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ABSTRACT: Malaria is responsible for approximately 1
million deaths annually; thus, continued efforts to discover
new antimalarials are required. A HTS screen was established
to identify novel inhibitors of the parasite's mitochondrial
enzyme NADH:quinone oxidoreductase (PfNDH2). On the
basis of only one known inhibitor of this enzyme, the challenge
was to discover novel inhibitors of PfNDH2 with diverse
chemical scaffolds. To this end, using a range of ligand-based
chemoinformatics methods, ∼17000 compounds were selected
from a commercial library of ∼750000 compounds. Forty-
eight compounds were identified with PfNDH2 enzyme
inhibition IC50 values ranging from 100 nM to 40 μM and
also displayed exciting whole cell antimalarial activity. These
novel inhibitors were identified through sampling 16% of the available chemical space, while only screening 2% of the library.
This study confirms the added value of using multiple ligand-based chemoinformatic approaches and has successfully identified
novel distinct chemotypes primed for development as new agents against malaria.

■ INTRODUCTION
Malaria is a life-threatening disease, which is responsible for
roughly 1 million deaths each year.1 Approximately 40%2 of the
world's population is exposed to the risk of malaria, particularly
those in tropical and subtropical countries.3 Malaria also poses
a huge economic burden in countries where the disease is
endemic, cutting economic growth rates by as much as 1.3% in
countries with high disease rates.1,4

Previous successes in attempting to eradicate the disease
were only relatively short-lived due to increasing resistance of
the mosquito to insecticides5 and of the parasite to established
drugs.6 In many parts of the world, the parasites have developed
resistance to a number of drug classes.2,7 Emerging resistance is
responsible for a recent increase in malaria mortality, particularly
in countries that had previously eliminated its presence. The
disease has worldwide implications due to the increase in air
travel, with travelers from malaria-free areas of the world

especially vulnerable;1 therefore, the development of new and
more effective antimalarial chemotherapy has never been more
important.
The Plasmodium falciparum parasite, which is the most

deadly form of the malaria parasite,1 has developed resistance to
chloroquine in many parts of the world. There are strenuous
and continued efforts to identify novel small molecules that
either circumvent chloroquine resistance or act on alternative
stages of the malaria parasite lifecycle.8 One target that has
received attention is the mitochondrial respiratory chain of
P. falciparum. Atovaquone (part of combination therapy
Malarone) targets the cytochrome bc1 complex (complex III)
in the mitochondrial electron transport chain of P. falciparum.9

The electron transport chain is an attractive chemotherapeutic
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target in that it differs from the human host in that it lacks a
canonical protonmotive NADH:ubiquinone oxidoreductase
(complex I); rather, it has a single subunit, nonprotonmotive
NDH2.10 Using an Escherichia coli NADH dehydro-
genase knockout strain (ANN0222, ndh::tet nuoB::nptI-sacRB),
we have developed a heterologous expression system for
PfNDH2 facilitating its physiochemical and enzymological
characterization.10b PfNDH2 is a metabolic choke point in the
respiratory chain of the parasite's mitochondria and is the focus
of the discovery program toward the development of novel
therapy for uncomplicated malaria. We have previously described
a miniaturized spectrophotometric assay for recombinant
PfNDH2 (steady state NADH oxidation and ubiquinone
reduction monitored at 340 and 283 nm, respectively) with
robust assay performance measures.11 This assay forms the basis
of the high-throughput screen (HTS) sequential screening
program.
The objective of this program was to identify novel

chemotypes that act as selective inhibitors of PfNDH2. Upon
commencement of the program, there was only one molecule
that was known to exhibit PfNDH2 activity, 1-hydroxy-2-
dodecyl-4-(1H)quinolone (HDQ) (Figure 1), which has an

IC50 value of 70 nM.10b,11,12 Our discovery program used
virtual screening to select a 16050 compound subset of the
∼750000 compound BioFocus library for a high-throughput in
vitro screening campaign. The authors describe here the use of
chemoinformatics, virtual screening, and computational meth-
ods to identify the “best” subset of compounds from the
BioFocus database and the screening of these compounds using
the PfNDH2 HTS assay to identify novel chemical hit series,
with diverse chemotypes, for subsequent medicinal chemistry
development.
Virtual screening emerged in the 1990s as a way of predicting

bioactive compounds using computational methods.13 There
are many examples of successful use of such approaches in the
literature for both hit finding and hit-to-lead optimization
stages of the drug discovery process.14 One example of virtual
screening successfully influencing the discovery of products
now on the market is that of Aggrastat.15 The methods of
virtual screening are usually defined as either structure-based or
ligand-based. Structure-based approaches use knowledge of the
3D structure of the biological target, whereas ligand-based
approaches rely on the knowledge of the structure of com-
pounds exhibiting the desired activity.16 This current work
adopts a ligand-based approach as there is no crystal structure
of the PfNDH2 target and it displays poor homology with any
published structure in the PDB.10b Ligand-based virtual screening
approaches rely on the complementary area of chemo-
informatics, which has been defined as the “The application
of informatics methods to solve chemical problems”.14c There
have been an increasing number of publications that have made
use of chemoinformatics in recent years,17 partly driven by the

