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Abstract: Medulloblastoma (MB) is considered the most common and highly malignant posterior
fossa tumor (PFT) in children. The accurate preoperative diagnosis of MB is beneficial in choosing
the appropriate surgical methods and treatment strategies. Diffusion-weighted imaging (DWI) has
improved the accuracy of differential diagnosis of posterior fossa tumors. Nonetheless, further
studies are needed to confirm its value for clinical application. This study aimed to evaluate the
performance of DWI in differentiating MB from other PFT. A literature search was conducted using
databases PubMed, Embase, and Web of Science for studies reporting the diagnostic performance of
DWI for PFT from January 2000 to January 2022. A bivariate random-effects model was employed
to evaluate the pooled sensitivities and specificities. A univariable meta-regression analysis was
used to assess relevant factors for heterogeneity, and subgroup analyses were performed. A total of
15 studies with 823 patients were eligible for data extraction. Overall pooled sensitivity and specificity
of DWI were 0.94 (95% confident interval [CI]: 0.89–0.97) and 0.94 (95% CI: 0.90–0.96) respectively.
The area under the curve (AUC) of DWI was 0.98 (95% CI: 0.96–0.99). Heterogeneity was found in the
sensitivity (I2 = 62.59%) and the specificity (I2 = 35.94%). Magnetic field intensity, region of interest
definition and DWI diagnostic parameters are the factors that affect the diagnostic performance
of DWI. DWI has excellent diagnostic accuracy for differentiating MB from other PFT. Hence, it is
necessary to set DWI as a routine examination sequence for posterior fossa tumors.

Keywords: posterior fossa tumor; diffusion-weighted imaging; medulloblastoma; meta-analysis

1. Introduction

Posterior fossa tumors (PFT) are the most common central nervous system tumors
in children, accounting for around 60% of pediatric brain tumors [1]. The pathological
characteristics, malignant degree, metastasis frequency, and prognosis vary greatly among
different histological types of PFT [2]. Accurate preoperative diagnosis plays a crucial role
for pediatric patients with PFT, as the most common tumors in this location and age group,
such as pilocytic astrocytoma (PA) and medulloblastoma (MB), may determine the need for
different surgical approaches with markedly different outcomes and disease progression [3].
Medulloblastoma (MB) is the most common malignant tumor of the posterior fossa, ac-
counting for about 40% of PFT [4]. While the current treatment strategy for MB is surgery
combined with postoperative chemoradiotherapy [5], a recent study has reported that the
complete resection rate of metastatic MB after neoadjuvant chemotherapy was higher, and
the neuropsychological prognosis of children with delayed surgical resection was better [6].
The new treatment direction also emphasizes the importance of the preoperative diagnosis
of MB.
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Neuroimaging plays an extremely important role in preoperative diagnosis and evalu-
ation [7]. However, due to the atypical or similar imaging features of various pathological
types of PFT on conventional magnetic resonance imaging (MRI), accurate preoperative
diagnosis may be challenging, such as the differentiation between MB and ependymoma
(EP) [8].

Diffusion-weighted imaging (DWI) provides more microscopic information on tumor
tissue by detecting the diffusion of water molecules in biological tissues, and generates
apparent diffusion coefficient (ADC) values to quantitatively assess [9]. The motion of
water in the interstitium is the main contributor to increased ADC values [10]. Malignant
lesions usually have a smaller ADC value than benign lesions as a result of the narrow
cytoplasm of tumor cells and the limited diffusion of water molecules [11]. At present, DWI
has been applied for cancer diagnosis [12], tumor grading [13], and treatment response
assessment [14]. Unfortunately, there is a large overlap in ADC values between different
grades and types of tumors, making it unreliable to diagnose individual brain tumors using
DWI alone [15–17]. In contrast, more studies suggested DWI can be highly accurate in
distinguishing between malignant and benign lesions as well as the different histological
types of PFT [18–21]. Meanwhile, there are remarkable differences in the formulation of
the parameters of DWI and the definition of areas of interest in these studies, which lack
systematic summary and analysis.

