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Newborn brain maturity can be assessed by expert analysis of maturity-related patterns recognizable in polysomnograms. Since 36
weeks most of these patterns become recognizable in EEG exclusively, particularly, in EEG recorded via the two central-temporal
channels. The use of such EEG recordings enables experts to minimize the disturbance of sleep, preparation time as well as the
movement artifacts. We assume that the brain maturity of newborns aged 36 weeks and older can be automatically assessed from
the 2-channel sleep EEG as accurately as by expert analysis of the full polysomnographic information. We use Bayesian inference
to test this assumption and assist experts to obtain the full probabilistic information on the EEG assessments. The Bayesian
methodology is feasibly implemented with Monte Carlo integration over areas of high posterior probability density, however
the existing techniques tend to provide biased assessments in the absence of prior information required to explore a model space
in detail within a reasonable time. In this paper we aim to use the posterior information about EEG features to reduce possible bias
in the assessments. The performance of the proposed method is tested on a set of EEG recordings.

1. Introduction

Abnormal newborn brain development is a life-threatening
factor and should be diagnosed as early as possible. Clinical
experts can assess brain maturity by analyzing electroen-
cephalograms (EEGs) recorded from sleeping newborns [1–
3]. The analysis can take hours of expert work to confidently
interpret the EEG. The maturity-related patterns in EEG
widely vary during sleep hours as well as between patients
and thus finding the regular rules for interpretation of these
patterns is a challenging problem [4].

There are developmental neurophysiology evidences that
for healthy newborns the postconceptional age (PCA) nor-
mally matches EEG-estimated ages. In cases when the mis-
match is observed during two and more weeks, then the
newborn’s brain maturity is most likely abnormal [2]. Thus,
the mismatch between PCA and EEG-estimated age alerts
about abnormal brain development.

In one of the first publications on assessment of brain
development [5], the experts have visually analyzed 47
polysomnographic recordings made in 11 PCA groups

between 28 and 40 weeks. The polysomnogram included 8-
channel EEG, electrooculogram, chin myogram, ECG, and
respirogram. In these recordings, the experts have found ten
maturity-related EEG patterns. For each EEG recording, the
PCA has been estimated based on the distribution of these
patterns. The estimates have been found exactly matching
the stated PCA in 27.6% of cases. In 59.5% of cases, the
matches were within±1 week, and 85.1% of cases were found
matching within ±2 weeks.

In the aforementioned research, the full polysomno-
graphic information has been used for assessment of devel-
oping sleep cycles. As it has been described in [4], these
cycles after the 36 weeks are so developed that become
visible in EEG exclusively, and so the polysomnograms can
be supplementary used for confirmation of the sleep cycles.

The use of multichannel EEG allows experts to analyze
the main patterns related to the brain maturity; however
multichannel EEGs recording requires to place multiple
electrodes over the scalp. As consequences of that, the prep-
aration for recording becomes more laborious, and sleep
more disturbed that causes muscle artifacts more frequently.
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In general, the use of a smaller number of channels
enables newborns to sleep more quietly so that the frequency
of the artifacts is reduced. The EEG recorded via the central-
temporal electrodes, such as C3-T3 and C4-T4, are robust
to the muscle artifacts and represent most of the maturity-
related patterns (see, e.g., [3]).

Other authors have attempted to learn brain develop-
ment models from sleep EEG data recorded from newborns
whose maturation was preliminary estimated by experts. In
[6], the regression models have been applied to mapping the
brain maturity into EEG index. In [7, 8], the classification
models have been applied to distinguishing the maturity
levels, at least one normal and other abnormal levels of brain
development. These approaches aimed at learning a single
model providing the maximum likelihood on given EEG
data, and thus cannot ensure the maximum accuracy, when
the likelihood distribution is affected by noise and its shape
is multimodal. Besides, the model selection methodology
cannot provide estimates of a full posterior distribution
which is required for accurate assessment of the uncertainty
in model outcomes.

In contrast, Bayesian classification enables the uncer-
tainty to be accurately estimated via averaging over areas of
high densities of the likelihood (see, e.g., [9–12]). The use of
classification models such as Decision Trees (DTs) enables to
select features which make the most significant contribution
to the classification. Such an ability becomes important
when prior information on EEG feature importance is
absent. Besides, DT models are understandable for experts.
In the case of ensembles, a single DT can be selected for
interpretation as shown in [13].

