includes only stage I and II patients

distinguished AURKB, TOP2A, CDK1, BRRN1 and FUS at

significance p values of 0.09, 0.004, 0.002,0.06 and 0.02 by log-

rank test. Patients with lower expression levels of AURKB, TOP2A,

CDK1 and BRRN1 had a significantly better prognosis than those

patients with higher expression levels of these genes. The other

gene, FUS, which is under expressed in SP cells (over expressed in

MP cells) shows better survival of patients with high expression

levels. The overall survival curve for these 5 genes that includes all

stages also showed significant prognosis (Figure S1).

Kaplan-Meier analysis was also carried out for 63 adenocarci-

noma samples from SKKU (Figure 8) to estimate the survival

probability following surgery. Results show lower expression levels

of AURKB, TOP2A, CDK, BRRN1 and higher expression levels of

FUS are strongly associated with the 5-year survival probabilities.

The high and low expression levels of AURKB, TOP2A, CDK1,

BRRN1 and FUS differ significantly indicated by their p values of

0.001, 2E-04, 4E-04, 0.001 and 0.09. This prognosis indicator

shows patients with a high probability of tumor recurrence tend to

be more likely to have treatment failure after surgery. This

indicates that the high-risk probability shown by the survival

curves is a good prognostic factor for lung cancer survival. These

results suggest that a 5 gene signature from SP and MP cells can be

used to predict prognosis of NSCLC patients.

Discussion

Identifying gene expression signatures that capture altered key

pathways in carcinogenesis may lead to the discovery of molecular

subclasses and predict patient outcomes [26,27]. Gene signatures

provide a glimpse into critical molecular pathways, as they

essentially serve as a bridge between clinical phenotypes and

genomics. Indeed, the vast majority of biomarkers are functionally

and biologically understood, in stark contrast with gene signatures.

Moreover, biomarkers tend to be single-pathway-specific, whereas

gene signatures may span multiple mechanisms [28].

Figure 4. Chromosome Condensation Pathway. The pathway shows the role of 4 genes AURKB, TOP2A, CDK1, BRRN1 (also known as NCAPH) in
chromosome condensation a ubiquitous process in most eukaryotic cells.
doi:10.1371/journal.pone.0043589.g004
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The cancer stem cell hypothesis has gained significant traction

over the past several years. An important criteria is that tumors

with high percentages of cancer stem cells will be more aggressive,

presumably because cancer stem cells are resistant to therapy [29].

Gene-expression profiling using microarrays or qRT-PCR has

been shown to estimate the prognosis for patients with lung cancer

[30]. Our selection of genes in the microarray dataset was

validated in RT-PCR, and the patterns of gene expression found

on microarray analysis correlated with that of RT-PCR. The

results of RT-PCR performed on the 5 selected genes have been

shown to correlate with the outcomes of lung adenocarcinoma.

We also tried to assess if any of the genes from the pathway

analysis had Epithelial to Mesenchymal Transition (EMT)

properties so that they can be considered as EMT signatures.

Figure 5. Validation of the microarray data by Quantitative Real Time PCR for the 5 genes in 4 NSCLC cell lines. RNA was extracted
from MP and SP cells for A549 (A), H1650 (B), H460(C) and H1975 (D) cell lines. qRT-PCR was performed with the cDNA of the 4 cell lines with 18S as
internal control and the up regulation of the 4 genes TOP2A, AURKB, BRRN1 and CDK1 in SP and down regulation of FUS in the side-population of all
the cell lines was observed. ABCG2 was used as a positive control for a gene overexpressed in SP cells. Similar experiments were conducted, using
GAPDH as an internal control on A549 (E), H1650 (F), H460 (G) and H1975 (H) cells.
doi:10.1371/journal.pone.0043589.g005
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Epithelial to mesenchymal transition (EMT) is a vital process for

morphogenesis during embryonic development, but more recently

it has also been implicated in the conversion of early stage tumors

into invasive malignancies [31]. Progression of most carcinomas

toward malignancy is associated with the loss of epithelial

differentiation and by switching toward a mesenchymal pheno-

type, which is accompanied by increased cell motility and

invasion. Recent studies have demonstrated that EMT plays a

critical role not only in tumor metastasis but also in tumor

recurrence that is believed to be tightly linked with the biology of

cancer stem-like cells or cancer-initiating cells [32]. Evidence

suggests that the acquisition of EMT is strongly associated with

cancer cell invasion and tumor metastasis. Also studies have shown

that cells with EMT phenotype share characteristics that are

consistent with the signatures of cancer stem-like cells, which are

associated with tumor recurrence and drug resistant phenotype

and contribute to the demise of patients diagnosed with cancers

[33]. For this analysis, we selected the top 10 significant pathways

from the analysis and looked for genes that had cell adhesion

properties. Only two EMT related genes CD44 and b-catenin were

involved in the pathways and these were used for survival

prediction in the NCI director’s challenge set (Figure S2). Both the

genes showed no significance in the survival curve thus differen-

tiating this 5 gene signature from the EMT property.