Thus, a comprehensive and systematic review is valuable for analyzing the available
data from numerous existing studies. In this article, a meta-analysis is performed to
evaluate the role of DWI as a tool for discriminating MB from other PFT.

2. Materials and Methods

This meta-analysis was conducted following the Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses–Diagnostic Test Accuracy (PRISMA) Statement. Since
our study was a systematic review and meta-analysis, Institutional Review Board approval
and written informed consent were not required.

2.1. Literature Search

We searched PubMed, Web of Science, and Embase databases for studies published
from January 2000 to January 2022. The keywords below were applied to search for
eligible records: (diffusion OR diffusion-weighted imaging OR DWI OR apparent diffusion
coefficient OR ADC) AND posterior fossa tumors. A search of the lists of references from
included studies was also performed.

2.2. Study Selection

Two qualified authors (Y. Luo and S. Zhang) independently screened and checked
the articles retrieved respectively, according to the predefined inclusion and exclusion
criteria. Firstly, the title and abstract of the study were reviewed. Then the full text of
potentially eligible studies was scanned swiftly. Finally, the eligible studies were screened
by reading the full text carefully. Eligibility criteria were set as followings: (1) The tumors
studied included MB; (2) DWI sequence and its related parameters were used for differential
diagnosis; and (3) the purpose of the study was to explore the value of DWI in differentiating
PFT and extracting true positive, false negative, false positive, and true negative results.
Disagreement was resolved by discussion, and finally reaching a consensus.

2.3. Data Extraction and Quality Assessment

Data extraction was performed by author A (Y. Luo) and confirmed by author B
(S. Zhang). The study characteristics extracted included country of origin, study type,
reference standards, patients age, sample size, magnetic field strength, methods of ROI
definition, b values (sec/mm2), sensitivity, specificity, the number of true positive, false
negative, false positive, and true negative findings using DWI. For studies that reported
multiple sensitivity and specificity in identifying posterior fossa tumors in different groups,
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we extracted the group with the highest number of correctly classified lesions (true-positive
findings + true-negative findings) to avoid overrepresentation of a sample [22], whereas in
subgroup analysis, we extracted each subgroup of data that we were interested in. Two
investigators evaluated the risk of bias and applicability of each study independently by
using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) with any
disagreement resolved with consensus.

2.4. Statistical Analysis

Meta-analysis was performed by using STATA version 16.0 (StataCorp, College Station,
TX, USA). A bivariate random-effects model was used to calculate the pooled sensitivity
and specificity. Heterogeneity of the pooled estimation was evaluated using the following
criteria: (1) Cochran’s Q-test (p < 0.05 indicating the presence of heterogeneity); (2) Higgins
inconsistency index (I2) test. Multilevel mixed-effects Logistic regression analysis was used
to compare the diagnostic efficacy of DWI in differentiating MB from other PFT with a
significant level of p < 0.05. Publication bias was assessed using Deeks’ funnel plots.

In order to explore the possible causes of heterogeneity, a meta-regression was con-
ducted to evaluate the following factors: (1) the average age of the subjects (<18 years vs.
>18 years); (2) country of origin (Asia vs. Non-Asia); (3) magnetic field strength (3.0 Tesla
or mixed vs. 1.5 Tesla); (4) the calculation method of diagnostic parameters (only lesions
are counted vs. normal tissue was referenced); (5) whether the optimal threshold value of
diagnostic parameters is obtained from the ADC histogram; (6) the region of interest (ROI)
in DWI or ADC map (single layer vs. multiple layers).

3. Results
3.1. Literature Search and Article Selection

A total of 1789 articles met the retrieval requirements (Figure 1), followed by the
removal of 423 duplicate articles. After reviewing the titles and abstracts, 78 articles
remained. Sixty-three articles were excluded by full-text review for the following reasons:
24 articles did not have enough data for calculation or construction of TP, FP, TN, and FN
values; 9 articles used machine learning for analysis, 17 articles did not include MB, and
13 articles only identified high and low grade or benign and malignant tumors. Finally, a
total of 15 studies was included for quantitative analysis [3,17,23–35].