The results of implementation of Bayesian inference are
critically dependent on the prior information as well as
on the diversity and areas of model averaging. The use of
prior information enables the areas of interest to be specified
while providing the necessary diversity in model parameters.
When averaging is done over areas of interest with maximum
likelihood values, the resultant class posterior distribution is
unbiased, and therefore the classification error is minimal.

Particularly, in many practical cases the prior informa-
tion on feature importance can be absent so that the areas of
interest cannot be explicitly specified and explored in detail
(see, e.g., [14, 15]). In [16], it has been shown that selection
of EEG features can improve the classification.

An another approach has been proposed in [17] to cut
an ensemble of models while keeping its diversity and per-
formance high. The models with high similarity and high
validation errors have been discarded from the ensemble.

In our previous work [18], we attempted to overcome the
aforementioned problem of averaging over areas of interest
and proposed a new strategy for Bayesian averaging over
DT models. In case of trauma survival prediction, we found
that some screening tests make a weak contribution to the
model outcome and then assumed that avoidance of such
tests will not affect the estimates of the full class posterior
distribution. It is important for clinical practice to reduce
the number of screening tests required for making reliable
decisions. In the experiments we found that the proposed

strategy enabled to reduce the number of screening tests,
keeping high performance and reliability of predictions.

In this paper, we aim to further explore the discarding
strategy of Bayesian classification on the problem of EEG
assessment of newborn brain maturity. We assume that the
brain maturity of newborns aged 36 weeks and older can
be automatically assessed from the 2-channel sleep EEG as
accurately as by expert analysis of the full polysomnographic
information as described in [5].

We expect that using DT models within the Bayesian
methodology will enable experts to obtain a set of assessment
rules along with an accurate estimate of the full class pos-
terior distribution required to minimize risks. Additionally,
the EEG expert will obtain the information about feature
importance. We also assumed that the posterior information
on feature importance can be used for discarding weak EEG
features from the classification models, as we described in
[19], and so be used for improving the assessment accuracy.

The rest of the paper is structured as follows. Section 2
states the problem of assessment of newborn EEG maturity.
Section 3 describes the methodology of Bayesian averaging
over DTs. Section 4 describes the EEG data used for the
experiments, and Section 5 presents the experimental results.
Finally Section 6 concludes the paper.

2. Problem Statement

Typically, EEG experts assess the newborn brain maturity
in terms of PCA measured in weeks. The most of experts
agreed that the physical ages of newborns are known in the
range ±2 weeks after conception [1, 2, 4, 5]. These ages are
often counted from questionnaire of the mother. Ultrasound
dating is more reliable than that and normally undertaken
on the first and second triple months. The dates are replaced
by the ultrasound estimates if the difference in the triples
exceeds ±7 days and ±14 days, respectively [20].

The sleep EEGs are typically recorded via the standard
C3-T3 and C4-T4 channels during a few hours. In our case,
the EEG recordings have been made by the polysomnograph
Alice 3 with a sampling rate 100 Hz. The recordings have
been then transformed with the Fast Fourier Transform over
each 10 s epochs into the standard spectral power bands:
Subdelta (0–1.5 Hz), Delta (1.5–3.5 Hz), Theta (3.5–7.5),
Alpha (7.5–13.5), Beta 1 (13.5–19.5 Hz), and Beta 2 (19.5–
25 Hz).

These spectral features were then extended with their
absolute and relative values as well as with their variances
calculated for each electrodes and their sum. Thus each
epoch is represented in a 72-feature space.

Without the information of feature importance, the
Bayesian methodology of model averaging will unlikely
ensure unbiased estimates of class posterior distribution. We
cannot expect that a multidimensional model space will be
explored in detail and the areas of maximum likelihood will
be integrated within a reasonable time.

Obviously, information about feature importance could
reduce a model parameter space which has to be explored.
However in our case, this information is absent and we would
have to make an unrealistic assumption that all the EEG
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features make an equal contribution to the classification. The
use of DT models gives us more realistic information on
feature importance, and thus the Bayesian averaging over
such models will yield the desired information about the
EEG features.

We assume that if a feature is rarely used in the DT
ensemble, then this feature makes a weak contribution and
could be deleted. When there are few such weak features, the
portion of DT models using these features is small, and their
impact on the outcome is expected negligible.

In contrast, when the number of weak features is large,
the DT models using such features can be disproportionally
largely presented in the ensemble. Therefore we could
improve the classification results by reducing these DT mod-
els. In this paper we aim to explore whether discarding the
models using weak EEG features will improve the accuracy
of age classification.