increasing pressures on the pharmaceutical industry to increase
productivity, while decreasing costs. Using computational
approaches to expedite the identification of candidate
molecules that are predicted to possess the desired properties
is an efficient approach to discovery. With the incorporation of
computational filters for properties synonymous with unfavor-
able PK/PD profiles, the aim of chemoinformatics is to reduce
compound attrition rates at all stages in the discovery process.
In this work, our definition of the “best” set of compounds is

a multidimensional challenge. The first dimension of the metric
to identify the “best” set of compounds is whether a compound
is predicted by virtual screening and chemoinformatic methods
to possess the desired activity against PfNDH2 in the HTS
assay. The second dimension of this quality metric is that the
compounds assayed possess desirable lead/druglike character-
istics. Over the past few years, there have been many
publications concerning the identification of molecular proper-
ties of compounds that are common among drugs and drug
candidates.18 This has led to many rules of thumb to guide
discovery of molecules that are likely to possess the appropriate
absorption, distribution, metabolism, excretion, and toxicity
(ADMET) characteristics and be amenable for further
development along the drug discovery pipeline.19,14a,20 The
third dimension of the metric for “best” set of compounds is
that of optimal sampling of chemical space. In the project, we
had the resources to assay approximately 17000 compounds in
total; therefore, we had to explore chemical space in the most
efficient way possible to yield the most information-rich set of
results that would be the most informative for both the
sequential screening stage and the final compound selection
phase.14b In summary, the “best” set of compounds are those
that are predicted to be active against the target, possess
desirable drug/lead like characteristics, and sample chemical
space the most effectively.
In this paper, we described the use of chemoinformatics and

virtual screening methods to select an optimal set of com-
pounds for HTS screening leading to the identification of new
chemotypes that display activity against the PfNDH2 malarial
target. Overall, our approach consisted of four fundamental
stages: (i) transfer and optimization of assay from in-house to
BioFocus, (ii) substructure search of quinolin-4-one in BioFocus
library followed by preliminary HTS screening, (iii) chemo-
informatic compound selection from BioFocus library based on
results of preliminary screening, and (iv) HTS screening of
selected compounds followed by hit confirmation.

■ RESULTS AND DISCUSSION
Preliminary Screening. Initial substructure searching of

the BioFocus library for compounds, which contained the “key
moiety”, the core of HDQ (Figure 1), revealed 1175 compounds.
These compounds underwent screening using the spectrophoto-
metric assay previously developed and validated by us, which had
subsequently been transferred to BioFocus.10b Duplicate five
point dose−response curves ranging from 20 μM to 78 nM
revealed the presence of 54 new active compounds (IC50 < 20
μM) that had confirmed purity by LCMS of >70%. The identity
of these active compounds and HDQ along with the identity of
the inactive compounds provided the basis of the virtual
screening and compound selection.

Compound Selection Using Chemoinformatics. As the
primary goal of this work was to identify novel chemotypes, we
used chemoinformatic methods to achieve a “scaffold hop”, that
is, identification of structurally diverse compounds that exhibit

Figure 1. Structure of HDQ and the identity of the proposed key
moiety in the structure.

Journal of Medicinal Chemistry Article

dx.doi.org/10.1021/jm3001482 | J. Med. Chem. 2012, 55, 3144−31543145



the desired biological activity.21 We applied seven different
virtual screening methods in parallel to identify compounds
from the BioFocus library.
The first three virtual screening methods used molecular

fingerprints. Molecular fingerprints have been successfully used
in similarity searching many times. Indeed, 2D fingerprint
searching has been shown to outperform 3D methods in some
situations.22 Recently, it has been reported that fingerprints can
be used successfully to achieve a “scaffold hop”.23 The use of
fingerprints is particularly attractive for large scale screening as
the calculations are quick (as compared with other methods
such as protein:ligand docking), and 3D structures of the
molecules do not need to be generated or stored.
We applied a range of different fingerprinting methods to

navigate chemical space in a variety of different ways. We
employed MDL molecular access system (MACCS) keys,
ECFP2, and FCFP2 to identify compounds similar to any of
the 55 actives (54 from substructure screening plus HDQ)
previously identified. The MDL keys are a set of predefined
substructural fragments that have been used in similarity
searching due their speed of calculation and comparison and
broad experience in application.24 The publicly available 166 bit
key set has found a variety of uses in the drug discovery
workflow.25 Extended connectivity fingerprints (ECFPs) have
been shown to have a number of strengths that make them
useful for similarity searching. ECFPs are a fingerprint
methodology explicitly designed to capture molecular features
relevant to molecular activity. They can be quickly calculated, as
they are not defined a priori (in contrast with MDL MACCS
keys) and they can represent novel structural classes.26

Functional class fingerprints (FCFPs) are a related fingerprint
to ECFPs but instead of using a specific atom identifier for the
initial atom in the algorithm to generate the fingerprint, FCFPs
use a more abstract pharmacophoric set of initial atom
identifiers based on properties such as hydrogen bond acceptor
and donor, negatively and positively ionizable, aromatic, and
halogen.26

For all the similarity searches, the Tanimoto coefficient was
employed. A study of a wide variety of similarity coefficients
(22 in total) that may be employed in similarity searching
supports the use of the popular Tanimoto coefficient as
compared with the alternatives.27 There is little literature
precedent for the cutoff value that should be used for a given
fingerprint and similarity coefficient to identify a compound
displaying the desired activity. There is, however, a study that
used the Daylight fingerprint methodology and Taminoto
coefficient and suggested that a coefficient of greater than or
equal to 0.85 would result in a 30% chance of the compound
exhibiting similar biological activity to the query molecule.28

