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The correlation between codon and anticodon pools influences the efficiency of translation, but whether differences exist in

these pools across individual cells is unknown. We determined that codon usage and amino acid demand are highly stable

across different cell types using available mouse and human single-cell RNA-sequencing atlases. After showing the robust-

ness of ATAC-sequencing measurements for the analysis of tRNA gene usage, we quantified anticodon usage and amino

acid supply in both mouse and human single-cell ATAC-seq atlases. We found that tRNA gene usage is overall coordinated

across cell types, except in neurons, which clustered separately from other cell types. Integration of these data sets revealed a

strong and statistically significant correlation between amino acid supply and demand across almost all cell types. Neurons

have an enhanced translation efficiency over other cell types, driven by an increased supply of tRNAAla (AGC) anticodons.

This results in faster decoding of the Ala-GCC codon, as determined by cell type–specific ribosome profiling, suggesting

that the reduction of tRNAAla (AGC) anticodon pools may be implicated in neurological pathologies. This study, the first

such examination of codon usage, anticodon usage, and translation efficiency resolved at the cell-type level with single-cell

information, identifies a conserved landscape of translation elongation across mammalian cellular diversity and evolution.

[Supplemental material is available for this article.]

During translation elongation, the ribosome moves three nucleo-
tides at a time along the mRNA transcript, as each codon comple-
mentarily binds to a corresponding anticodon triplet on a tRNA,
which is chargedwith a specific amino acid (AA) that is then added
to the growing polypeptide chain (Dever et al. 2018). Because
translation elongation relies on the codon–anticodon interaction,
matching or mismatching of codon and anticodon pools may in-
fluence the elongation rate. Indeed, it has been shown in bacteria
such as Escherichia coli and unicellular eukaryotes such as
Saccharomyces cerevisiae that matching of these pools results in in-
creased translation efficiency, leading to higher production of pro-
teins. Conversely,mismatching of these pools yields lower protein
production (Quax et al. 2015).

Codon and anticodon pools have also beenmeasured inmul-
ticellular organisms, such as mammals, which pose several addi-
tional challenges. In particular, the mRNA and tRNA levels may
differ across tissues and cell types, and quantitation can be biased
because of experimental challenges (Wong et al. 2012). The devel-
opment of bulk high-throughput sequencing (Stark et al. 2019) in
the past two decades has allowed for examination of these mRNA
and tRNA pools across a few mammalian tissues, revealing some
tissue-specific differences but an overall stability in both codon
and anticodon usage (Dittmar et al. 2006; Schmitt et al. 2014;
Rak et al. 2018; Pinkard et al. 2020). In these studies, codon pools
were measured primarily using bulk RNA sequencing. However,
because of several special features of tRNA genes (isodecoders), an-
ticodon pools have been measured with a variety of RNA- and
DNA-based methods that are subject to different biases. For exam-
ple, RNA-based methods for tRNA gene expression include micro-
array (Chou et al. 2004; Dittmar et al. 2006) and high-throughput

sequencing approaches (Zheng et al. 2015; Gogakos et al. 2017;
Shigematsu et al. 2017; Xu et al. 2019; Kugelberg et al. 2021).
These methods must overcome the challenge of producing com-
plementary DNA from tRNAs, which are not only highly struc-
tured but also extensively modified (Rak et al. 2018; Suzuki
2021). As a result, no “gold-standard” approach exists to measure
tRNA abundances, with a recent study showing that the tRNA lev-
els obtained from differentmethods are lowly correlated (ρ∼0.22–
0.62) (Pinkard et al. 2020). Alternatively, chromatin immunopre-
cipitation with massively parallel DNA sequencing (ChIP-seq)
can be performed in bulk with an antibody targeting an active sub-
unit of RNA polymerase III (Pol III) that transcribes tRNA genes
(Dieci et al. 2007). Examining active Pol III occupancy on DNA
quantifies the amount of tRNA transcription and is not prone to
biases resulting from tRNA structure and modification (White
2011). Moreover, because ChIP-seq reads often extend past the ex-
act sequence of the tRNA gene locus, flanking sequence informa-
tion can be used to resolve tRNA genes with otherwise identical
sequences. However, Pol III ChIP-seq only probes pre-tRNA tran-
scription. Pre-tRNAs undergo several more steps before becoming
ready-to-translate tRNAs (Wolin and Matera 1999; Phizicky and
Hopper 2010).

Using thesemethods of quantifying codon and anticodon us-
age, previous studies have examined how correlated these pools
are, using this as a proxy for the efficiency of translation elonga-
tion (often referred to as “translation efficiency”). Analyses of co-
don and anticodon pools across the tree of life have revealed
several unifying features, such as the necessity of wobble base-pair-
ing between codons and anticodons. Indeed, all organisms use
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fewer than 61 anticodons to decode the 61 sense codons because
decoding can occur with wobble interactions between the first an-
ticodon position (tRNA nucleotide 34) and the third codon posi-
tion (Rak et al. 2018). In particular, the most well characterized
modifications include G:U and adenosine-to-inosine 34 (A34-to-
I) wobbling. The latter, performed by adenosine deaminases
(ADATs), expands the repertoire of ANN anticodons to decode
not only NNU codons but also NNC and NNA codons (Torres
et al. 2014).

In unicellular organisms such as E. coli and S. cerevisiae, the
most frequent codons also correspond to the most abundant anti-
codons, and this explains a great deal of patterns in synonymous
codon usage bias (Rocha 2004). In contrast, work in mammals
has suggested that adaptation to anticodon pools cannot explain
the majority of synonymous codon usage, which appear to be
more strongly influenced by mutational biases and drift (dos
Reis et al. 2004), in particular GC-biased gene conversion
(Pouyet et al. 2017). Despite weak correlations between synony-
mous codon usage bias and anticodon levels (Novoa and Ribas
de Pouplana 2012), the overall correlation between codon and an-
ticodon pools in mammals is nonetheless quite strong and stable
(Rudolph et al. 2016). Yet, all of these observations in mammals
have been made using bulk sequencing.

However, a major limitation of using bulk methods to quan-
tify codon and anticodon pools is that by aggregating data from
multiple different cell types within a tissue, they may blur out het-
erogeneity across cell types. Because cell types use not only differ-
ent levels of the same proteins but also different types of proteins
to perform their various functions, it is possible that their codon
pools are different. Additionally, the tRNA gene usage across cell
types may also differ to match their codon pools (Dittmar et al.
2006; Rak et al. 2018).