3.2. Basic Characteristics of the Included Studies

The basic characteristics of the included studies were summarized in Table 1. The
present meta-analysis included a total of 823 patients with PFT and 371 patients with MB
among them. Six studies differentiated MB from EP, four studies differentiated MB from
pilocytic astrocytoma (PA), and five studies differentiated MB from mixed PFT. Only two
of the studies focused on adults, and the average age of patients in 12 of the studies was
younger than 18. In one study the age of patients was not reported, we assumed that all
patients were younger than 18 years old since the study sample was from a Children’s
Hospital. Six studies obtained images with a magnetic field of 1.5 Tesla (T), seven studies
used a combination of 1.5 T and 3.0 T, one study used 3.0 T, and one study did not report
magnetic field. The majority of studies (14/15) were retrospective.
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Figure 1. Flow chart describing the literature selection process.

The diagnostic parameters of DWI and regions of interest selected by different studies
were also heterogeneous. Minimum ADC value was used in two studies, mean ADC value
was used in two, ADC ratio (the ratio of mean or minimum ADC value to normal tissue)
was used in five, ADC histogram was used in five, and relative diffuse-weighted signal
intensity (rDWSI) was used in one. While four studies took the entire tumor volume as
their area of interest, four studies chose a single layer, and another seven studies chose three
continuous or discontinuous layers. The reference standard for diagnosis in all studies was
the pathological diagnosis. The DWI diagnostic parameters of all studies were measured
without the pathological diagnosis.

3.3. Quality Assessment

Figure 2 presents the results of quality assessment using QUADAS-2. The ma-
jority of the studies had high quality with a low risk of bias. All studies except
two [30,32] did not report whether diagnostic thresholds were predetermined, so we
marked them [3,17,23–29,31,33–35] as unclear risks of the index bias domain. Two stud-
ies [24,28] had a high risk of fluid and timing bias because the number of individual tumor
types enrolled did not reach the basic level of statistical analysis. One study [30] had an
unclear risk of concern of applicability for index test since the diagnostic index used in this
study is unconventional and has not been reported in other studies, we doubt whether it
can be replicated in clinical work.
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Table 1. The study and patients’ basic characteristics of the included studies.

First Author/Year Country No. of
Patients(n)

Age of
Patients(y) MB(n) Other

PFT(n) Study Design MRI Field
Strength (T)

b Values
(sec/mm2)

Selection of
ROI

Diagnostic
Parameters

Warinthorn Phuttharak
(2021) [23] Thailand 37 7.94 24 13 retrospective 1.5T/3.0T 0, 1000 single layer ADC ratio

Jan Novak (2021) [24] UK 81 5.8 55 26 retrospective 1.5T/3.0T 0, 1000 whole tumors ADC
histogram

Weijian Wang (2018) [25] China 33 3–15 18 15 retrospective 3.0T 0, 1000 single layer ADC
histogram

Seyedmehdi Paybvash
(2018) [26] USA 142 47 8 134 retrospective 1.5T/3.0T 0, 1000 whole tumors ADC

histogram
Soubhi Zitouni (2017) [27] Turkey 28 7.76 18 10 retrospective 1.5T 0, 1000 multiple layers ADC ratio
Theodore Thomas Pierce

(2014) [28] USA 42 6.5 33 9 retrospective NA NA multiple layers ADC min

Barjor Gimi (2012) [29] USA 41 5.9 27 14 retrospective 1.5T/3.0T 0, 1000 multiple layers ADC ratio
Jonathan A. Forbes

(2011) [30] USA 50 <18 18 32 retrospective 1.5T NA single layer rDWI

J L Jaremko (2010) [17] Australia 27 5.8 10 17 retrospective 1.5T/3.0T 0, 1000 single layer ADC min
Z Rumboldt (2005) [3] USA 25 9 8 17 retrospective 1.5T 0, 1000 multiple layers ADC mean