However, the fingerprints employed in the current study are
different to the Daylight methodology in the aforementioned
study so these analyses may not apply. Consequently, we have
chosen similarity thresholds to seek to obtain a “balance”
between the numbers of compounds retrieved for each
fingerprint used.
Using a threshold of ≥0.8 for the MDL MACCS keys found

8784 compounds, whereas for ECFP2, a Tanimoto threshold of
≥0.6 gave 333 compounds, and FCFP2 with a Tanimoto
coefficient ≥0.75 highlighted 435 compounds. Interestingly,
these threshold values match up extremely well with a paper
(published after this work was performed), which indicates that
the probability assignment of a particular similarity measure of
finding 50% of all possible actives using a given measure for

MACCS keys should use a value of 0.82, whereas 0.52 should
be used for ECFP2 and 0.75 for FCFP2values very similar to
the ones we had selected.29 Thus, the combination of these three
fingerprint approaches would hopefully maximize the chances of
identifying compounds that were sufficiently similar to one of the
query compounds to display inhibition of PfNDH2.
The fourth chemoinformatic method that was used to

identify compounds with the desired biological profile was
turbo similarity searching.30 Turbo similarity searching has
been developed to increase the effectiveness of virtual screening
when there is little information available. The approach uses the
multiple databases searches using the nearest neighbors
resulting from an initial similarity search.31 The results from
these searches are then combined together using group fusion
and the molecules ranked by the fusion score. This approach
has been shown in simulated virtual screening to show
impressive performance in retrieving active molecules. For
our work, turbo similarity searching was performed using the 55
active compounds as initial query molecules and identifying the
50 nearest neighbors to each compound using ECFP4 finger-
prints and the Tanimoto coefficient. These molecules were
then used as the queries searching the database utilizing the
ECFP4 fingerprints. The top 250 compounds from each
nearest neighbor search were summed using the Tanimoto
coefficient and identified 4891 unique compounds.
The fifth method employed was that of substructural

searches. The concept for these searches was to identify
bioisosteres of the key moiety headgroup of HDQ
[4-(1H)quinolone] (Figure 1), thus employing the principle
of isosterism, in that similar molecules usually possess similar
properties.32 Thirty-eight scaffold isosteres of the 4-(1H)-
quinolone headgroup (HDQ) were identified using a variety of
2D topological pharmacophores.33 The pharmacophores used
were based on the Cahart strategy where a feature refers to
two chemical groups separated by a certain 2D path length.
Atom-based, fragment-based, and pharmacophore-based
binary descriptors were investigated using the Tanimoto
coefficient. The atom-based approach is likely to retrieve very
close analogues to the query compound, while fragment and
pharmacophore searches were more likely to find more diverse
analogues. Continuous descriptors were also employed to
identify isosteres of the 4-(1H)quinolone headgroup using a
modified Burden33 number using the Euclidean distance. Both
binary and continuous approaches were used to search a range
of databases (e.g., ACL and NCI diversity database33) using
4-(1H)quinolone as the query. Compounds identified by these
methods were examined by eye by medicinal chemists before
inclusion in the list of scaffold isosteres. The thirty-eight
substructures were used to search the BioFocus database, and
137693 compounds were found.
This number of compounds was too large for this current

work, and a simple selection procedure was employed. For
those isosteres that retrieved less than 1000 compounds, all
were kept, but for searches that highlighted more than 1000
compounds, a maximally diverse selection procedure was used to
sample the compounds identified, while retaining the maximum
coverage of chemical space possible. To achieve this, we used
FCFP4 fingerprints together with diversity selection to achieve a
maximum similarity selection. These procedures resulted in the
identification of 5247 molecules.
The sixth method used was a naiv̈e Bayesian classifier.

Bayesian methods rely on the estimation of probability
distributions of numerical representations of compounds
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based on molecular properties of fingerprints.34 Each descriptor
value of a molecule is considered in turn, and the probability of
activity is considered to be proportional to the ratio of actives
to inactives that share that descriptor value. The overall
probability of activity is the product of all of the probabilities.
This naiv̈e approach assumes statistical independence of
descriptors; however, theoretical results suggest that large
deviations from independence can be tolerated.35 A Bayesian
model was built using the 1175 molecules screened initially (55
“actives” the rest “inactive”) using a variety of physicochemical
properties (AlogP, MW, number of hydrogen bond donors,
number hydrogen bond acceptors, number of rotable bonds,
polar surface area) and fingerprints (ECFP2) as the molecular
descriptors. The descriptors were binned, and low-information
content bins were removed due to a poor normalized estimate.
A leave-one-out cross-validation process was employed to build
the model in which each sample was left out one at a time and a
model built using the results of the samples and that model
used to predict the left-out sample. The area under the receiver
operator curve for the cross-validation set was 0.881. Thus,
given an active molecule and an inactive molecule and one used
the model to guess which one was the hit, one would be right
88% of the time. Using this split a contingency table revealed
the number of true positives, true negatives, false positives, and
false negatives. The figure of accuracy of 0.924 indicates that
the model generated was very good. The performance of this
model using the whole data set was assessed through
examination of its enrichment performance. In the first 25%
of the molecules tested, over 80% of the active molecules were
retrieved. Application of the Bayesian model to the BioFocus
collection identified 11702 compounds that were predicted to
be active.
Principle component analysis (PCA) was used as the seventh