The advent ofmultiomic single-cell technologies and the pro-
duction of publicly available whole-organism single-cell atlases al-
low us to examine codon and anticodon usage at cell type
specificity and uncover heterogeneity that cannot be detected in
bulk. In this study, we have leveraged this power using both adult
mouse and fetal human, hereafter referred to as mouse and hu-
man, single-cell RNA-sequencing (scRNA-seq) atlases (The Tabula
Muris Consortium 2018; Cao et al. 2020), as well as complementa-
ry single-cell assay for transposase accessible chromatin (scATAC-
seq) atlases (Cusanovich et al. 2018; Domcke et al. 2020). We ex-
amined the reliability of using information on chromatin accessi-
bility as a proxy for quantification of anticodon usages, and
investigate the interdependencies of matched codon and antico-
don pools at the cell-type level. Finally, we calculate translation ef-
ficiency by correlating AAdemand and supply from themRNAand
tRNA side, respectively. We consider this to be an estimate of the
maximum translation rate that can be achieved when tRNA pro-
cessing steps have a negligible influence on the levels of mature
charged tRNAs and, hence, herein refer to this measure as theoret-
ical translation efficiency (tTE). By examining these important
contributors to translation elongation for the first time systemati-
cally at the cell-type level, this study paves theway for future high-
resolution studies of mammalian translation.

Results

Codon usage is highly similar across cell types

To investigate whether codon usage differs across mammalian cell
types, we analyzed data from both adult mouse and fetal human

scRNA-seq atlases. These data sets consist of cells from 20 and 15
tissues, respectively, where cell type annotations have been pro-
vided for all individual cells that passed quality filters (Fig. 1A,B;
Supplemental Fig. S1A; Supplemental Table S1).

Different cell types express a diverse assembly of genes at dis-
similar levels, and the high expression of specific marker genes is
often used for cell type annotation. When pooling the gene ex-
pression profiles from individual cells of the same cell type, we ob-
served the expected clustering of cell types based on function and
tissue origin (Fig. 2A; Supplemental Tables S2, S9). For example,
endothelial and stromal cells from several organs clustered togeth-
er, whereas in other cases, cell types from the same tissue congre-
gated owing to the expression of tissue-specific genes, as observed
previously (The TabulaMuris Consortium 2018). Clustering of cell
types by origin and function was less defined in the human data
set, perhaps owing to the collection of these samples in early devel-
opment (72–129 d) (Cao et al. 2020).

To calculate the codon usage across cell types, we weighted
the 61 sense codon frequencies of each protein-coding gene by
their cell type–specific expression (Fig. 1B, top; Supplemental
Tables S3–S4, S10–S11). The sense codon frequencies were deter-
mined from the trinucleotide frequencies of the coding sequences
(CDSs) of each protein-coding gene. The longest open reading
frame (ORF) per protein-coding gene was used to determine its co-
don frequencies, as isoform information is not available for all cell
types in the scRNA-seq data sets but remains an active area of re-
search (Uhlén et al. 2015).

We found, in contrast to gene expression, a strong similarity
in codon usage across cell types. The Euclidean distances between
codon usages across almost all cell types are small (Fig. 2B), and a
principal component analysis (PCA) plot of codon usages across
cell types reveals that nearly all of them colocalizewithout distinct
clustering (Fig. 2C). A previous analysis of codon usage in bulk had
also suggested highly stable codon pools across tissues (Schmitt
et al. 2014), but it remained unknownwhether particular cell types
had distinct codon usage profiles that were undetected in bulk.
Here, we found that codon usage was highly similar across most
cell types. Moreover, the mean codon usage across all cell types
was highly similar to the exonic background (the overall genome
codon frequencies unscaled by gene expression) (Fig. 2D), as estab-
lished in bulk (Schmitt et al. 2014). In other words, our analysis at
the cell-type level largely recapitulated findings from bulk analysis
owing to true homogeneity in codon usage across cell types, rather
than averaging of heterogeneous codon usages.

Cell types that deviate from codon usage have low codon

pool complexity

Although most cell types have similar codon usages, some cell
types were distinct. In both mouse and human, cardiac muscle
cells and pancreatic acinar cells had larger Euclidean distances
from other cell types and resided away from the main cluster in
PCA (Fig. 2B,C). Stromal cells from some human tissues also segre-
gated from the main cluster, whereas others did not (Fig. 2C). No
mouse stromal cell populations were outside the main cluster.
Thus, the differential codon usage in some fetal stromal cell types
may be present only in early development. Skeletal muscle cells,
which were not present in the mouse data set, clustered in codon
usage with cardiac muscle cells in the human data set (Fig. 2C).

Because codon usagewas computed by weighting each gene’s
codon frequencies by its expression, differential codon usage in
cardiac/skeletal muscle cells and pancreatic acinar cells could be
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influenced by the diversity of protein-coding genes that contrib-
utes to their codon pools. A cell type could be an outlier in codon
usage because of widespread differences in codon usage across nu-
merous expressed genes or because its codon usage is skewed by a
few highly expressed genes with large codon demands. To deter-
mine which was the case, we calculated each gene’s codon pool
contribution per cell type, defined as the number of codons per
gene multiplied by its cell type–specific expression level. Thus,
longer genes that are also highly expressed will have the largest co-
don pool contributions.We defined codon pool complexity as the
proportion of the codon pool that is not contributed by the top N
genes, ranked by codon pool contribution. Thus, a low codon pool
complexity means that the top N genes’ codon pool contributions
are a large percentage of the total codon pool, whereas a high co-
don complexity indicates that many genes contribute a small
amount to the codon pool.

We found that cell types with low codon pool complexity
(calculated for several values of N ranging from five to 100) tend

to be those that are outliers in codon usage, with the lowest corre-
lations in codonusage to themean codonusage across all cell types
(Fig. 2E). By ignoring the codon contribution of the top 10 genes,
their codon usages become indistinguishable from the other cell
types (Fig. 2F). Therefore, these cell typeswere outliers in codonus-
age because relatively few protein-coding genes with skewed co-
don frequencies comprised the bulk of their codon pools. For
example, cardiac and skeletal muscle cells express high levels of
TTN, the gene encoding titin. It is the largest known protein
(27,000 to 35,000 AAs, depending on the isoform) and important
for the passive elasticity of muscle (Lewinter and Granzier 2010).
Because of its remarkable length and high expression in cardiac
and skeletal muscle cells, this gene accounts for between 48%
and 71% of their codon pools (56% in mouse cardiac muscle cells,
48%–71% in human cardiac/skeletal muscle cells). Thus, when
titin’s usage of codons differs from the mean codon usage across
cell types, cardiac and skeletal muscle cells become outliers for
those codons (Fig. 2G).