Jonathan G Bull
(2012) [31] UK 32 6.1 16 16 retrospective 1.5T 0, 1000 whole tumors ADC

histogram
Korgün Koral (2014) [32] USA 79 6.8 58 21 retrospective 1.5T/3.0T 0, 1000 multiple layers ADC ratio

Kirthi Sathyakumar
(2020) [33] India 82 8.24 51 31 retrospective 1.5T 0, 1000 multiple layers ADC mean

Seyedmehdi Payabvash
(2018) [34] USA 74 25.4 17 57 retrospective 1.5T/3.0T 0, 1000 whole tumors ADC

histogram
Marwa Mohamed

Mahmoud Esa (2020) [35] Egypt 30 8.7 10 20 prospective 1.5T 0, 1000 multiple layers ADC ratio

ADC = Apparent diffusion coefficient; rDWI = Relative diffuse-weighted signal intensity; MB = Medulloblastoma; MRI = Magnetic resonance imaging; NA = Not available; No. = number;
PFT = Posterior fossa tumors; ROI = Region of interest; T = Tesla.
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have a low, high, or unclear risk of bias.

3.4. Main Statistical Analysis Results

The forest plot of the sensitivity and specificity of DWI is displayed in Figure 3. DWI
showed a sensitivity of 0.94 (95% CI: 0.89–0.97), and a specificity of 0.94 (95% CI: 0.90–0.96)
for differentiating MB from other posterior fossa tumors. The area under the curve (AUC)
of ADC was 0.98 (95% CI: 0.96–0.99; Figure 4). The heterogeneity among studies was found
for sensitivity (I2 = 62.59%) and specificity (I2 = 35.94) of DWI, but no threshold effect was
identified (proportion of heterogeneity likely due to threshold effect = 0.80). Deeks’ funnel
plot (Figure 5) shows there is no publication bias (p = 0.22).
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3.5. Subgroup Analysis and Meta-Regression

Among the covariates, magnetic field strength was revealed to be a significant factor
affecting study heterogeneity (Table 2). Studies using 3.0 T scanners showed higher sensi-
tivity of 0.98 (95% CI: 0.96–1.00) and specificity of 0.94 (95% CI: 0.91–0.98) than studies only
using 1.5 T scanners which show the sensitivity of 0.89 (95% CI: 0.84–0.94) and specificity
of 0.93 (95% CI: 0.87–0.98) (p < 0.05). The way the ROIs were delineated can also explain
the heterogeneity of specificity, with the specificity of 0.93 (95% CI 0.89–0.96) for studies
delineating a single layer and 0.97 (95% CI 0.93–1.00) for multiple layers (p = 0.01), which is
not notably related to the heterogeneity of sensitivity (p = 0.13). Otherwise, the country of
origin also explains the heterogeneity of sensitivity (p = 0.02), while the average age was
not revealed to be a significant factor affecting study heterogeneity.

Table 2. Subgroup analysis and meta-regression for differentiating posterior fossa tumors.

Covariates Subgroups No. of
Study

Sensitivity
(95% CI) p Specificity

(95% CI) p

Age <18 13 0.95
(0.91–0.98) 0.25 0.94

(0.90–0.97) 0.63

>18 2 0.91
(0.79–1.00)

0.96
(0.90–1.00)

Region Asia 4 0.99
(0.98–1.00) 0.02 0.94

(0.87–1.00) 0.16

Non-Asia 11 0.90
(0.86–0.95)

0.94
(0.91–0.97)

Magnetic field
strength 1.5 T 6 0.89

(0.84–0.94) <0.001 0.93
(0.87–0.98) 0.03

3.0 T or mixed 8 0.98
(0.96–1.00)

0.94
(0.91–0.98)

DWI
parameters only lesions 9 0.94

(0.89–0.99) 0.17 0.92
(0.87–0.98) <0.001

with normal
tissue 6 0.95

(0.90–0.99)
0.95

(0.91–0.98)

ADC
histogram ADC histogram 5 0.93

(0.85–1.00) 0.26 0.97
(0.94–0.99) 0.18

Not-histogram 10 0.95
(0.91–0.99)

0.91
(0.87–0.96)

ROI single layer 4 0.93
(0.89–0.98) 0.13 0.93

(0.89–0.96) 0.01

multiple layers 11 0.96
(0.90–1.00)

0.97
(0.93–1.00)

ADC = Apparent diffusion coefficient; DWI = Diffusion-weighted imaging; No. = number; ROI = Region of
interest; T = Tesla. The p-values in bold indicate that the covariates are statistically significant.