method for compound selection. PCA is a simple, non-
parametric method of extracting relevant information from
complex data sets that are often confusing, clouded, or even
redundant. PCA transforms a number of possibly interdepen-
dent or correlated variables into a smaller number of significant,
independent, and uncorrelated orthogonal components.36 A
principal component model of the initial 55 active compounds
was constructed using 20 physicochemical descriptors (see the
Experimental Section details for a full list). The model con-
structed explained 88.5% of the overall variance of the active
compounds in three principal components. The Euclidean
distance was used to identify from the BioFocus library the
5000 closest compounds in the three-dimensional principle
component space to any of the active molecules. Thus, we were
identifying the nearest neighbors to the active compounds in
PCA space.
The results of the seven virtual screening methods were

combined and identified 34356 unique compounds that were
predicted by one or more methods to be similar in some way to
one or more of the initial set of 55 active compounds. This
number of compounds was not able to be screened in the in vitro
assay; hence, we undertook scoring and diversity sampling
protocols to select the best subset of 16000 compounds that
achieved the optimal coverage of chemical space while biasing
the selection such that compounds that had been selected by
more than one chemoinformatics approach were more likely to
be included in the final 16000 molecular set.
The concept that we employed was that of consensus

scoring, which can lead to tremendous improvements in virtual
screening through the improved quality of the results obtained.

Ligand-based virtual screening consensus scoring can show
improved performance over a single scoring protocol37 due to
the fact that the mean of repeated samplings is closer to the true
value than one single measurement. Also, different methods
agree more on the ranking of actives than inactives, which arises
from the fact that different ligand-based virtual screening
protocols focus on different aspects of the ligand binding
process and thus lead to different false positives. Also, it has been
suggested that actives are clustered more tightly than inactives;
thus, multiple samplings will recover more actives than inactives.
A scoring function was applied to each compound accounting
for how often any of the seven virtual screening methods had
identified a compound and also took into account key druglike
properties (vide infra).
The druglike properties that were calculated for each

compound were solubility, octanol/water partition coefficient,
and molecular weight. Scoring functions were applied for these
molecular characteristics displayed in Table 1 and Figure 2.

For molecular weight, the lower bound was chosen due to
the fact that during hit to lead development and onward
through the preclinical discovery pipeline, there is, in general,
an increase in molecular weight of a potential candidate. The
second influence on our choice of these boundaries was the
Lipinski guidelines for passive absorption of drugs.38 Solubility
is a key factor in any drug discovery program, and as such,
compound predicted solubility was assessed.39 These values
were selected as previous work has suggested that for a com-
pound showing high permeability and a potency of 0.1 mg/kg,
the aqueous solubility needs to be 1 μg/mL to be completely
absorbed.18a For example, for a compound with a molecular
weight of 400, 5 μg/mL corresponds to a log S value of −5.6.
The octanol/water partition coefficient is one of the key
molecular characteristics for any compound as it plays a key
determinant in preclinical ADMET and the increasing body of
evidence that suggests that molecules with optimal lipophilicity
might have increased chances of success in development.20b For
example, it has been shown that the promiscuity of a given
compound increases dramatically if log P is greater than 3,20a

and other work has suggested that compounds with a log P
value of less than 4 (and molecular weight less than 400) have a
greatly increased chance of success against a comprehensive set
of ADMET tests.19 Taking these into account, a compound
scoring function was derived as displayed in Figure 2 and Table 1.
Thus, each compound was assigned a score according to its
druglikeness considering its solubility, lipophilicity, and
aqueous solubility.
Each compound was scored using the seven virtual screening

methods described above using range-scaled scores. The results
from the three fingerprint methods used the calculated
Tanimoto coefficients unaltered. The compounds selected by
the turbo similarity search were scored using the Tanimoto
coefficient of the nearest neighbor identified in the turbo
search. Molecules chosen by the bioisostere substructure search
all scored 1. Molecules predicted to be active via the Bayesian
model (Bayesian score cutoff >5) were scaled between 0 and 1.

Table 1. Scoring Functions Ranges

property more desirable range less desirable range

log S >−5 <−6
log P −1 < log P < 4 log P ≤ −2.5; log P ≥ 5.5
MW <400 >600

Journal of Medicinal Chemistry Article

dx.doi.org/10.1021/jm3001482 | J. Med. Chem. 2012, 55, 3144−31543147



The PCA distances of the 5000 compounds selected were
scaled between 0.5 and 1 with the closest compound scoring 1
and most distant 0.5. These range-scaled virtual screening
scores were combined with the physicochemical molecular
properties to give a final “virtual screening score” as defined in
eq 1. As we sought to favor selection of compounds that were
predicted to be active according to our virtual screening
models, the range-scaled scoring function was multiplied by
four. The score for molecular weight was multiplied by two to
enhance the likelihood of selecting smaller compounds, while
the solubility and lipophilicity function were applied
unchanged. Upon collation of all of the data, there were in
total 34356 unique compounds selected, each of which had a
virtual screening score calculated. The virtual screening score is
our numerical assessment of how “good” a molecule is in terms
of likelihood of possessing the desired profile in terms of
activity and ADMET properties. The form of the virtual
screening score assigned to each compound is as follows:

