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INTRODUCTION

Among all nervous system diseases, epilepsy has become the 
second most serious threat to human health,1 and annually, 
there are up to 2.4 million newly developed cases of epilepsy 
around the globe.2 According to statistics, half of all epilepsy 
sufferers are diagnosed in childhood or adolescence, and un-

fortunately, they are more likely to die prematurely than healthy 
children and adolescents.2 Temporal lobe epilepsy (TLE), an 
intractable epilepsy accounting for 40% of all epilepsy cases,1 
is characterized by distorted structuring of the medial tempo-
ral lobe (amygdala and hippocampus), which has also been 
described for focal cortical dysplasia, vascular/ischemic lesions, 
and others.3 Owing to the hippocampal damage and mental ill-
ness, TLE patients are predisposed to memory deficits.4 Al-
though two-thirds of epilepsy patients are able to successfully 
keep seizures under control with antiepileptic drugs, the re-
maining patients, especially those with TLE, are unable to re-
cover with only taking these drugs.5 Making matters worse, sur-
gery, the recommended treatment for TLE, fails to benefit all.6-9 
Considering the poor prognosis of TLE and shortage of effica-
cious treatments, in-depth exploration of TLE pathogenesis is 
required.

LncRNAs, abundant in brain tissues, have been shown to 
be important in the development of the nervous system,10 and 
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methylation or loss of certain lncRNAs can result in nervous sys-
tem abnormality and thus TLE deterioration.11,12 For instance, 
the methylation rates of lncRNA UCA1, lncRNA ADARB2-AS1, 
lncRNA LINC324, and lncRNA MAP3K12-AS1 in the hippo-
campus have been shown to differ among TLE patients with 
and without hippocampal sclerosis.13 Additionally, research 
has indicated that lncRNA Zasf1 is markedly over-expressed 
in the hippocampus of TLE rats;14 however, whether gain and 
loss of Zasf1 leads to TLE onset remains on unknown. Inter-
estingly, silencing of Zasf1 has been found to block Notch sig-
naling,15 which participates in inhibiting neuronal differentia-
tion and in promoting proliferation of glial cells and astrocytes.16 
Moreover, activation of astrocytes, which is closely related to 
neuronal damage and abnormal function of synapses,17 has 
been described as a major feature of tissue reconstruction in 
the brain of TLE mammals,18,19 Taken together, Zasf1 could po-
tentially be involved in TLE etiology by affecting downstream 
pathways important in neuron development and function, al-
though this has rarely been studied.

Therefore, to investigate the role of Zasf1 in TLE etiology, 
clinical and in vitro experiments were conducted to clarify 
whether Zasf1 is associated with inflammatory aberration and 
neuronal activity and, thus, a potential target in epilepsy treat-
ment. 

MATERIALS AND METHODS 

Recruitment of TLE patients
TLE patients were admitted to the neurology department of 
Jiangsu-Shengze Hospital Affiliated to Nanjing Medical Uni-
versity from December 2017 to August 2019, and 82 healthy 
volunteers were recruited as controls. All epilepsy patients 
had experienced ≥1 seizure per month within 3 months be-
fore enrollment, and they were treated by drugs consisting of 
carbamazepine, oxcarbazepine, lamotrigine, sodium valpro-
ate, topiramate, levetiracetam, and clonazepam. Furthermore, 
the epilepsy patients all met diagnostic criteria proposed by 
International League Against Epilepsy in 2017.20

The subjects all underwent examinations of cerebral-vascu-
lar angiography, computed tomography, electroencephalo-
graph, and magnetic resonance imaging (MRI), which included 
spin-echo T1-weighted imaging, fast spin-echo T2-weighted 
imaging, transverse T1 and T2-weighted imaging, and coronal 
T2-weighted fast fluid-attenuated inversion recovery imaging 
on a superconducting MRI instrument (model: 1.5T Signa Ex-
cite, GE, Milwaukee, WI, USA). Patients were excluded if 1) they 
revealed severe dysfunctions in liver, kidney, hematopoietic 
system, and endocrine system; 2) their immunological func-
tion was deficient; 3) they received immuno-suppressive treat-
ments, such as glucocorticoid; 4) they were cognitively im-
paired before epileptic seizure; and 5) their clinical information 
was incomprehensive. All participants provided signed in-

formed consent, and this study was approved by Jiangsu-Sheng-
ze Hospital Affiliated to Nanjing Medical University and the 
ethics committee of Jiangsu-Shengze Hospital Affiliated to 
Nanjing Medical University. 