BA

Figure 1. Overview of the approach for single-cell analysis of translation efficiency. (A) To examine a diverse set of cell types across multiple tissues,
scRNA-seq and scATAC-seq atlases produced for mouse and human were analyzed. For both organisms, each square is color-filled if scRNA-seq (top
half) or scATAC-seq data (bottom half) are present. (B, top) mRNA gene expression, codon usage, and amino acid (AA) demand can be quantified using
single-cell RNA sequencing (scRNA-seq). Each gene’s sense codon frequencies are weighted by gene expression counts. Codon usage from individual cells
is pooled at the cell-type level and can be combined based on AA demand. (Bottom) tRNA gene expression, anticodon usage, and AA supply can be quan-
tified using the single-cell assay for transposase accessible chromatin (scATAC-seq). First, the Tn5 transposase insertionsmappingwithin tRNA gene loci and
their surrounding 100-bp flanking regions are quantified, creating a tRNA gene expression matrix. Cells are pooled at the cell-type level and can be com-
bined into anticodon isoacceptor families and AA isotypes. (Center) scRNA-seq and scATAC-seq data can be integrated to calculate a tTE score. For more
detailed description, see Methods section.
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Figure 2. Codon usage is highly stable across cell types, with outliers driven by reduced codon pool complexity. (A,B) Heatmaps show Euclidean distance
in gene expression (A) and codon usage (B) across cell types for mouse (top) and human (bottom). (C) Principal component analysis (PCA) plots cluster
codon usage across cell types. (D–F ) Scatter plots: (D) correlation of mean codon usage across all cell types to the exonic background (unweighted ge-
nome-wide codon usage; each point corresponds to one of the 61 sense codons); (E) each cell type’s codon pool complexity (percentage of the total codon
pool contributed by the top 10 genes) to the correlation of its cell type to the mean codon usage across all cell types; and (F) same quantities as E, but with
each cell type’s codon usage calculated while ignoring the codon contribution of the top 10 codon pool contributing genes. (G) Jitter plots show the pro-
portion of total codon usage for each of the 61 sense codons in each cell type. Titin (red) drives the outlier status of cardiac and skeletal muscle cells (blue).
IUPAC nucleotide codes are used in the x-axis (N=A, C, G, U; B =C, G, U; Y =C, U).
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scATAC-seq is robust for measuring tRNA gene usage

Having established that codon usage is highly stable across most
cell types, we next investigated whether anticodon usage would
also be similar. Previous work has examined tRNA gene usage in
different cell lines and in tissues, identifying tissue-specific differ-
ences (Dittmar et al. 2006; Schmitt et al. 2014; Rudolph et al. 2016;
Pinkard et al. 2020). Although existing RNA- andDNA-based tRNA
quantification methods have their respective advantages and dis-
advantages, none have been adapted for analysis in single cells.
To address thismajor limitation,we investigatedwhether the assay
for transposase-accessible chromatin (ATAC-seq) could be used to
examine tRNAgene usage. This assay, uses a hyperactive Tn5 trans-
posase that cuts at open chromatin (Buenrostro et al. 2015). Thus,
loci enriched for Tn5 insertions correspond to regions of open
chromatin, at which transcription factors and RNA Pol can bind.
Indeed, chromatin accessibility in gene bodies often correlated
well with transcription levels (Klemm et al. 2019). Furthermore,
several differentmethods have been developed for single-cell anal-
ysis (Pott and Lieb 2015; Baek and Lee 2020).

Because scATAC-seq has not been used before for analyzing
tRNA genes, we assessed its robustness by determining whether
it is internally consistent (different scATAC-seq pipelines produce
similar quantifications of tRNA accessibility), it is externally con-
sistent (concordant with expectation), and it is of adequate resolu-
tion (can distinguish between tRNAgenes located in tight genomic
clusters). We found that tRNA gene accessibility from three avail-
able scATAC-seq data sets of mouse brain (aggregated in pseudo-
bulk) (Cusanovich et al. 2018; Lareau et al. 2019) was strongly
correlated at the tRNA gene, anticodon isoacceptor, and AA iso-
type levels (Supplemental Figs. S1, S2; Supplemental Tables S5–
S7, S12–S14), showing the internal consistency of ATAC-seq for
tRNA gene quantification. These data were also highly correlated
at all three levels with a bulk mouse brain ATAC-seq data set (Liu
et al. 2019) and, importantly, with tRNA abundances measured
by Pol III ChIP-seq, the established DNA-based tRNA quantifica-
tion method. This suggests that the chromatin accessibility of
tRNA genes is a suitable measure for their expression (Fig. 3A).
The correlations across these different data sets were consistently
high (Spearman’s rank correlation coefficients, ρ∼0.7 –0.9),
which ismuchhigher than those obtainedwhen comparing across
different RNA-based quantification methods (Pearson correlation
coefficients, r∼0.2 –0.6) (Pinkard et al. 2020). To validate ATAC-
seq irrespective of other approaches, we also examined whether
highly confident functional tRNA genes were more accessible
than low-confidence tRNA gene predictions (Lowe and Chan
2016). We found that high-confidence tRNA genes were generally
much more accessible than low-confidence ones (Fig. 3B). Finally,
because tRNA genes tend to be genomically organized in dense
clusters, we assessed whether scATAC-seq data provided enough
resolution to differentiate accessibility between very close tRNA
genes. Indeed, scATAC-seq displays individual peaks for tRNA
genes in clusters inwhich tRNAgeneswere <300 bp apart (Fig. 3C).

Although this shows the robustness of scATAC-seq for quan-
tifying tRNA gene usage, a practical concern was that scATAC-seq
data could be very sparse because there are normally only two cop-
ies of DNA per cell (Baek and Lee 2020). Moreover, because tRNA
genes are very short and occupy a small percentage of mammalian
genomes, the number of cuts to tRNA genes per cell could be lowat
normal sequencing depths (Supplemental Fig. S1B). To determine
how many cuts to tRNA genes (gene body plus 100 bp upstream
and downstream, as typically performed for Pol III ChIP-seq

data) (Kutter et al. 2011) are required to obtain reliable measure-
ments, we took different sample sizes of cuts from pseudobulked
scATAC-seq data and measured the correlation of these samples
to the overall tRNA gene usage (pseudobulked scATAC-seq data
without down-sampling). At small sample sizes, the correlations
at the tRNAgene, anticodon, andAA level were lowandhighly var-
iable, whereas a sample size of greater than 5000 cuts reliably yield-
ed high correlations (ρ>0.95) at all three levels (Fig. 3D). Thus, we
analyzed cell type–specific tRNA gene usage by pooling all cells an-
notated as belonging to a particular cell type. Only cell types with
more than 5000 total cuts after poolingwere considered reliable for
tRNA gene expression analysis.

Neuronal cell types are outliers from an otherwise stable

anticodon pool

To examine tRNA gene expression, anticodon usage, and AA sup-
ply acrossmany different cell types, we analyzed scATAC-seq atlas-
es that corresponded to the scRNA-seq atlases (Fig. 1;
Supplemental Fig. S1). The mouse and human scATAC-seq atlases
contained 13 and 15 tissues, respectively (Cusanovich et al. 2018;
Domcke et al. 2020). For the cell types remaining after filtering for
sufficient scATAC-seq cuts, we combined the expressions of tRNA
genes on the anticodon level and computed their usage across cell
types (Fig. 1B, bottom).Wenoticed that although anticodonusage
was generally more variable than codon usage, it was still similar
across cell types, as indicated by similar Euclidean distances in an-
ticodon usage across most cell types (Fig. 4A) and the presence of a
large PCA cluster corresponding to most cell types (Fig. 4B).
However, we also observed a distinct neuron-specific cluster in
the mouse. This brain neuron cluster was also present in humans,
although less pronounced, again possibly owing to decreased cell
differentiation in early development. Additionally, the human
data set also included other neuronal cell types from the eye and
enteric nervous system as well as neuroendocrine cells absent
from the mouse data set.