As for the differences in diagnostic parameters of DWI selected by different studies,
our study conducted two grouping methods: one was directly obtained based on ADC
images of lesions (min ADC, mean ADC, ADC histogram) and the other was calculated
based on normal tissues (ADC ratio, rDWSI). Another grouping criterion was whether the
diagnostic parameters were obtained directly from the PACS system, as the ADC histogram
was calculated by other software. The results showed that the diagnostic parameters of
DWI obtained by calculating the ratio of lesions to normal tissues have higher specificity
of 0.95 (95% CI: 0.91–0.98) than those obtained based on lesions of 0.92 (95% CI: 0.87–0.98)
with p < 0.001. However, whether DWI parameters were obtained directly from PACS had
no remarkable effect on the efficacy of identifying PFT.
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3.6. Comparison of DWI for Differentiating MB from EP and PA

A total of six studies were included that exhibit differentiation between MB and EP,
and four studies that indicate the difference between MB and PA. The forest plots are
shown in Figure 6. The sensitivity and specificity for DWI to differentiate MB from PA
were 0.96 (95% CI: 0.77–1.00) and 0.99 (95% CI: 0.65–1.00), respectively. The sensitivity
and specificity for DWI to differentiate MB from EP were 0.90 (95% CI: 0.81–0.95) and 0.88
(95% CI: 0.77–0.94), respectively (Table 3). There was no obvious difference in sensitivity
(p = 0.74), while the difference in specificity (p = 0.01) was statistically significant. The key
information of each study is shown in Table 4. The ADC ratio of MB was 0.91–1.02, and
that of EP was 1.30–1.58. The optimal threshold value for differentiating MB from EP was
1.00–1.20.

Table 3. Differentiation of medulloblastoma from ependymoma and pilocytic astrocytoma.

No.of
Studies

No.of
Patients

Sensitivity
Heterogeneity

p Specificity
Heterogeneity

p
p Value I2(%) p Value I2(%)

Medulloblastoma vs. ependymoma
6 316 0.90 (0.81, 0.95) 0.03 58.35 0.74 0.88 (0.77, 0.94) 0.58 0.00 0.01

Medulloblastoma vs. pilocytic astrocytoma
4 122 0.96 (0.77, 1.00) 0.03 67.38 0.99 (0.65, 1.00) 0.14 45.18

Table 4. (a) The information about studies that differentiate MB from EP. (b) The information about
studies that differentiate MB from PA.

First
Author/Year

MRI Field
Strength (T)

Selection of
ROI

Diagnostic
Parameters MB EP The Optimal

Threshold Value

Warinthorn
Phuttharak

(2021)
1.5T/3.0T single layer ADC ratio 0.91 ± 0.17 1.3 ± 0.35 1.00

Jan Novak
(2021) 1.5T/3.0T whole tumors ADC histogram

(mean)
(0.87 ± 0.15) ×
10−3 mm2 s−1

(1.13 ± 0.16) ×
10−3 mm2 s−1

0.98 × 10−3

mm2 s−1

Soubhi Zitouni
(2017) 1.5T multiple layers ADC ratio 1.02 ± 0.30 1.50 ± 0.20 1.18