= × +

+ + ×

⎛
⎝⎜

⎞
⎠⎟ f S

f P f

virtual screening score

4
sum of range scaled scores

7
(log )

(log ) 2 (MW) (1)

These 34356 compounds were then subjected to a series of
filters with hard cut-offs to eliminate compounds that did not
possess desirable druglike properties. The filters that were used
may be described as “relaxed” Lipinski18a and Veber18b

guidelines for oral bioavailability. Compounds were discarded
if they failed more than one of the following properties:
molecular weight > 600, Alog P > 6, number of hydrogen bond
donors > 6, number of hydrogen bond acceptors > 11, number
of rotable bonds > 14, and polar surface area > 150 Å2. The
reason that we slightly relaxed the published guidelines was that
the original publications were based on properties of the majority
of compounds that passed certain criteria. Thus, by relaxing these
guidelines slightly, we hope to maximize our chances of finding

novel chemotypes so we did not want to preclude molecules “too
early”. When these cut-offs were applied, there were 32727
compounds that were taken forward.
To select 16000 compounds for HTS, a procedure was

employed to choose the most diverse 16000 compound set
from the 32727 compounds. This approach was chosen as we
desired to identify new scaffolds active against PfNDH2; thus,
selecting the most diverse subset was considered advantageous
over selecting the top 16000 highest scoring compounds. To
achieve the diversity selection, BCUT descriptors were used, as
these have previously been used in diversity selection.40 All but
two compounds were successfully calculated; these two
compounds contained a positively charged sulfur atom and a
positively charged phosphorus, both types of atoms unlikely to
produce a suitable druglike compound.
Histograms of the final virtual screening score were examined

for the set of 32727 compounds and the 16000 compound set.
It is noteworthy that upon compound selection the distribution
of virtual screening scores altered to favor compounds with
higher virtual screening scores (Figure 3). Thus, any additional
biasing of high-scoring compounds was not considered
necessary. Compounds in the lower scoring bins were included,
as recent work has highlighted the possibility of achieving a
successful scaffold hop may come from compounds that have
low similarity scores as assessed using molecular fingerprints.36

Thus, low-scoring compounds overall may well still be able to
achieve a scaffold hop.
The effect on this compound selection upon the coverage of

chemical space available in the BioFocus library was assessed.
The diversity of compounds selected was examined using
fingerprints with the Tanimoto coefficient to compare the
coverage of the chemical space within the entire BioFocus
library. The whole BioFocus library of ∼750000 compounds
displayed 37881 clusters (ranging from having 1 member to
2927 members), whereas the 16000 compounds selected gave
5913 clusters (having between 1 and 164 members). Thus,
15.6% of the overall diversity within the library was covered by
2.1% of the compounds.

Figure 2. Scoring functions for calculated molecular properties.

Figure 3. Comparison of the virtual screening scores: (left) 32727 compounds and (right) 16050 compounds.
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Three potential false negatives were identified from the initial
screen from our previous work. A similarity search using ECFP2
was performed against the BioFocus library, and the 50 most similar
compounds were added to 16000 compounds to be screened.
Thus, in total, there were 16050 compounds to be screened.

■ SCREENING
A total of 16050 compounds were screened against PfNDH2
over 2 days. Compounds were screened at a concentration of
20 μM generating one data point per compound. The mean
and median Z′ factors41 on day one were 0.77 and 0.76,
respectively, and on day two were 0.81 and 0.81. A total of 395
compounds (2.5% of the total screened) showed >20%
inhibition in the primary screen. To best resolve compounds
with weak activity from the noise, a runwise multiplicative
correction factor available within Genedata Screener software
(Assay Analyzer module, Genedata Inc., Switzerland) was
applied to the data.42 This correction factor is created by a
sophisticated pattern detection algorithm that detects subtle
recurring patterns within the data set, and when applied, the
median of the distribution of activity is brought in line with
zero % inhibition, thereby tightening the data and potentially
rescuing false negatives. Using the corrected data, 333
compounds showed >20% inhibition. Of these 333 compounds,
24 had not been identified using noncorrected data. To
maximize the chances of identifying weakly active compounds,
any compounds that showed >20% inhibition using either the
corrected or the noncorrected data were progressed to
retesting. This resulted in the progression of 419 compounds
(395 + 24) to retest analysis. A total of 469 compounds were
tested in triplicate for the ability to inhibit the PfNDH2-
catalyzed reaction. A total of 419 of these were identified from
the primary screen, and a further 50 were included as
structurally related to three potential false negatives in the
1175 screen. Prior to initiating this phase of the HTS, the
pharmacology of HDQ was reconfirmed to ensure comparable
performance between the primary and the hit confirmation
screens. The mean and median Z′ factors for each plate were
0.84 and 0.81.
The samples showed good correlation between the primary