To examine what caused brain neurons to cluster separately
from other cell types, we performed differential analysis at the an-
ticodon level. We found that in both the mouse and human, the
anticodon AGC charged with alanine, tRNAAla (AGC), is enriched
by >25% in brain neurons compared against all other cell types
(Supplemental Fig. S3). In the mouse brain, the two other alanine
anticodon isoacceptors, tRNAAla (UCG) and tRNAAla (CCG), were
also enriched in glial cells (Fig. 4C). The fourth alanine anticodon
isoacceptor, tRNAAla (GCG), is absent in either mammalian ge-
nome. Accordingly, when we quantified on the AA isotype level,
we confirmed tRNAAla enrichment in neurons (Fig. 4D).
Although the tRNA anticodon pools of all cell types was fairly sta-
ble, the slight deviation of one AA isotype could have significant
effects on global translation (Kapur et al. 2017).

To verify that Ala isotype enrichment was observed in other
data sets, we also analyzed available bulk data sets. We found
that Ala supply is enriched in the embryonic brain in a bulk
ATAC-seq data set of mouse embryonic development (Supplemen-
tal Fig. S4; Gorkin et al. 2020), a bulk ChIP-seq data set of mouse
brain and liver from early development to adulthood (Supple-
mental Fig. S5; Schmitt et al. 2014), and a RNA-based multitissue
QuantM-tRNA-seq data set of adult mouse (Supplemental Fig. S6;
Pinkard et al. 2020). This, in addition to the comparison to
Pol III ChIP-seq described above (Fig. 3A), underscores the con-
cordance of scATAC-seq-based tRNA quantification to other
methods.

Single-cell profil ing of codons and anticodons
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Several tRNA anticodons are enriched in neurons

Although tRNA genes encoding for the same anticodon and AA
isotype are often considered functionally redundant, previous
work has shown that the expression of individual tRNA genes
can vary drastically across tissues (Schmitt et al. 2014; Pinkard
et al. 2020). In contrast, anticodon isoacceptor usage and AA sup-
ply are much more similar across tissues, suggesting an unknown
buffering mechanism that coordinates tRNA gene expression to
yield a stable supply of anticodons. This apparent buffering was

also observed at the cell-type level in our analysis (Fig. 4C,D).
However, the assumption that tRNA genes of the same anticodon
isoacceptor family are functionally identical may be untrue (Pan
2018).

Therefore, we examined differential expression at the individ-
ual tRNA gene level. As with anticodon usage, PCA at the tRNA
gene level for both data sets indicated a brain neuron cluster
(Supplemental Fig. S7). By performing a differential gene analysis
comparing brain neurons against all other cells in the mouse
and human data sets, we observed that several tRNA genes that

BA

C

D

Figure 3. Single-cell ATAC-sequencing is robust formeasuring tRNA gene usage. (A) Scatter plots correlatemouse brain scATAC-seq (aggregated in pseu-
dobulk), bulk ATAC-seq, and Pol III ChIP-seq data sets on the anticodon isoacceptor (blue) and AA isotype (black) level. Spearman’s rank (ρ) and Pearson (r)
correlation coefficients are indicated on the top left corners. (B) Density plots (in log-scale) show the total number of cuts from aggregated scATAC-seq data
from the mouse and human scATAC-seq atlases, based on confidence predicted from tRNAscan-SE. (C) Genome browser view illustrates a mouse tRNA
gene cluster on Chromosome 11. The location of tRNA genes is shown at the bottom, including upstream and downstream 100-bp flanking regions.
Different tRNA genes, including those as close as 220 bp apart (Asp-GUC-1-10 and Gly-UCC-1-7), have distinct peaks in three scATAC-seq data sets (pseu-
dobulk), a bulk ATAC-seq data set, and a Pol ChIP-seq data set (all mouse brain). The leftmost peak present in all ATAC-seq data sets but absent in the Pol III
ChIP-seq data set corresponds to the promoter of protein-coding gene Ctc1. This peak is ignoredwhen quantifying tRNA gene usage because it falls outside
of 100-bp flanking region of a tRNA gene. (D) Scatter plot determines how many total cuts are needed after pooling cells of the same cell type to obtain
reliable information of anticodon isoacceptor and AA isotype usage. A sample size of 5000 cuts per cell type consistently yielded a Spearman’s rank cor-
relation coefficient >0.95 to the aggregated scATAC-seq data from mouse and human.
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are enriched in neurons not only have the same anticodon but also
are syntenic in the human and mouse genomes (Fig. 5A,B). These
syntenic, neuronally enriched tRNA genes include Arg-UCU-4-1
(n-Tr20), which is one of the few tRNA genes that has been well
characterized. A tRNA maturation-inhibiting mutation in Arg-
UCU-4-1 combined with deletion of a ribosome recycling factor

causes ribosome stalling at cognate Arg-AGA codons and leads to
ataxia and early death in mice (Ishimura et al. 2014). Further
work has shown that loss of this tRNA reduces seizure suscepti-
bility (Kapur et al. 2020).We found two other syntenic, neuronally
enriched tRNA genes, Ala-AGC-3-1 (same name in both GRCm38
and GRCh37) and Ile-UAU-2-1 (in GRCm38) corresponding to

BA

C D

Figure 4. Anticodon usage is also similar across cell types, with brain neurons clustering separately. (A) Heatmaps show the Euclidean distance between
anticodon usage across cell types. Only cell types withmore than 5000 scATAC-seq cuts were analyzed (see Fig. 3D). The neuronal cluster is indicatedwith a
black line on the right side of the heatmap. (B) PCA plots separate anticodon usage across cell types. The brain neuron cluster is indicated. (C,D) Volcano
plots display differences in anticodon usage (C) and AA supply (D) between brain neurons and all other cell types (−log10 adjusted P-values and log2 fold
change [FC] as determined using DESeq2). Vertical lines indicate a FC >25%. All panels: mouse (top), human (bottom).
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Ile-UAU-2-3 (in GRCh37). Because of the cell type resolution of
scATAC-seq, we observed a clear difference in expression of these
tRNA genes in neurons compared with glial cells. Additionally,
in the human data set, which contained cells for the stomach
and adrenal gland that are absent from the mouse data set, we
found high expression of neuronally enriched tRNA genes in non-
brain neurons, including neurons in the eye (ganglion cells) and
the enteric nervous system, as well as in neuroendocrine cells
(chromaffin cells, sympathoblasts, Schwann cells, and islet endo-
crine cells) (Fig. 5B). In summary, a specific subset of tRNA genes
is uniquely transcribed in cells of the neuronal lineage.