Quantitation of inflammatory cytokines and apoptins 
Around 5 mL of fasting blood was collected from each TLE pa-
tient within 12 h after an epileptic seizure and from each con-
trol. After centrifugation of peripheral blood at a speed of 3000 
r/min for 15 min, supernatants were gathered and stored at 
-80°C. Then, the levels of interleukin-2 (IL-2) (Sangon, Shanghai, 
China), tumor necrosis factor-α (TNF-α) (Sangon), Interferon-γ 
(IFN-γ) (eBioscience, San Diego, CA, USA), high mobility 
group box protein 1 (HMGB-1) (Sangon), S100B (Boster, Wu-
han, China), neuron specific enolase (NSE) (R&D systems, 
Minneapolis, MN, USA), glial fibrillary acidic protein (GFAP) 
(Boster, Wuhan, China), calcitonin gene related peptide (CGRP) 
(R&D systems), Bcl-2 (MyBioSource, San Diego, CA, USA), Bax 
(MyBioSource), and Caspase-3 (MyBioSource) were deter-
mined using respective ELISA kits.

Cell culture
Newborn SD rats, provided by the Animal Experimental Cen-
ter of Nanjing Medical University, were decapitated, and the 
retrieved tissue was immersed in pre-cooled 75% ethanol so-
lution. Hippocampal tissues were separated from brain tis-
sues and preserved in a sterile petri dish after being cut into 
pieces. The tissues were completely digested into neurons af-
ter addition of trypsin solution (Life technology, Gaithers-
burg, MD, USA), after which neuron number was counted in 
DMEM/F12 medium (Gibco, Carlsbad, CA, USA). The neu-
rons were cultured in the petri dish for 7 days.

Cell transfection
The isolated neurons, adjusted to the concentration of 3×105/
mL, were incubated in 10% FBS-containing DMEM (Gibco). 
After cultivation in 5% CO2 at 37°C for 1 h, the neurons were 
transfected with si-Zfas1-1 (5'-CUGGCUGAACCAGUUCCA 
CAAGGUU-3'; GenePharma, Shanghai, China), si-Zfas1-2 
(5'-CCCTGTGCTTTCATGAAAGTGAAGA-3'; GenePharma), si-
NC (5'-CCAAAACCAGGCUUUGAUUGA-3'; GenePharma), 
pcDNA3.1- Zfas1 (GenePharma) or pcDNA3.1 (GenePharma) 
for 48 h, with the assistance of Lipofectamine 2000 transfec-
tion reagent (Invitrogen, Carlsbad, CA, USA). 

RT-PCR
Total RNA was extracted from blood samples and neurons us-
ing TRIzol reagent (Invitrogen), and RNA sediments were dis-
solved after addition of diethyl pyrocarbonate (Invitrogen). 
The concentration and purity of RNAs were measured with an 
ultraviolet spectrophotometer (Thermo Scientific, Wilmington, 
DE, USA) at the wavelength of 260 nm and 280 nm. After being 
synthesized from RNA with the assistance of reverse transcrip-
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tion kits (TAKARA, Shiga, Japan), cDNAs were amplified by 
referring to instructions of SYBR Green kit (TAKARA), follow-
ing procedures of 1) 95°C for 3 min and 2) 40 cycles of 95°C for 
12 s and 62°C for 35 s. Primers for Zfas1 (forward, 5'-AAGC 
CACGTGCAGACATCTA-3', reverse, 5'-CTACTTCCAACACCC 
GCATT-3') and GAPDH (forward, 5'-GATTCCACCCATG 
GCAAATTC-3', reverse, 5'-CTGGAAGATGGTGATGGGATT-3') 
were provided by GenePharma. 

Western blotting
The neurons were lysed, pulverized, and centrifuged at 15000 
r/min for 15 min. Protein samples in the supernatant of neu-
rons were separated by sodium lauryl sulfate-polyacrylamide 
gels (Beyotime, Shanghai, China) and then transferred onto 
polyvinylidene fluoride (PVDF) membranes (Millipore, Bill-
erica, MA, USA). After blockage of the PVDF membranes for 1 
h, protein samples were incubated with rabbit-anti-mouse pri-
mary antibodies against Bcl-2 (1:2000, Catalog No.: ab182858, 
Abcam, Cambridge, MA, USA), Bax (1:1000, Catalog No.: 
ab32503; Abcam), Caspase-3 (1:500, Catalog No.: ab13847; 
Abcam), Caspase-9 (1:2000, Catalog No.: ab202068; Abcam), 
p53 (1:1000, Catalog No.: ab131442; Abcam), Fas (1:1000, Cata-
log No.: ab82419; Abcam), NF-κB p65 (1:2000, Catalog No.: 
ab32536; Abcam), IκBα (1:4000, Catalog No.: ab32518; Ab-
cam), pIκBα (1:1000, Catalog No.: 2859, Cell Signaling Tech-
nology, Danvers, MA, USA), IKKβ (1:5000, Catalog No.: ab32135; 
Abcam) and GAPDH (1:2000, Catalog No.: ab8245; Abcam) at 
4°C overnight and then with goat anti-rabbit IgG II antibodies 
(1: 5000, Catalog No.: ab6721; Abcam).

ELISA assay
TNF-α, IL-1, IL-6, and intercellular adhesion molecule-1 
(ICAM-1) levels in the culture medium of neurons were de-
tected utilizing ELISA kits (Boster).