Theodore
Thomas Pierce

(2014)
NA multiple layers ADC min (0.54 ± 0.09) ×

10−3 mm2 s−1
(0.88 ± 0.13) ×
10−3 mm2 s−1

0.68 × 10−3

mm2 s−1

Barjor Gimi
(2012) 1.5T/3.0T multiple layers ADC ratio 0.97–0.99 1.54–1.58 1.20

Korgün Koral
(2014) 1.5T/3.0T multiple layers ADC ratio —— —— 1.20

Warinthorn
Phuttharak

(2021)
1.5T/3.0T single layer ADC ratio 0.91 ± 0.17 2.11 ± 0.51 1.17

Weijian Wang
(2018) 3.0T single layer ADC histogram

(mean) 106.5 ± 15.8 200.9 ± 31.4 137.7

J L Jaremko
(2010) 1.5T/3.0T single layer ADC min —— —— 0.8 × 10−3

mm2 s−1

Z Rumboldt
(2005) 1.5T multiple layer ADC mean (1.65 ± 0.27) ×

10−3 mm2 s−1
(0.66 ± 0.15) ×
10−3 mm2 s−1 ——
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4. Discussion

This meta-analysis investigated 15 studies with 823 patients to evaluate the diagnostic
performance of DWI for differentiating MB from other posterior fossa tumors. DWI
demonstrated an overall high diagnostic performance. The sensitivity of each study is
heterogeneous, which is probably caused by magnetic field intensity, ROI determination
method, and the diagnostic parameters of DWI. DWI showed the highest sensitivity and
specificity in differentiating MB from PA. Therefore, we supposed that the quantitative
DWI, as a non-invasive imaging inspection method, could improve the accuracy of the
differential diagnosis for posterior fossa tumors.

ADC value is the most regularly used diagnostic parameter of the DWI sequence,
proved efficient in describing the limited diffusion of water molecules [36,37]. Compared
with benign lesions, malignant lesions are characterized by more compressed cells, causing
a reduction in water molecules, resulting in higher signal intensity but the ADC values
decreased [38,39]. Fourteen of the fifteen studies selected derived parameters of the ADC
map as diagnostic indicators. However, different studies have different calculation methods
for ADC values. Previous studies have suggested that using the histogram to process
DWI data may help to provide quantitative information on tumor heterogeneity and
can be more advantageous in the differential diagnosis of different tumors and tumor
grading [40–42]. Our results showed that the diagnostic performance of the ADC histogram
was not significantly higher than that of other ADC parameters obtained directly from
PACS system in differentiating posterior fossa tumors. It is more convenient and faster
to use the ADC parameters directly obtained from the PACS system, such as ADC ratio,
for radiologists in daily clinical practice. Moreover, the diagnostic specificity of DWI
parameters can be enhanced by calculating the ratio of lesions to normal tissue (such as
ADC ratio and rDWSI), which leads us to believe that the differences of individual normal
tissues should be considered in the clinical application of DWI.

The definition of ROI used to calculate DWI diagnostic parameters was also of an
important influence on the study. The ADC value of necrotic and cystic tumor components
is very high compared to tumor tissue, so the inclusion of these areas would artificially
increase the ADC value of the tumor [43]. Although the ROIs of our included studies did
not select these components, it must be noted that the ROIs of the included studies still
have differences. We found that the definition of ROI can account for the heterogeneity of
specificity, with DWI parameters captured at multiple levels having higher specificity than
those captured at a single level. Therefore, we recommend obtaining the DWI parameters
by measuring the mean values of multiple layers rather than the mean values of different
regions at the same layer.

In univariable meta-regression analysis, we also found that DWI showed better sensi-
tivity and specificity in studies with high field intensity (3.0 T) MRI than in studies with
only 1.5 T MRI. High field imaging can obtain a higher signal-to-noise ratio, thus improving
the spatial resolution or signal-to-noise ratio of DWI images [44]. Our results suggested that
high-field imaging may have better diagnostic performance in the differential diagnosis
of posterior fossa tumors. This is consistent with many previous reports of DWI being
applied to other organs or systems [36,45]. Since the 3.0 T has the advantages of improving
signal-to-noise ratio and reducing artifacts such as medium effects, we suggest using 3.0 T
DWI to improve the diagnostic performance of posterior fossa tumors. However, fewer
than three studies only use 3.0 T MRI, and thus we cannot compare between 3.0 T and 1.5 T
directly. In sequence, more subsequent studies will be needed to prove the validity of this
comparison.