AA supply and demand are highly correlated across cell types

Having analyzed codon and anticodon usage separately, we next
sought to correlate them to assess the potential impact of codon
and anticodon pools on translation elongation. Because there is
no one-to-one correspondence between codons and anticodons,
methods such as the tRNA adaptation index (tAI) have been devel-
oped to match multiple cognate anticodons to their respective co-
dons by estimating the stability of various codon–anticodon
interactions. With the assumption that highly expressed genes
should be better adapted to the anticodon pool, wobbling coeffi-
cients can be calculated to measure the correlation between an or-
ganism’s codon and anticodon pools (dos Reis et al. 2004).
However, synonymous codon usage biases inmammals are not be-
lieved to be under strong translational selection from tRNA pools
but rather from mutational biases (Dos Reis and Wernisch 2009;
Pouyet et al. 2017). Moreover, we wanted to assess differences in
translation efficiency across cell types rather than assume optimal
wobble coefficients for translation of the most highly expressed
protein-coding genes per cell type. Therefore, we instead calculat-
ed tTE scores defined as the Spearman’s rank correlation between
AA supply and demand from the tRNA and themRNA side, respec-
tively. Although this is imperfect as not all tRNAs charged with a
particular AA can decode every codon demanding that same AA
(Watanabe and Yokobori 2011), this approach allowed us to avoid
making assumptions about several variables that have not been
quantified at the cell-type level, such as the relative decoding effi-
ciency of wobble and Watson–Crick base pairs and the levels of
ANN tRNAs that are modified to INN or left unmodified, which
should theoretically scale with the expression of adenosine deam-
inases across cell types.

We calculated tTE across all mouse and human cell types for
which scRNA-seq data were available for AA demand quantifica-
tion and scATAC-seq data had sufficient resolution for reliable
AA supply quantification. We found that tTEs were similar in the
mouse (range: ρ∼0.66 –0.85) and in humans (range: ρ∼0.60 –
0.86) (Fig. 6A; Supplemental Tables S8, S15). This relatively narrow
range of tTEs was consistent with our observations of stability in
both codon and anticodon pools across the majority of cell types
and was also in line with previous bulk analyses using the same
translation efficiency metric (Kutter et al. 2011).

To assess whether these tTEs were statistically significant, we
sampled from a null distribution of tTEs by shuffling 1000 times
the tRNA gene usage of each cell type, pooling the gene expression
levels based on each tRNA’s chargedAA to calculate AA supply, and
then correlating the AA supply to the AA demand from the mRNA
side, which was unshuffled (Fig. 6B). After estimating parameters
for this null distribution, we compared the values of the observed
and simulated tTEs for each cell type. By using this approach, we
discovered that all cell types in the mouse and all but one cell

type (skeletal muscle cells) in humans are statistically significant
(P-value <0.05) (Fig. 6C). In other words, codon and anticodon
pools were not only stable across different mammalian cell types
but also strongly correlated with each other, thereby establishing
an efficient interface for translation elongation.

Neurons have enhanced translation efficiency

Althoughmost cell types have similar codon and anticodon pools,
some cell typeswere outliers in either codonusage (cardiac/skeletal
muscle cells and pancreatic acinar cells) (Fig. 2) or anticodon usage
(brain neurons) (Fig. 4) in the mouse and human data sets. We
therefore wondered whether the tTE varies in these outliers. We
found that cardiac/skeletal muscle cells had among the lowest
tTEs and pancreatic acinar cells had moderate tTEs compared
with other cell types (Fig. 6A; Supplemental Tables S8, S15).
Although cardiac/skeletal muscle cells differed in codon usage
largely because of TTN’s immense contribution to their codon
pool (Fig. 2G), their anticodon pools did not differ. This lack of an-
ticodon compensation for differential codon usage led to the low-
est tTE in cardiac/skeletal muscle cells. In contrast, we found that
brain neurons have among the highest tTEs. When comparing
brain neurons against all other cell types, we observed that they
had a statistically significant increase in both tTE and tTE P-value
(Fig. 6A,C). Because we determined that codon usage in neuronal
cells was comparable to most other cell types, this increased tTE
was anticodon driven.

Because we define tTE as the correlation between AA supply
and demand, its values are influenced by the similar proportions
of each AA’s supply and demand. Therefore, we calculated the ratio
of AA supply and demand for each of the standard 20 AAs and
compared these supply–demand ratios between brain neurons
and other cell types. Ala was the only AAwith an AA supply-to-de-
mand ratio that had a statistically significant increase in brain neu-
rons compared with other cell types, which remained consistent
after splitting leucyl-, seryl-, and arginyl-tRNApools based on non-
wobble positions (Fig. 6D, Supplemental Figs. S8–S9). This is con-
sistent with our finding that Ala anticodonswere enriched in brain
neurons (Fig. 4). Thus, Ala is a prominent driver of increased tTE in
brain neurons.

Increased neuronal supply of the Ala-AGC anticodon results

in faster decoding of the Ala-GCC codon

Because the Ala supply–demand ratio was enhanced in neurons,
we hypothesized that it could result in faster decoding of Ala co-
dons. The relative decoding rate can be quantified by ribosome
profiling, in which ribonuclease-protected RNAs, including ribo-
some-protected mRNA fragments (RPFs), are sequenced genome-
wide (Ingolia et al. 2019). Bymapping RPFs to the genome, codons
occupying the ribosome E (exit), P (peptidyl-), and A (aminoacyl-)
sites can be determined. Because codon–anticodon recognition
takes place within the A-site, codons that are slowly decoded by
the ribosome are expected to frequently occupy the A-site of
RPFs, after adjusting for the background RPF codon frequency. In
contrast, faster decoded codons should be less frequent in the A-
site of RPFs (Ingolia 2014). Consistent with these expectations,
budding yeasts in which specific codon–anticodon interactions
were disrupted have significantly higher levels of those impaired
codons in RPF A-sites compared with the wild type, suggesting
slower decoding (Nedialkova and Leidel 2015).

To test our hypothesis of faster neuronal decoding of Ala co-
dons, we analyzed publicly available cell type–specific ribosome
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profiling data in the mouse brain (Scheckel et al. 2020). Because
single-cell ribosome profiling technologies have not yet been de-
veloped, Scheckel et al. (2020) created mouse cell lines with a
GFP-labeled form of a ribosomal protein induced by Cre recombi-
nase under a cell type–specific promoter. Subsequent affinity puri-
fication with an anti-GFP antibody was used to obtain RPFs
specific to neuron and glial populations (Fig. 6E). After aligning
RPFs to the A-sites of protein-coding genes with CONCUR (Frye
and Bornelöv 2021), we performed differential analysis between
all neuronal and glial samples to examine whether any codons
were differentially present in the A-site. Of these codons, Ala-
GCC showed the strongest enrichment in glial cells, verifying
that neurons decode GCC faster. This is consistent with our anal-
ysis of Ala anticodon usage in brain at the single-cell level. We ob-
served that both neurons and glial cells were enriched for Ala-CGC
and Ala-UGC compared with nonbrain cell types but were not
differentially expressed between glial cells and neurons
(Supplemental Fig. S3). In contrast, tRNAAla (AGC) was specifically
enriched in neurons and is the only Ala anticodon that can decode
Ala-GCC (Fig. 6F). The interaction between the Ala-GCC codon
and the tRNAAla (AGC) anticodon must occur through a A34-to-I

modification, in which the first anticodon position A becomes
an I that can then base pair with C, the third codon position.
Although cell type–specific ribosome profiling data sets are not
yet available in other cell types for which we calculated tTE, these
findings underscore that differential codon and anticodon usage
can lead to cell type–specific differences in decoding rates during
translation elongation.