A trivial strategy of using the posterior information for
feature selection within Bayesian methodology is to use this
information to learn a new ensemble from a data set in
which the weak attributes were deleted. This strategy reduces
a model parameter space, and therefore this space can be
explored in more detail. The other strategy that can be
thought of is refining the ensemble by discarding models
which use weak attributes. We expect that such refinement
can improve the classification accuracy.

3. Bayesian Classification

For a DT given with parameters θ, the predictive distribution
is written as an integral over the parameters θ:

p
(
y | x, D

) =
∫

θ
p
(
y | x, θ, D

)
p(θ | D)dθ, (1)

where y is the predicted class (1, . . . ,C), x = (x1, . . . , xm)
is the m-dimensional vector of input, and D are the given
training data.

This integral can be analytically calculated only in simple
cases and, in practice part of the integrand, which is the
posterior density of θ conditioned on the data D, p(θ | D),
cannot usually be evaluated. However, for θ(1), . . . , θ(N) are
the samples drawn from the posterior distribution p(θ | D),
we can write

p
(
y | x, D

) ≈
N∑

i=1

p
(
y | x, θ(i), D

)
p
(
θ(i) | D

)

= 1
N

N∑

i=1

p
(
y | x, θ(i), D

)
.

(2)

The aforementioned integral can be approximated by
using Markov Chain Monte Carlo (MCMC) technique as
described in [9, 11]. To perform such an approximation,
we need to run a Markov Chain until it has converged to
a stationary distribution. Then we can collect N random
samples from the posterior p(θ | D) to calculate the desired
predictive posterior density.

Using DTs for the classification, we need to find the
probability with which an input x is assigned by a terminal

node to the jth class. The DT parameters are defined by
s

pos
i , svar

i , srule
i , i = 1, . . . , k − 1, where s

pos
i , svar

i , and srule
i

define the position, predictor, and rule of each splitting
node, respectively, and k is the number of terminal nodes.
For these parameters the priors can be specified as follows.
First, we can define a maximal number of splitting nodes,
smax = n − 1. Second we draw any of the m attributes
from a uniform discrete distribution U(1, . . . ,m) and assign
svar
i ∈ {1, . . . ,m}.

Finally the candidate value for the splitting variable
xj = svar

i can be drawn from a discrete distribution
U(xj(1), . . . , xj(L)), where L is the number of possible
splitting rules for variable xj . Such priors allow us to explore
DTs which split data in as many ways as possible. However
the DTs with different numbers of splitting nodes should be
explored in the same proportions [9, 11].

To sample DTs of a variable dimensionality, the MCMC
technique exploits the Reversible Jump extension. To imple-
ment the RJ MCMC technique, in [9, 11] it has been
suggested exploring the posterior probability by using the
following types of moves:

Birth. Randomly split the data points falling in one of the
terminal nodes by a new splitting node with the variable and
rule drawn from the corresponding priors.

Death. Randomly pick a splitting node with two terminal
nodes and assign it to be one terminal with the united data
points.

Change-Split. Randomly pick a splitting node and assign
it a new splitting variable and rule drawn from the corre-
sponding priors.

Change-Rule. Randomly pick a splitting node and assign
it a new rule drawn from a given prior.

The first two moves, birth and death, are reversible
and change the dimensionality of θ. The remaining moves
provide jumps within the current dimensionality of θ. Note
that the change-split move is included to make “large” jumps
which potentially increase the chance of sampling from a
maximal posterior whilst the change-rule move does “local”
jumps.

The RJ MCMC technique starts drawing samples from
a DT consisting of one splitting node whose parameters
were randomly assigned within the predefined priors. So we
need to run the Markov Chain while a DT grows and its
likelihood is unstable. This phase is said burn-in and it should
be preset sufficiently long in order to stabilize the Markov
Chain. When the Markov Chain will be enough stable, we
can start sampling. This phase is said post-burn-in.

4. The Proposed Method

We propose a new strategy which aims at discarding the
DT models which use weak attributes. First, we apply the
Bayesian technique described in Section 2 to the EEG data
and collect an ensemble of DT models. Second, we count
the posterior probabilities of using EEG features in the
ensemble of DT models. These counts give us the posterior
information on feature importance.
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Figure 1: Posterior probabilities of 72 EEG attributes characterising the relative and absolute spectral powers (a) and their variances (b).