and the retest data. These compounds were progressed to
potency analysis to ensure capture of all compounds that
showed activity in either the primary or the retest stages. The
hit calling criteria were set such that if any one of the three
percentage inhibition measurements for a given compound was
>30%, the compound was progressed for potency testing. This
captured 108 compounds. In addition, compounds that showed
>50% inhibition in the primary screen but whose maximum
triplicate retest values was <30% inhibition were included,
capturing a further 36 compounds. A further six compounds
were selected that showed a maximum retest value of 25−30%
and whose screening concentration was <20 μM. This hit-
calling approach was designed to ensure that no compounds of
interest or weak hits were missed, and 150 compounds met
these criteria.
The IC50 was determined for these 150 compounds with

each compound screened at 10 concentrations (with 3-fold
dilution steps between points) as replicated duplicates; that is,
each compound was replicated on a plate, and each plate was
screened twice. As for previous phases of the HTS, the Z′ factor
and signal to background obtained were within the accepted
range, and the correlation between the two runs was strong
with minimal numbers of outliers. The potency screen

produced 32 compounds with an IC50 < 10 μM. The most
potent compound showed an IC50 of 292 nM.

■ ANALYSIS
The chemoinformatics methods selected 16050 compounds
from a library of over 750000 that were subjected to a screening
cascade involving primary, retest, and potency screens. The
screen resulted in the identification of 32 compounds with an
IC50 < 10 μM. Interestingly, analysis of the chemoinformatics
approaches that selected the hits identified revealed that only 2
of the 32 compounds were selected by more than one virtual
screening approach (Table 2), justifying our use of a range of

virtual screening approaches. This result indicates that different
screening methods probe different areas of chemical similarity
space. The two compounds that were identified are displayed in
Figure 4 together with the methods that identified them.

To examine which selection method out of bioisosteres,
Bayesian and turbo, gave the most molecular diversity, the
diversity of the compounds as selected was assessed using
ECFP4 fingerprints and the Tanimoto coefficient (Table 3).

As can be seen, the bioisosteric method gave the highest average
diversity with turbo only slightly behind, with Bayesian compound
selection displaying the least diversity.
In addition to these 32 compounds identified by the

screening cascade, 16 compounds from the initial screening
displayed IC50 < 10 μM against the PfNDH2 enzyme; thus, in
total, 48 hit compounds have been identified. Inspection of the

Table 2. Hit Compounds Identified via Each
Chemoinformatic Method

method no. of hits

MACCS 1
FCFP2 2
ECFP2 0
bioisosteres 15
Bayesian 8
turbo 8
PCA 1

Figure 4. Two compounds identified by more than one chemo-
informatic method.

Table 3. Diversity of the Compounds Selected by Three
Chemoinformatic Methods

minimum distance maximum distance average distance

bioisostere 0.747 0.950 0.876
Bayesian 0.2697 0.919 0.692
turbo 0.4627 0.934 0.848
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48 hits identified revealed several chemotypes indicating that
using many complementary virtual screening methods is a
favorable choice when embarking on a hit discovery campaign.
Example compounds from some of the chemotypes are
displayed in Table 4 together with the PfNDH2 and 3D7
antimalarial activities.
Our approach did provide hits that would not have been

identified from simple 2D similarity approaches. To exemplify
this, compounds 3, 4, and 5 in Table 4 would not have been
identified if we had only relied on substructure searches based
on bioisosteric replacement of the core of HDQ. Thus, we
believe that our approach of using many chemoinformatics
methods is justified. This stance is further strengthened through
a very recent retrospective study in which a multipronged
virtual screening approach very similar to the one employed
here was one of the best performing “consensus” approaches.43

The activity range of the example five chemotype
compounds against the enzyme is in the tens to hundreds
nanomolar. Their whole cell 3D7 growth inhibition activity is in
the micromolar range presumably due to the large number of
membranes that the compound has to cross to reach its site of
action in the mitochondria. Crucially, however, the ligand
efficiency (pIC50/number of non hydrogen atoms) of these
classes of compounds compares favorably with current
therapies (e.g., chloroquine has a value ∼0.33 and atovaquone
∼0.30), and our compounds are yet to undergo optimization.
After this work was performed, the results from large scale

screening campaigns were released from GSK,44 St. Judes,45

and Novartis.46 Comparing our hits with those from those
published, there are no exact duplicate compounds, and using
FCFP4 fingerprints, there are no compounds with a Tanimoto
value of >0.9. Thus, our suite of chemoinformatics methods has

Table 4. Example Chemotypes Discovered Together with their PfNDH2 and Pf(3D7) IC50 Values and Ligand Efficiency (3D7)
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enabled the discovery of novel antimalarial chemotypes as
compared with the mass screening campaigns, and the results
display extremely promising levels of inhibition for both the target
enzyme and the whole cell inhibition. As such, these molecules are
very attractive scaffolds on which to base a medicinal chemistry
lead development program. Consequently, these chemotypes
are currently undergoing further medicinal chemistry investigation
and optimization.47,48

■ CONCLUSIONS

We have employed a wide range of ligand-based chemoinfor-
matics methods in the rational selection of 16050 compounds
that were predicted to possess activity against PfNDH2 and
possess favorable ADMET properties. These compounds were
subjected to high-throughput screening triage against the
P. falciparum NDH2 enzyme target. Hit confirmation and potency
determination revealed 48 compounds with IC50 values ranging
from 100 nM to 10 μM. Analysis of these hits revealed several
novel distinct chemotypes primed for development as new
agents against malaria. To our knowledge, hitherto, HDQ and
the phenothiazines are the only selective compounds known to
inhibit type II NADH:ubiquinone oxidoreductase homologues
from any organism. The hits discovered in this HTS therefore
represent a significant advancement and should enable chemical
biology research into these enzymes from a number of
important organisms including Plasmodium, Mycobacterium,
Trypanosomes, and yeast.