Moreover, our identification of an increased tRNAAla (AGC)
anticodon pool in neurons may explain a recent finding regarding
the role of TRM1L, a tRNA-modification enzyme. Previous studies
showed that Trm1l-deficient mice had neurological deficits, in-
cluding altered motor coordination and aberrant exploratory
behavior (Vauti et al. 2007). However, the function of this protein
was unknown. A recent study described that the TRM1L protein
performs N2,N2-dimethylguanosine (m2,2G) modifications at po-
sition 26 specifically in tRNAAla (AGC) (Jonkhout et al. 2021). In
addition, TRM1L subcellular localization changes upon neuronal
activation but not under general stress, suggesting that this protein
plays a role in long-term potential and synaptic plasticity.
Although it was hypothesized that the neurological phenotype as-
sociated with the Trm1l deletion could be caused by increased
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Figure 5. Some tRNA genes are enriched in brain neurons and conserved in the mouse and human. (A) Volcano plots show individual tRNA gene usage
between brain neurons and all other cell types, displaying −log10 adjusted P-values and log2 FC, as determined using DESeq2. Red labels indicate syntenic
tRNA genes significantly enriched in brain neurons in both the mouse (left) and human (right). Vertical lines indicate a FC >100%. (B) Bar plots show ex-
pression of syntenic, neuron-enriched tRNA genes. Each bar corresponds to a cell type filled according to the tissue type (top) and with border shading for
brain neuron (black) and others (gray). Brain cell types (bottom), genomic location of the tRNA gene (red) with flanking protein-coding genes (blue) (top),
and direction of gene transcription (arrows) are indicated.
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tRNAAla (AGC) abundance in the brain, differential expression was
masked in bulk sequencing data. But with single-cell sequencing,
we detected this neuronal increase in tRNAAla (AGC) anticodon us-
age. Modifications influence the stability of tRNA transcripts, and
hypomodified tRNA molecules are rapidly degraded (Kimura and
Waldor 2019). Thus, absence of the m2,2G26 modification upon
the deletion of TRM1L may reduce tRNAAla (AGC) pools in neu-
rons and impact the rate of translation elongation. Future system-
atic studies may explore whether the absence of tRNA
modifications reduces specific anticodon pools and drives malig-
nant phenotypes by slower decoding of the corresponding
mRNA codons.

Discussion

Although codon and anticodon usage have been previously quan-
tified in bulk tissue, analysis of these critical players in translation
elongation had not yet been explored using single-cell informa-
tion. In bulk tissue, mixed signals owing to cell heterogeneity
were a limiting factor (Schmitt et al. 2014; Rudolph et al. 2016)

that was less pronounced in more homogeneous tissues like liver
(>70% hepatocytes) but could have a greater importance in tissues
with more diverse cell types like the brain. By harnessing publicly
available scRNA-seq and scATAC-seq atlases, we have taken these
previous analyses one step further and simultaneously analyzed
codon usage and AA demand as well as anticodon usage and AA
supply across individual cell types from multiple tissues in two
mammals (31 in the mouse, 85 in humans). The highly compre-
hensive nature of these atlases allowed us to examine codon and
anticodon usage not only in greater depth but also in breadth
because the mouse and human atlases contain more tissues than
any bulk data set.

Because existing tRNA quantification methods cannot yet be
performed at the single-cell level, we investigated the feasibility of
using scATAC-seq and showed its robustness for measuring tRNA
gene usage. The increasingly lower cost and proliferation of
many fast and reproducible scATAC-seq methods may make this
approach especially attractive for tRNA quantification. In particu-
lar, scATAC-seq breaks a major bottleneck that has hindered com-
prehensive analysis of tRNAs across the diverse cell types in
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Figure 6. Correlation between AA supply and demand is high and statistically significant in all cell types, with the strongest correlation in brain neurons.
(A,C,D) Violin plots are divided into mouse (left) and human (right) showing tTEs (A), tTE P-values (C), and alanine (Ala) supply to demand ratio (D) of brain
neurons and other cell types. Of all 20 AAs, only Ala is significantly enriched between brain neurons and all other cell types. (B) Schematic representation of
the approach used to determine statistical significance of correlation between AA supply (from tRNA side) and AA demand (frommRNA side), defined here
as theoretical translation efficiency (tTE). The observed tRNA expression for each cell type is shuffled 1000 times, pooled at the AA supply level, and cor-
related to the AA demand (unshuffled) to detect a null distribution of tTE values and determine statistical significance of actual tTE. (E) Workflow from an
adult mouse brain ribosome profiling data set (Scheckel et al. 2020). Cell type–specific ribosome-protected fragments (RPFs) for neurons and glia were
obtained with cell type–specific GFP-labeling of a ribosomal protein, followed by immunoprecipitation against GFP. The ribosome A-site of these cell
type–specific RPFs was determined, and a differential analysis was performed usingDESeq2. (F ) Volcano plot shows enrichment of tRNAAla (AGC) anticodon
in neurons, and faster decoding of the tRNAAla (GCC) anticodon is observed in neurons compared with glial cells. AGCmust decode GCC via an adenosine
to inosine modification at the first anticodon position. Asterisks display degree of significance: (∗) P<0.05, (∗∗) P<0.01, (∗∗∗) P<0.001; Mann–Whitney
U test.
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complexmammalian systems. Althoughour analysis of codon and
anticodonusage datamayhave biases arising from integrating data
from two different techniques (scRNA-seq and scATAC-seq) per-
formed on different samples, the increased proliferation ofmultio-
mic techniques that can jointly quantify chromatin accessibility
and transcripts in single cells should remove this limitation
(Swanson et al. 2021). Another issue with scATAC-seq is that few
cuts to tRNA genes are sequenced under normal sequence depths,
which necessitated removing some cell typeswith insufficient cuts
from our analysis (Fig. 3C). However, a multiomic approach that
combines scRNA-seq (for cell type annotation) and single-cell
CUT&Tag (Kaya-Okur et al. 2019) to enrich specifically for Tn5 in-
sertions near Pol III binding sites should mitigate this problem.