Recent studies have reported that the genes identified here are

differentially expressed across multiple cancer types [34]. Differ-

entially expressed genes with at least 2-fold changes between

cancer and corresponding control tissues across seven cancer types

were examined to find those genes common to multiple cancer

types. This study showed a total of five genes amoung which two

genes CDK1 and TOP2A differentially expressed across five cancer

types. The differences in the gene expression across different

cancer types may indicate either a general or specific relevance of

the gene to the corresponding cancers, which has been partially

confirmed by the functional analysis. CDK1, up-regulated in five of

the seven cancers studied, has been reported to be related to colon,

prostate and stomach cancer, in view of its role in regulating the

cell cycle, e.g. entry from G1 to S. TOP2A, again up-regulated in

five of the seven cancers, has been reported to be associated with

gastric [35], breast [36] and ovarian cancer [37], consistent with

its function in DNA strand regulation. Both CDK1 and TOP2A

genes have been considered as multi-type cancer markers by a

previous meta-analysis of cancer microarray data [38]. TOP2A

encodes a DNA topoisomerase II, an enzyme that controls the

topologic state of DNA during transcription. TOP2A is localized to

the centromeric heterochromatin throughout most of meiotic

prophase and suggests a meiotic function for TOP2A in addition to

its role in chromatin condensation. This gene is currently the

target of several anticancer agents, and a variety of its mutations

have been associated with the development of drug resistance

[39,40].

Another study has shown gene expression profiles strongly

differentiated smokers from non-smokers in lung tumors and early

stage tumor tissue from non-tumor tissue consistent with an

important role in lung carcinogenesis induced by smoking [41].

This helped to explore the impact of the smoking signature on

survival from lung cancer in smokers. Results show cell cycle genes

differentiating current from never smokers in the early stage tumor

Figure 6. Principle Component Analysis (PCA) for 64 genes signature. The 89 up and 62 down regulated genes were used for PCA analysis.
PCA was computed for the 64 genes and the risk scores for validation were tabulated for all the 64 genes. Through this PCA analysis we first
established a 64 gene signature for the 4 NSCLC cell lines. The Kaplan-Meier analysis for the 64 genes signatures shows significantly poor prognosis
for the differentially regulated genes.
doi:10.1371/journal.pone.0043589.g006
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tissue samples one of them being CDK1 gene. Mortality risk in

smokers for gene expression differentiates current from never

smokers in lung tumor and non-tumor tissue samples with TOP2A

gene being one of them. In addition a member of the Aurora

kinase family AURKA (closely associated with AURKB) involved in

tumor progression has been found to be over expressed in

smoking-related tumors [42]. The Aurora kinases are a conserved

family of serine/threonine kinases that function in mitosis and

meiosis. In human cell lines, AURKB functions in chromosome

condensation, alignment, and segregation, as well as cytokinesis. In

somatic cells, AURKB has been found at the midbody of anaphase

cells and at the post-mitotic bridge of telophase cells, participating

in chromatin modification, microtubule- kinetochore attachment,

spindle checkpoint and cytokinesis [43]. Aurora kinases are over-

expressed in a variety of tumor cell lines, suggesting that these

kinases might play a role in tumorigenesis, and have already

become potential targets for cancer diagnosis and therapy [44].

NK2-related homeobox transcription factor Nkx2-1 (also called

Ttf-1 or Titf1) has been identified as a candidate suppressor of

malignant progression in lung adenocarcinoma [45]. Data

specifically link Nkx2-1 downregulation to loss of differentiation,

enhanced tumor seeding ability and increased metastatic procliv-

ity. Significant gene expression alterations distinguished TnonMet

(tumor non metastatic) from TMet (tumor metastatic). A gene

expression signature generated by comparing TnonMet to TMet/Met

samples predicted patient outcome in human lung adenocarcino-

ma gene expression data sets [20,46]. Our 5 gene signature

consisting of TOP2A, AURKB, BRRN1, CDK1 and FUS were all

found in the Nkx2-1 corresponding gene signature. This shows an

important significance since in human lung adenocarcinoma the

expression of Nkx2-1 correlated with a mouse TnonMet gene

expression signature. The TnonMet signature anti-correlated with

an embryonic stem cell signature explaining that TMet/Met cells

have transitioned to a less differentiated and more stem-like state.