■ EXPERIMENTAL SECTION
NADH Oxidation Assay. All reagents were prepared in glassware

prerinsed with deionized water followed by ethanol (EtOH) and
finally deionized water unless otherwise stated. With the exception of
assay buffer and 1 M KCN, all reagents were stored on ice. The assay
buffer was prepared on the day of the assay and was comprised of 20
mM HEPES (free acid, Sigma H3375) in H2O, pH 7.4. One molar
KCN was prepared in a fume hood using buffer and 10 M HCl to
adjust the pH to 7.5. Ten millimolar CoQ (Sigma C7956) was
prepared by dissolving 10 mg in 4 mL of EtOH. This was then further
diluted 10-fold in 25% DMSO to give 1 mM working solution. One
millimolar HDQ was prepared fresh every 2−3 days by diluting a fresh
weighing into methanol (MeOH); this was then further diluted 20-fold
in buffer to obtain the 50 μM used in the assay (5 μM in 0.5% MeOH
final assay concentration). A 0.1 M concentration of NADH (Sigma
N8129) was prepared in buffer contained in a light protective
eppendorf tube; the reagent was not used more than 3 h after
preparation. A Perkin-Elmer EnVision with a 340/25 nm emission
filter was used to measure absorbance. Assay plates were black sided
and clear bottomed, and the final well volume was 100 μL. Because
absorbance is dependent on the path length, the reaction was initiated
with a minimal volume of CoQ (2 μL), and a 2% change in volume
itself was deemed to have negligible effects on the absorbance and was
consistent for all wells. Control wells that received no CoQ received 2
μL of diluent to maintain the path length and concentrations. The
expected absorbance drop corresponding to 100% conversion of
Coenzyme Q from the quinone to quinol form is 0.15 abs units.
Prior to the reaction, 11.36 mM KCN was prepared in assay buffer.

For each 384-well plate to be screened, 83 μL of 0.1 M NADH was
added to 37.6 mL of 11.36 mM KCN/buffer followed by 108 μL of
1:1 membrane (8 mg/mL). The glass container was then swirled to
ensure thorough mixing of the assay mixture, and 88 μL was added to
each well containing 10 μL of compound using a Matrix multichannel
pipet. A “pre-read” 340 nm absorbance value was then obtained prior
to the addition of 2 μL of 1 mM CoQ using a Velocity11 Bravo to
initiate the reaction. The reaction was then mixed (20 μL × 3 cycles
fast speed), and a “post-read” 340 nm absorbance value was obtained 1
min after reaction initiation. The final assay concentrations were

therefore 200 μM NADH, 10 mM KCN, 1 μg/well membrane, 20 μM
CoQ, and 5 μM HDQ. The assay mixture was only stable for a few
minutes (NADH oxidizes when in contact with the membrane) and
was therefore prepared fresh for each plate where a 1 min reaction
time was used or to support a batch of three plates where 3 min of
reaction time was used. Because the reaction was not stopped, it was
important to keep the timings very tightly controlled.

HDQ was used as the assay standard. A fresh weighing of
lyophilized HDQ was dissolved in MeOH to a concentration of 1 mM.
This stock was stored at −20 °C and used for a maximum of 3 days.
Following data collection, the results were analyzed, and IC50 was
calculated in GraphPad Prism (GraphPad Software, Inc., United
States) using nonlinear regression followed by a sigmoidal dose−
response calculation.49

Preliminary assaying of the 1175 set of compounds was performed
in replicate five-point concentration curves with a 4-fold dilution
step in 100% DMSO. The 1 μL stock concentration curve was diluted
25-fold by the addition of 24 μL of buffer to give a top concentration
of 200 μM in 4% DMSO, that is, 20 μM final in the assay. Plates were
formatted such that test compounds were present in columns 3−22;
columns 1, 2, 23, and 24 contained 4% DMSO with the exception of
wells M-P1 and A-D24, which contained 50 μM HDQ as a positive
control for tracking purposes. Columns 1 (A−L) and 24 (E−P)
contained the no-CoQ positive control used for data calculations; instead
of 2 μL of 1 mM CoQ, these wells received 2 μL of the carrier (22.5%
DMSO/10% EtOH). The final well contents for phase 2 screen were 20
μM top concentration of compound, 20 μM CoQ (or diluent for the
100% inhibition controls), 0.85% DMSO, and 0.2% EtOH.

Assaying of the 16000 compounds was performed at 20 μM for
both the primary and the hit confirmation screens. Plates were
formatted such that test compounds were present in columns 1−22,
and columns 23 and 24 contained 4% DMSO with the exception of
wells A-D24, which contained 50 μM HDQ as a positive control for
tracking purposes. Column 24 (E-P) contained the positive control
used for data calculations; these wells received 2 μL of the carrier
(22.5% DMSO/10% EtOH) instead of 2 μL of 1 mM CoQ. The final
well contents for phase 4 screen were approximately 20 μM
compound, 20 μM CoQ (or diluent for the 100% inhibition controls),
0.85% DMSO, and 0.2% EtOH.