Although we identified several features of codon usage, anti-
codon usage, and translation efficiency that are conserved over 90
million years of mammalian evolution (Kumar et al. 2017), we
found an increase of Ala supply in the mouse and human brain
across all data sets (bulk and single cell). Besides Ala, other AAs
are enriched in some brain data sets but not in others. As a result,
the apparent faster decoding of the codon Cys-UCG in glial cells
within the ribosome profiling data set remains to be resolved
(Fig. 6F). AA supply anddemand are known to change at timescales
of minutes and hours. These fluctuations across data sets may re-
flect differences right before sample collection (Rak et al. 2018).
In contrast, the evolutionarily conserved nature of increased
tRNAAla (AGC) supply in both mammals at different time points
suggests purifying selection and a longer-term significance in or-
ganismal development.

Although Ala supply is increased in neurons, we did not see
corresponding changes in anticodonusage tomeet codon demand
for skeletal and cardiac muscle cells. This imbalance is largely driv-
en by the codon usage of a single gene, Ttn. When this gene is re-
moved from the tTE calculation, skeletal and cardiac muscle
cells have a similar tTE tomost other cell types.Whether post-tran-
scriptional regulation resolves the potential translational choke
point caused by imbalance of codon demand and anticodon sup-
ply for Ttn is unknown and will require further experimental
investigation.

Another potential area for progress involves better modeling
of the rate of translation elongation.When calculating translation
efficiency, we determined AA supply from the usage of all tRNA
genes charged with the same AA and calculated AA demand by
weighting the AA gene usages by their expression for all cell types.
From the AA supply side, it is oversimplistic to assume that all
tRNAswill necessarily function in translation elongation, especial-
ly because tRNAs are known to perform an array of different roles,
including as tRNA-derived fragments (Polacek and Ivanov 2020).
From the AA demand side, different protein isoforms are known
to exist across cell types. We did not account for this owing to
the lack of data availability, although the stability of codon usage
across cell types that express entirely different proteins may indi-
cate that including isoform data will not affect our main conclu-
sions. For both AA supply and demand, it is important to
consider not only the abundances of tRNAs and mRNAs but also
their turnover rates. Once single-cell half-life information of
mRNA and tRNA species becomes feasible to measure, AA supply
and demand should account not only for expression but also for
the differential stability of these transcripts. Additionally, codon
optimality has been shown to be a major determinant of mRNA
stability (Presnyak et al. 2015). Thus, the ratios of corresponding
codons and anticodons or AA supply and demand across different
cell types could be correlated with the stability of mRNA tran-

scripts. In particular, it would be interesting to verify if neuronal
depletion of the tRNAAla (AGC) anticodon results in slower decod-
ing of Ala-GCC codons to induce slowness-mediated decay of cer-
tain transcripts vital for neuronal function (Rak et al. 2018).

For translation efficiency, we calculated tTE at the level of AA
supply and demand, rather than at the codon–anticodon level, as
it is unclear whether and how to consider wobble base-pairing and
other modulators of the codon–anticodon interaction such as
tRNAmodification enzymes.Moreover, theremay be tissue-specif-
ic tRNA modifications, including a recent finding that some
tRNAAla anticodons are enriched for particular modifications in
the brain (Pinkard et al. 2020). Thus, another avenue of investiga-
tion will involve disentangling cell type differences in these pro-
cesses that could impact the rate of translation elongation.

Finally, it is worth noting that our analyses were performed
on atlases of mice and human samples believed to represent
healthy states. Thus, the stability that we observe in codon and an-
ticodon pools may exist only in a healthy state, and dysregulation
of these pools may occur in abnormal states such as cancer
(Goodarzi et al. 2016; Zhang et al. 2018), in neurodegenerative dis-
eases (Kapur et al. 2017), and with disruption to the microbiome
(Schwartz et al. 2018; Huang et al. 2021). Although such single-
cell data are not yet available, approaches similar to those present-
ed here could be used to examine cell type–specific changes to co-
don usage, anticodon usage, and translation efficiency in disease.

Methods

Data sets analyzed

All data analyzedwere downloaded frompublicly available sources
(for more information, see Supplemental Table S1). The mouse
scRNA-seq atlas was obtained from the NCBI Gene Expression
Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under ac-
cession number GSE109774 (The Tabula Muris Consortium
2018), and Seurat objects were downloaded from the Tabula
Muris website (https://tabula-muris.ds.czbiohub.org/). The mouse
scATAC-seq atlas (Cusanovich et al. 2018) was obtained from
GEO accession number GSE111586, and BAM files were down-
loaded from the website (https://atlas.gs.washington.edu/mouse-
atac/). The human scRNA-seq (Cao et al. 2020) and scATAC-seq
(Domcke et al. 2020) atlases were retrieved from GEO accession
numbers GSE156793 and GSE149683, respectively. Count matri-
ces (scRNA-seq) and fragment files (scATAC-seq) were downloaded
from the website (https:// descartes.brotmanbaty.org/bbi/). Two
other mouse brain scATAC-seq data sets were analyzed to deter-
mine scATAC-seq reproducibility (Fig. 3C; Supplemental Fig. S2):
a 10x Genomics data set (atac v1 adult brain fresh 5k) and a drop-
let-based data set from Lareau et al. (2019) (GEO accession number
GSE123581). scATAC-seq tRNA gene usage was also compared
with bulk adult mouse ATAC-seq data (NCBI Sequence Read
Archive [SRA; https://www.ncbi.nlm.nih.gov/sra] accession num-
ber SRX4946150) (Liu et al. 2019) and ChIP-seq data
(ArrayExpress [https://www.ebi.ac.uk/arrayexpress/] accession
number E-MTAB-2326) (Schmitt et al. 2014). To compare with an-
ticodon usage results from scATAC-seq concerning increased ala-
nine supply, bulk experiments were analyzed. A bulk ATAC-seq
atlas of early mouse development was downloaded from https://
www.encodeproject.org/ (Gorkin et al. 2020). Bulk ChIP-seq data
of mouse liver and brain across development were downloaded
from ArrayExpress accession E-MTAB-2326 (Schmitt et al. 2014).
QuantM-tRNA-seq of adult mouse tissues was downloaded from
GEO accession number GSE141436 (Pinkard et al. 2020). To exam-
ine differential decoding of codons in neurons versus glial cells,
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the cell type–specific mouse brain ribosomal profiling data set was
downloaded from GEO accession number GSE149805 (Scheckel
et al. 2020). For consistency with former studies and reusage of
the intermediate files provided, we used the same reference ge-
nome for the mouse (Mus musculus, GRCm38) and humans
(Homo sapiens, GRCh37). Using GRCh37 instead of the more re-
cent GRCh38 would not significantly affect our conclusions
because results are highly reproducible with both genome
versions.