The 5 gene signature shown here is specific for lung

adenocarcinoma. To strengthen this point we chose 75 squamous

cell carcinoma data from the SKKU dataset and used for survival

prediction. The analysis showed no significance for the squamous

cell carcinoma data (Figure S3) thus highlighting our gene

signature specific for lung adenocarcinoma. Our study supports

the contention that it is feasible to construct a gene signature from

significant pathways to predict clinical outcomes. The identifica-

tion of five genes that are closely associated with the outcomes in

patients with NSCLC could have clinical implications since this 5

gene signature could be useful in stratifying patients according to

risk in treatment of the disease.

Methods

Side Population analysis
Four adenocarcinoma cell lines A549, H1650, H460 and

H1975 were subjected to FACS (Fluorescence activated cell

sorting) analysis for sorting SP and MP cells. The cell suspensions

were labeled with Hoechst 33342 dye (Invitrogen) using the

methods described by Goodell et al. [47] with modifications.

Briefly, cells were resuspended at 16106/mL in prewarmed

DMEM (Invitrogen-Life Technologies) with 2% FBS (Invitrogen-

Life Technologies) and 10 mmol/L HEPES buffer (Invitrogen-

Life Technologies). Hoechst 33342 dye was added at a final

concentration of 5 mg/mL and the cells were incubated at 37uC
for 90 min with intermittent shaking. At the end of the incubation,

the cells were washed with ice-cold HBSS (Invitrogen-Life

Technologies) with 2% FBS and 10 mmol/L HEPES, centrifuged

down at 4uC, and resuspended in ice-cold HBSS containing 2%

FBS and 10 mmol/L HEPES. Propidium iodide (Molecular

Probes- Invitrogen) at a final concentration of 2 mg/mL was

added to the cells to gate viable cells. Analyses and sorting were

done on a FACSVantage SE (Becton Dickinson). The Hoechst

33342 dye was excited at 357 nm and its fluorescence was dual-

wavelength analyzed (blue, 402–446 nm; red, 650–670 nm).

Microarray and functional pathway analyses
Our present study focuses on lung adenocarcinoma and hence

we chose 4 cell lines A549, H1650, H460 and H1975 that

represented them. We used two cell lines that harbored mutations

in K-Ras and two that had mutated EGFR. Since these are the

most widely mutated genes in NSCLC, we wanted to focus on

genes that were altered across the spectrum, irrespective of the

upstream mutation. Two samples (SP, MP) each for 4 cell lines, so

a total of 8 samples were used for microarray analysis. Total RNA

extracted from SP (side population) and MP (main population)

samples were used to generate cRNA targets, which were

subsequently hybridized to Human Genome U133A plus 2.0

oligonucleotide probe arrays (Affymetrix, Santa Clara, CA)

according to standard protocols. Raw data was processed by

log2 transformation of the expression values, and the mean center

expression level for each gene was determined. The data discussed

in this publication have been deposited in NCBI’s Gene

Expression Omnibus through GEO Series accession number

GSE36821. In brief, we identified genes that were over- or under-

expressed in SP and MP from all 4 cell lines, whose expression was

altered at least two fold. Further pathway analysis was carried out

using MetaCoreTM of GeneGo, Inc. MetaCore analyzes experi-

mental high-throughput data in the context of pathways and

networks that are ideal for data mining. It is a database of known

molecular interactions, pathways and processes manually curated

from published data and allow the user to visualize known

biological systems within their data [48,49,50]. It also includes

human protein–protein interactions, signal transduction, and

metabolic pathways, and a variety of cellular functions and

processes for signaling pathway analysis. This pathway analysis

tool was used to obtain curated molecular interactions related to

the differentially regulated genes.

Real-time PCR validation
Real-time RT-PCR on SP and MP from the 4 NSCLC cell lines

was used to confirm the expression levels of the identified signature

genes in microarray platform. The number of cycles required to

reach threshold fluorescence (Ct) and DCT for each sample

relative to the control gene defines the expression pattern for a

gene. The gene expression data were further analyzed using the

2DDCT method [51].