Next, we define a threshold value to cut off the EEG
features whose probabilities are below this threshold; these
features are defined as weak. Then we find the DT models
which use these weak attributes. Finally we discard these DT
models from the ensemble.

Obviously, the larger the threshold value, the greater
number of attributes is defined as weak, and therefore the
larger portion of DT models is discarded. This technique
can be evaluated in terms of the accuracy of the refined DT
ensemble on the test data. The uncertainty in the ensemble
outcomes is evaluated in terms of entropy.

Having a set of the threshold values obtained in a series
of experiments, we could expect that there is an optimal
threshold value at which the performance becomes highest.
We could also expect to find a threshold at which the
uncertainty becomes lowest. In the following section we test
the proposed technique.

5. Experiments

In our experiments we used EEG data recorded from new-
borns during sleep hours. The goal of these experiments
was to test the proposed method of using the posterior in-
formation on EEG feature importance within the Bayesian
methodology of averaging over DT models.

The experiments were run with the set of 72 EEG features
representing 686 newborns aged between 40 and 45 weeks so
that the number of age groups was six. Each of these groups
(classes) included around 100 recordings.

The Bayesian averaging was run with the following set-
tings. In a burn-in phase, we collected 200,000 DTs, and
in a post-burn-in phase 10,000 DTs. During the post-
burn-in phase, each 7th model was collected to reduce the
correlation between DT models. The minimal number of
data samples allowed to be in DT nodes (pruning factor)
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Figure 2: Distributions of performances of DTs included in the
original (in gray) and refined (in black) ensembles.

was set to six. Proposal variance was 1.0, and probabilities
of making moves of birth, death, change variable, and change
threshold were set to 0.15, 0.15, 0.1, and 0.6, respectively. The
performance and uncertainty of the DT ensemble collected
in the post-burn-in phase were evaluated within a 3-fold
cross-validation and ±2σ intervals.

The rate of acceptance of DT models was around 0.13
in both phases. In the burn-in phase, the size of DTs
was stabilized around 30 nodes after 10,000 samples. The
average performance (exact match of weeks) was 27.4%. The
performance of the DT ensembles varied within 2σ interval
equal to 8.2%. The entropy of the DT ensembles was 478.3±
15.8.

According to the proposed technique, we estimated the
importance of all the 72 attributes in terms of the posterior
probabilities of using these attributes by the DT models col-
lected in the post-burn-in phase. The posterior probabilities
(frequencies) of using the attributes ranged between 0.0 and
0.07 as shown in Figure 1.

We then gradually increased the threshold value T from
0 at steps of 0.001 to 0.005 to define features as weak
accordingly to the proposed strategy of feature selection.
From Table 1, we can see that at threshold value 0.001 the
average number of weak attributes, k, was 14, whilst at level
0.005 their number has increased to 31.

Having found the weak attributes, we applied the pro-
posed technique to refine the DT ensemble. Table 1 shows
the number of weak attributes, k, versus the threshold values,
T , within a 3-fold cross-validation. From this table, we can
see that the performance P of the refined DT ensemble is
slightly increased from 27.4 to 29.2 when the threshold is
gradually increased from 0.0 to 0.005. At the same time the
uncertainty in decisions is decreased from 478.4 to 469.0 in
terms of entropy E of the ensemble.

For comparison, we reran the Bayesian classification on
the data represented by a set of features excluding the weak
ones. From Table 1 we can see that the performance has

slightly increased from 27.4 to 29.0 when 23 weak attributes
were excluded. The exclusion of 31 attribute has resulted in a
decrease in the ensemble entropy from 478.3 to 463.6.

Overall, both techniques are shown to provide the
comparable performances and ensemble entropies. However,
the technique of discarding attributes has shown to tend to
perform in a larger variation. Within this technique requires
rerun the Bayesian classification for each threshold value.

For comparison, we trained single DTs on the data that
preliminary excluded the same weak attributes. The pruning
factor was the same as for the Bayesian DTs. The performance
of the single DT trained on the original data was 24.6±8.7%.
We can see that the discarding of weak attributes leads to a
slight increase in the average performance.

Figure 2 shows the distributions of performances pro-
vided by the original and refined DT ensembles. According
to the proposed method, the refinement has been obtained
by discarding weak attributes with threshold 0.005. We can
see that the size of the refined ensemble becomes significantly
smaller. Most of the DTs with performance above 32.0% have
been kept, whilst most of the DTs with performance below
24.0% have been discarded from the refined ensemble.