Data analysis and visualization were conducted in R (R Core
Team 2021). Tidyverse was used for data exploration and analysis,
and ggplot was used for data visualization. Several packages in the
Bioconductor suite were used (Gentleman et al. 2004). Seurat was
used for scRNA-seq analysis (Satija et al. 2015), and Signacwas used
for scATAC-seq analysis (Stuart et al. 2021). DESeq2 was used for
differential gene analysis (Love et al. 2014). tRNAscanImport
(https://github.com/FelixErnst/tRNAscanImport) was used to
load tRNA gene predictions for GRCm38 and GRCh37. Gviz was
used for genome browser visualization (Hahne and Ivanek 2016).

Count matrices, pooled at the cell-type level, for mRNA gene
expression, codon usage, and AA demand, as well as for tRNA gene
expression, anticodon usage, and AA supply, are available as
Supplemental Data (Supplemental Tables S2–S7 and S9–S14 for
mouse and human, respectively).

Quantification of codon usage and AA demand

from scRNA-seq data sets

Codon usage for each protein-coding gene was determined using
the Ensembl set of protein-coding genes for mouse (GRCm38)
and human (GRCh37). This was then formatted as a codon fre-
quency per gene matrix of dimensions 61 × p, where the rows
correspond to the 61 sense codons and the columns to each of
the p protein-coding genes. Codon usage for each individual cell
was determined by matrix-multiplying the codon frequency per
gene matrix by the scRNA-seq count matrix, formatted as a p × n
matrix, where p again corresponds to the protein-coding genes (or-
dered in the sameway as the codon usagematrix) and n to the num-
ber of cells remaining after quality control filtering. Only genes
present in both the count matrix and the codon usage were used,
because pmust be the same formatrixmultiplication. Themultipli-
cation of these two matrices weights the codon frequencies of each
protein-coding gene by the expression in each cell, producing a “co-
don usage per cell matrix” of dimension 61 × n.

Using cell type annotations provided by the atlases used in
this study, we pooled the codon usage of cells of the same cell
type, producing a “codon usage per cell type”matrix of dimension
61 × m, where m denotes the number of cell types annotated in
the experiment. Each codon has a specific AA demanded per stan-
dard genetic code. Therefore, AA demanded can be quantified by
pooling codons demanding the same AA to produce an “AA per
cell type”matrix of dimension 20 × m, where the rows correspond
to the 20 classical AAs.

Quantification of tRNA gene usage, anticodon usage,

and AA supply from scATAC-seq data sets

tRNA gene annotations were used from gtRNAdb (Chan and Lowe
2016) that uses tRNAscan-SE v2.0 to predict tRNA genes.
tRNAscan-SE denotes functional tRNAs as “high confident” based
on predicted secondary structure stability and other tRNA-specific
features, whereas “low confidents” are considered as probable
pseudogenes. There are 401 high-confidence tRNA genes in the
adult mouse (GRCm38 annotation) and 416 in humans
(GRCh37 annotation). Quantification of tRNA gene usage from

scATAC-seq data sets required generating a tRNA count matrix of
dimension t × n, where t corresponds to the number of high-con-
fidence tRNA genes. For scATAC-seq data sets, this quantification
was performed using the FeatureMatrix function available in
Signac, which uses a fragment file and a set of genomic regions
as input (Stuart et al. 2021). Fragment files were already available
for the human data set. For the mouse data set, BAM files were
downloaded from https://atlas.gs.washington.edu/mouse-atac/,
and sinto (https://timoast.github.io/sinto/) was used for genera-
tion of fragment files. FeatureMatrix quantifies the number of
Tn5 insertions occurring within each of the specified genomic re-
gions (formatted as a Granges object). In our case, the genomic re-
gions were the set of high-confidence tRNA genes, including the
gene body and 100 bp upstream and downstream, as has been per-
formed in many other studies using Pol III ChIP-seq (Kutter et al.
2011).

This “tRNA gene expression per cell”matrix can be pooled by
cell type annotation to produce a “tRNA gene expression per cell
type” matrix of dimension t × m, where m refers to the number
of cell types annotated. This matrix was then used to examine
the total number of cuts for each tRNA gene across all cells (pseu-
dobulked), and a bimodal distributionwas observed, interpreted as
background and true signal distribution. tRNA genes belonging to
the background distribution were removed from the analysis.
tRNA genes can then be pooled based on their anticodon sequenc-
es to produce an “anticodon usage per cell type”matrix of dimen-
sion a × m, where a refers the number of unique anticodons (46 in
GRCm38 and 47 inGRCh37). Finally, AA supply can be quantified
by pooling anticodon families by the AA they accept, resulting in
an “AA supply per cell type”matrix of dimension 21 × m. The 21st
AA corresponds to selenocysteine.

Differential analysis

Differential tRNA gene expression, anticodon usage, and AA sup-
ply analysis was performed using DESeq2 (Love et al. 2014) under
default settings, with input being the tRNA gene, anticodon usage,
and AA supply per cell type matrices, respectively. Brain neurons
were compared against all other cell types in the mouse and hu-
man data sets.

Translation efficiency analysis

We computed tTE as the Spearman’s rank correlation coefficient
between the AA demand from the mRNA codon side and the AA
supply from the tRNA anticodon side. In other words, the values
for each cell type in the “AA demand per cell type” matrix and
the “AA supply per cell type”matrixwere correlatedwith each oth-
er for all cell types that were present in both the scRNA-seq and
scATAC-seq data sets. For this analysis, selenocysteine was ignored
because the number of stop codons that bind to the selenocysteine
tRNA is unknown at the cell-type level.

Ribosome profiling analysis

Scheckel et al. (2020) performed ribosome profiling onmice inject-
ed with control homogenate or prions and extracted cell type–spe-
cific ribosome-protected fragments pertaining to CamKIIa
excitatory neurons, PV interneurons, microglia, and astrocytes.
They collected samples from mice sacrificed 2, 4-, 8-, 16-, and
24-wk post injection, as well as samples collected at a later point
before severe prion disease developed in the prion-infected group.
We downloaded the ribosome profiling data for all time points for
the control groups. Fewer RPFs at the A-site, when corrected for
background codon frequencies at other positions in RPFs, suggests
faster decoding of a particular codon. To identify A-site codon for
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each RPF, we used CONCUR (Frye and Bornelöv 2021). CONCUR
accounts for potential differences in the codon usages of the trans-
lated mRNA populations between different cell types by dividing
the codon frequencies in the A-site by the codon frequencies of
all codons within the RPF. RPFs are usually about nine to 10 co-
dons long for typical experimental protocols, and so, determining
the codon frequency from the entire RPF gives a background fre-
quency of translated codons in that cell type. To identify codons
that were differentially found in the ribosome A-site, we used
DESeq2 (Love et al. 2014), as described above, to compare the neu-
ronal group (CamKIIa excitatory neuron and PV interneuron sam-
ples at all time points) and the glial group (microglia and astrocyte
cell types), while controlling for injection time.

Software availability

The R code, and detailed instructions on how to preprocess
the data and reproduce the results, are available as Supple-
mental Code and at GitHub (https://github.com/wgao688/
sc_tRNA_mRNA).
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