The three most common pediatric posterior fossa tumors were MB, EP, and PA [46].
There are important differences in the incidence, degree of malignancy, frequency of
metastasis, and prognosis of these tumors, as well as the treatment strategies based on
tumor type and histological subtype [47–50]. MB consists of densely arranged sheets of
homogeneous small tumor cells with a small number of necrotic elements and normal
tissue [10]. This histological feature of MB results in the lowest ADC value of the three
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tumors since the ADC value of brain tumors is related to the number of cells [51,52]. A
previous meta-analysis also suggested that MB, EP, and PA had increased the mean ADC
values sequentially [37]. Therefore, distinguishing MB from EP is more difficult than PA due
to smaller differences in ADC values. This explains the statistically significant difference
in the specificity of DWI for differentiating MB from EP than that for differentiating MB
from PA. On the contrary, the results showed that the sensitivity of DWI for differentiating
MB from EP was not significantly different from that of differentiating MB from PA. This
means that quantitative DWI can be a beneficial auxiliary diagnostic tool when it is difficult
to distinguish between MB and EP in the clinic.

At the same time, MB needs to be differentiated from atypical teratoma rhabdoid
tumors (ATRT). Only one of the earlier studies included in this work evaluated the effi-
cacy of DWI in differentiating MB from ATRT, and hence subgroup analysis could not be
performed. This study [23] showed that the sensitivity and specificity of DWI in differenti-
ating MB from ATRT were 66.7% and 50%, respectively. More studies [33,53] showed no
significant difference in ADC value between MB and ATRT. This might be due to the fact
that both MB and ATRT are embryonic tumors with large nuclei and small cytoplasm, the
ADC values of the two tumors are small and similar, and it is difficult to distinguish them
by DWI alone [53]. The preoperative differential diagnosis of MB and ATRT needs to be
explored by more new MRI techniques.

In recent years, new Artificial Intelligence (AI) methods have emerged for the analysis
of brain tumor imaging in children. Although the use of AI tools in routine clinical
practice has yet to be explored, it has shown great potential in the identification of common
PFT in children [54]. It is believed that the preoperative diagnosis of highly embryonic
tumors in the posterior fossa may be more accurate in the future. Meanwhile, MRI-based
AI technology is also used to predict the survival rate of brain tumor patients, which
can provide supplementary information for improving clinical decision-making tasks.
Combined with quantitative features derived from DWI, it is of great significance for AI to
predict the survival assessment of brain tumor patients [55].

There were a few limitations of the present study. First, the number of eligible studies
was relatively limited, with potentially relevant studies but no useful data reported to cal-
culate TP, FN, FP, and TN. Second, the included studies showed significant heterogeneity in
pooled sensitivities, which may reduce the general applicability of the combined estimates.
However, we identified the cause of the heterogeneity through univariate meta-regression
and found some methods that may enhance the diagnostic efficiency according to the
meta-regression results. Finally, most of the included studies were retrospective studies
(14/15). Confounding factors and bias were less controlled for than in prospective studies.
Therefore, further large-scale prospective studies for diagnosing posterior fossa tumors
should be conducted to provide a valuable reference for clinical diagnosis.

5. Conclusions

In conclusion, the diagnostic parameters of the DWI imaging sequence have excellent
diagnostic accuracy for differentiating MB from other posterior fossa tumors. Standardizing
the definition of the area of interest and the calculation method of diagnostic parameters
will assist clinicians to improve the accuracy of diagnosis in daily work. High-field MRI,
multi-slice ROI, and DWI parameters calculated with reference to normal tissues may
be beneficial factors. The results of this study have the potential to provide valuable
information for the treatment planning of pediatric PFT, including the extent of tumor
re-section and the implementation of adjuvant therapy. Meanwhile, further prospective
studies with standardized scanning protocols and large samples are needed to accurately
quantify the diagnostic threshold. Quantitative DWI combined with artificial intelligence
technology may be the future direction of in-depth exploration of posterior fossa tumors.
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