Figure 3 shows the performances of the techniques over
threshold values. Figures 3(a), 3(b), and 3(c) show the
performances of the proposed technique of discarding DT
models, a technique of discarding attributes, and single DTs,
respectively. We can observe that within 2σ intervals the
average performance of the proposed technique tends to
slightly increase when the threshold is growing. As a result of
the refinement, the uncertainty intervals estimated in terms
of 2σ intervals of the entropy E are slightly decreased.

Table 2 shows the performance of the expert assessment
of EEG maturation described in [5] for 39–43 weeks PCA
versus the perforamnce of the Bayesian classification. We can
conclude that although the EEG data sets are different, the
Bayesian performance, on average, is slightly better than that
provided by the experts.

6. Discussion and Conclusions

In this paper we explored how the posterior information
about EEG features can be employed in order to reduce a
negative influence of the lack of exploring the area of interest
in detail on the results of Bayesian classification. We assumed
that the posterior information about feature importance can
be used to find weak EEG features and then proposed a new
technique aiming at refining an ensemble by discarding the
DT models which use the weak features.

According to our assumption, in the presence of weak
features some DT models included in the resultant ensemble
will use these attributes. The larger the number of weak
attributes, the greater the negative impact on the classi-
fication. We expect that the discarding of models using
weak attributes will reduce the negative influence on the
classification.

To test the proposed technique, we used EEG data re-
corded from sleeping newborns in six PCA groups. We
assumed that the brain maturity of newborns aged between
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Figure 3: Performances over threshold values obtained with the proposed technique (a), the technique of discarding attributes (b), and
single DT (c), respectively.

Table 1: Performance (P) and entropy (E) of the two techniques versus threshold values (T) within 3-fold cross-validation.

T k Proposed technique Technique of discarding attributes Single DT

P, % E P, % E P, %

0.001 14 27.5± 8.4 478.4± 15.8 28.7± 9.6 469.0± 13.7 24.6± 3.9

0.002 18 27.8± 9.0 477.7± 16.4 25.8± 1.7 475.7± 16.7 24.3± 4.8

0.003 23 28.7± 8.2 475.7± 15.3 29.0± 8.5 474.1± 33.9 26.7± 3.7

0.004 28 28.9± 7.6 471.2± 10.3 28.4± 1.8 472.4± 12.0 24.9± 1.5

0.005 31 29.2± 7.9 469.0± 11.9 27.3± 6.5 463.6± 26.3 28.6± 7.2

Table 2: Performances of PCA classification.

Range of PCA Expert assessment, % Bayesian classification, %

Exact match 27.3 28.9± 7.6

±1 week 54.5 62.6± 6.1

±2 weeks 77.3 82.4± 4.3

39 and 43 weeks can be automatically assessed from the 2-
channel C3-T3 and C4-T4 EEG recordings as accurately as
by expert analysis of the full polysomnographic information.

The use of the additional information will significantly
enlarge the dimensionality of a model parameter space and
therefore will increase the difficulties of MCMC integra-
tion. Thus we cannot expect that additional polysomno-
graphic features or additional EEG channels will significantly
increase the assessment accuracy.

Our experiments have shown that the proposed tech-
nique is capable of increasing the performance of Bayesian
classification and decreasing the ensemble entropy. We
observed that the proposed technique enables DTs with
higher performance to be included in the ensemble while

discarding the DTs with lower performance. Thus the
proportion of DT models included in the ensemble is
improved due to decreasing the number of DTs with lower
performance.

We also observed that the MCMC technique makes a
candidate model acceptable with different attributes. An
accepted model may include by chance a weak attribute even
with a small decrease in performance. In the presence of
many weak attributes, chances of accepting a model which
includes a weak attribute are increased, and this leads to a
disproportion of models in the ensemble.

Typically, a technique of reduction of the data dimen-
sionality by discarding of the weak attributes is expected to
improve Bayesian classification by reducing a model param-
eter space needed to be explored. However this technique
requires rerunning the Bayesian classification. The proposed
technique was shown to provide the rather comparable
performance without the need of rerunning.

Overall, we conclude that, although the EEG data used
in our experiments were from different newborns and the
number of recordings was larger, the Bayesian performance,
on average, was slightly better than that provided by the
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experts. Thus our experiments have shown that the brain
maturity of newborns aged between 39 and 43 weeks
can be automatically assessed from the 2-channel EEG as
accurately as by expert analysis of the full polysomnographic
information.
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