Analysis of publicly available Microarray datasets
Gene expressions profiles analyzed in this study include 22,283

probes quantified with Affymetrix HG-U133A on 360 lung

adenocarcinoma samples from Shedden et al., [20] and 63

Figure 7. Kaplan-Meier Survival Curves for stage I, II patients from the NCI’s Directors Challenge Set. Kaplan-Meier analysis showed a
significant trend for 5 genes AURKB, TOP2A, CDK1, BRRN1 and FUS. All these genes show poor survival in stage I, II patients in the NCI Director’s
challenge set.
doi:10.1371/journal.pone.0043589.g007
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Figure 8. Recurrence Free survival curve for SKKU dataset. Kaplan-Meier analysis showed a significant trend for 5 genes AURKB, TOP2A, CDK1,
BRRN1 and FUS. All these genes show poor survival of patients in 63 adenocarcinoma samples from SKKU University.
doi:10.1371/journal.pone.0043589.g008
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adenocarcinoma samples from SKKU dataset [21]. The Harvard

data from the NCI Director’s challenge set was an outlier for our

analysis and hence we removed 82 samples from the total 442

samples. Raw signal intensities for each probe set as they are

contained in the CEL files were analyzed using the software

package Bioconductor [52] (http://bioconductor.org). Expression

values were normalized using MAS5.0 in R. Using mRNA

expression profiles of the identified genes as predictors, a

prognostic model can be constructed to stratify patients into low-

risk and high-risk groups.

PCA based gene signature
Principle component analysis (PCA) is a mathematical algo-

rithm that reduces the dimensionality of the data while retaining

most of the variation in the dataset [53]. By using few components,

each sample can be represented by relatively few numbers instead

of by values for thousands of variables. PCA was used for gene

expression data for dimensionality reduction and removing

possible collinear expression of genes. Risk scores were calculated

for the differentially regulated genes using the Evince 2.5.5 of

UmBio. A patient’s risk score was calculated as the sum of the

levels of expression of each gene, as measured by microarray

analysis, multiplied by the corresponding regression coefficients

[54]. Patients were classified as having a high-risk gene signature

or a low-risk gene signature, with the 50th percentile (median) of

the risk score as the threshold value.

Statistical analysis
Statistical analyses were done using R package [55] (http://

www.r-project.org/). To determine whether the gene signature

correlates with poor prognosis, we performed Kaplan-Meier and

log-rank test (for p value) analysis of overall survival. Overall

survival time was calculated from the date of surgery until death or

the last follow-up contact. Recurrence-free survival time was

defined as the time interval between the date of surgery and the

date of disease recurrence or death from any cause, whichever

came first, or date of last follow-up evaluation. The Kaplan–Meier

method was used to estimate overall survival and relapse-free

survival. Differences in survival between the high-risk group and

the low-risk group were analyzed with the log-rank test. A p value

of less than 0.05 was considered to indicate statistical significance,

and all tests were two-tailed. All the analyses were performed with

packages in R unless otherwise specified.

Conclusion

The development of microarray methods for large-scale analysis

of gene expression makes it possible to search systematically for

gene signatures of cancer classification and outcome prediction in

a variety of tumor types. The 5 gene signature highlights effective

identification of lung adenocarcinoma patients with poor progno-

sis. Cancer biologists and clinical researchers could focus attention

on the relatively small number of genes identified here showing

differential gene expression patterns. Our studies show that gene

expression profile from a tumor initiating side-population cell may

represent both a useful predictor of treatment response and

potentially a target for effective treatment.

Supporting Information

Figure S1 Overall Survival Curves for the NCI’s Direc-
tors Challenge Set. Kaplan-Meier analysis showed a significant

trend for 5 genes AURKB, TOP2A, CDK1, BRRN1 and FUS. All

these genes show poor survival of patients in 360 NCI Director’s

challenge set.

(TIF)

Figure S2 Survival Curves for the EMT related genes in
NCI’s Directors Challenge Set. We selected the top 10

significant pathways from our analysis and assessed for genes that

had cell adhesion properties. Only two EMT related genes CD44

and beta-catenin were involved in the pathways and these were

used for survival prediction in the NCI director’s challenge set.

Both the genes in Kaplan-Meier analysis showed no significance in

the survival thus differentiating our 5 gene signature from the

EMT property.

(TIF)

Figure S3 Recurrence Free survival curve for SKKU
Squamous Cell Carcinoma dataset. Squamous cell carcino-

ma data (n = 75) from the SKKU (Sungkyunkwan University)

dataset was used for survival prediction for the 5 genes. Previously

we used adenocarcinoma data (n = 63, Figure 8) from the same

dataset and predicted prognostic significance. The analysis here

showed no significance for the squamous cell carcinoma data thus

highlighting our gene signature specific for lung adenocarcinoma.

(TIF)
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