The potency determination on the compounds of interest was
performed as 10-point concentration−response curves with a 3-fold
serial dilution step. Plates were formatted such that test compounds
were present in columns 3−22, and columns 1, 2, 23, and 24 contained
4% DMSO with the exception of wells M-P1 and A-D24, which
contained 50 μM HDQ as a positive control for quality control
purposes. Each plate also contained a 10-point concentration−
response curve of HDQ, which had a final assay top concentration
of 5 μM in 0.5% MeOH; the curve was contained in rows O13−22
and P13−22. Columns 1 (A−L) and 24 (E−P) contained the positive
control used for data calculations, and these wells received 2 μL of
carrier (22.5% DMSO/10% EtOH) instead of 2 μL of 1 mM CoQ.
The final well contents for potency determination were 40 μM top
concentration of compound, 20 μM CoQ (or diluent for 100%
inhibition controls), 1.25% DMSO, and 0.2% EtOH.

Data were recorded as absorbance units prior to initiation of the
reaction and after reaction completion. The pre- and postreaction
absorbance values were imported into Genedata Screener Assay
Analyzer (Genedata Inc., Switzerland), and having defined the control
populations, the % inhibition was calculated for each well. Control
wells used in the calculations did not receive compound (but were
diluent controlled), and % inhibition was calculated using wells that
had not received CoQ as 100% inhibition. Five micromolar HDQ
wells were monitored to ensure that a high % inhibition was being
achieved. The option of correcting the data for plate effects using
Assay Analyzer's runwise multiplicative correction factor (Genedata
Inc.) was investigated, and this data set was taken into account for
screen hit calling. The concentration−response data were processed
through Genedata Screener as described, then calculated, and plotted
using XLFit 4.2.1. (ID Business Solutions, Guildford, United Kingdom).
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Curve fitting was carried out using a 4-point parameter logistic equation,
model 204.50

Chemoinformatic Methods. All of the methods below were
performed in parallel on the BioFocus compound collection.
Substructure Search. The BioFocus compound collection of

∼750000 compounds was searched for compounds that contained
the “key moiety” (Figure 1) of HDQ that we chose as 1H-quinolin-4-
one using Pipeline Pilot.51

Molecular Fingerprints. Three types of molecular fingerprints were
calculated using Pipeline Pilot:51 MDL MACCS keys,25 FCFP2, and
ECFP2.26 The similarity between the 55 active compounds and the
BioFocus library compounds was assessed using the Tanimoto coefficient.
Turbo Similarity. The turbo similarity algorithm30 was implemented

in Pipeline Pilot.51 Using the 55 active compounds, ECFP426 were used
as descriptors, and for each search, 250 of the highest ranking compounds
were kept using the BioFocus database. The 5000 top ranked compounds
were selected.
PCA. A PCA model was built using 20 descriptors in Pipeline Pilot.51

The descriptors calculated were ALog P, Molecular_Weight, Num_Atoms,
Num_Bonds, Num_Hydrogens, Num_PositiveAtoms, Num_NegativeA-
toms, Num_RingBonds, Num_RotatableBonds, Num_AromaticBonds,
Num_BridgeBonds, Num_Rings, Num_AromaticRings, Num_RingAs-
semblies, Num_Chains, Num_ChainAssemblies, Num_Fragments, Num_-
H_Acceptors, Num_H_Donors, and Molecular_Solubility. The 5000
closest compounds to any of the hits as assessed by Euclidean distance in
PCA were selected from the BioFocus database using Pipeline Pilot.
Bayesian Modeling. Bayesian modeling was achieved using seven

descriptors in Pipeline Pilot.51 The descriptors calculated were as
follows: ALog P, Molecular_Weight, Num_H_Donors, Num_H_Ac-
ceptors, Num_RotatableBonds, ECFP_2, and Molecular_PolarSurfa-
ceArea. The model was developed using leave-one-out cross-validation
and applied to the BioFocus database with compounds with a score of
5 or above being selected.
Bioisosteres. Bioisosteres were identified using PowerMV33 using a

variety of descriptors, similarity measures, and databases: Atom pair/
Tanimoto, atom pair (Cahart)/Tanimoto, fragment pair/Tanimoto,
pharmacophore fingerprints/Tanimoto, and weighted Burden num-
ber/Euclidean methods were used against the ACL, Gene Logic, and
NCI databases within PowerMV. The bioisosteres identified were used
as substructure searches to identify compounds in the BioFocus
database using Pipeline Pilot.51

Scoring. The scoring functions were implemented in Pipeline Pilot
using the built in algorithms for molecular solubility39 and log P.52

Diversity Selection. BCUT descriptors40 were calculated using the
CDK descriptor calculator.53 A total of 16000 diverse compounds
were selected using a protocol in Pipeline Pilot.51

Diversity Assessment. ECFP4 fingerprints, using a similarity cut off
of 0.7 with the Tanimoto coefficient, were used together with
clustering to compare the coverage of the chemical space of the 16000
selected compounds within in the entire BioFocus library using
protocols in Pipeline Pilot.51

Parasite Culture. Plasmodium blood stage cultures54 and drug
sensitivity55 were determined by established methods. IC50 values (50%
inhibitory concentrations) were calculated by using the four-parameter
logistic method (Grafit program; Erithacus Software, United Kingdom).
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