MTT assay
Neurons adjusted to the concentration of 3×105 cells/mL were 
incubated at 37°C for 48 h, and then they were successively 
blended by 5 mg/mL of MTT and 150 μL of dimethyl sulfoxide 
solution (all purchased form Sigma, St Louis, MO, USA). Until 
complete dissolution of crystals after 10-min gentle shaking, 
absorbance (A) value of neurons was monitored at the wave-
length of 490 nm utilizing a microplate reader (model: 550, 
Bio-Rad, Hercules, CA, USA).

Flow cytometry assay
Neurons digested by trypsin to 2×106/mL were centrifuged at 
1000 rpm for 10 min. After being suspended in 200 μL of bind-
ing buffer, neurons were evenly mixed with 5 μL of PI and An-
nexin-V (all purchased from Becton Dickinson, Franklin 
Lakes, NJ, USA). After being left in the dark for 15 min, apop-
tosis of neurons was examined with flow cytometry (Becton 
Dickinson). 

Statistical analyses
All data analyzed using SPSS 13.0 software (SPSS Inc., Chica-
go, IL, USA). Measurement data (mean±standard deviation) 
were analyzed with the LSD-t test or single factor analysis of 
variance. Statistical significance was set at p<0.05.

RESULTS

Comparison of baseline characteristics between TLE 
patients and healthy controls 
In total, we recruited 96 TLE patients, including four general-
ized tonic-clonic seizure patients, three clonic seizure patients, 
87 complex partial seizure patients, and two simple partial sei-
zure patients, and their disease course lasted for 9.31±6.22 years 
(Table 1). According to examination results of head MRI, obvi-
ous lesions were located in 86 TLE patients, including hippo-

Table 1. Comparison of Baseline Characteristics between Epileptic Pa-
tients and Healthy Controls

Features
Epileptic 
patients

n=96

Healthy 
control

n=82
χ2/z p value

Age (yr)
Average 53.96±15.62 55.84±11.42 0.168 0.875
Range 8–88 12–76

Sex
Female 36 31
Male 60 51 0.04 0.967

Disease course (yr) 9.31±6.22
Types of epilepsy

Generalized tonic clonic 
seizure

  4

Clonic seizure   3
Complex partial seizures 87
Simple partial seizure   2

Inflammatory cytokines
IL-2 (ng/mL) 13.54±1.47 5.42±0.68 45.98 <0.001
TNF-α (ng/mL) 5.97±0.64 1.48±0.27 59.17 <0.001
IFN-γ (pg/mL) 36.28±5.31 10.74±1.66 41.83 <0.001
HMGB-1 (ng/mL) 8.93±1.02 3.28±0.67 42.87 <0.001

Neurotrophic factors
S100B (ng/mL) 4.87±0.62 1.36±0.27 47.54 <0.001
NSE (ng/mL) 28.37±3.46 12.76±1.67 37.3 <0.001
GFAP (pg/mL) 3.63±0.67 1.49±0.33 26.32 <0.001
CGRP (pg/mL) 80.43±11.98 177.85±22.06 37.32 <0.001

Apoptotic biomarkers
Bcl-2 (ng/mL) 3.41±0.98 8.34±1.62 24.95 <0.001
Bax (ng/mL) 3.15±0.42 1.07±0.18 41.68 <0.001
Caspase-3 (ng/mL) 8.06±1.22 3.12±0.51 34.19 <0.001

IL, interleukin; TNF, tumor necrosis factor; IFN, Interferon; HMGB, high mobil-
ity group box protein; NSE, neuron specific enolase; GFAP, glial fibrillary acid-
ic protein; CGRP, calcitonin gene related peptide.
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campal sclerosis (n=61), temporal lobe softening (n=14), atro-
phy of the temporal lobe (n=5), temporal lobe tumor (n=3), 
and arachnoid cysts of the temporal lobe (n=3). In line with 
electroencephalographs, 63 TLE patients exhibited epilepti-
form discharge, and epileptic waves were detectable in 31 TLE 
patients. Also, 68 TLE patients showed unilateral abnormal 
discharge, and 26 patients revealed bilateral aberrant dis-
charge.

Additionally, TLE patients were detected with higher levels 
of cytokines (IL-2, TNF-α, IFN-γ, and HMGB-1), neurotrophic 
factors (S100B, NSE, and GFAP), and apoptotic molecules (Bax 
and Caspase-3) than healthy controls (p<0.05), and no signifi-
cant difference was discerned between the two populations in 
regards to mean age and sex ratio (p>0.05) (Table 1). 

Correlation between lncRNA Zfas1 expression and 
apoptotic/inflammatory biomarker levels among TLE 
patients 
Serum levels of lncRNA Zfas1 were higher in TLE patients than 
in healthy controls (p<0.05) (Fig. 1A). Among TLE patients, se-
rum levels of lncRNA Zfas1 were positively correlated with se-
rum levels of Bax (rs=0.372) and Caspase-3 (rs=0.384), and 

were negatively correlated with serum levels of Bcl-2 (rs= 
-0.339) (Fig. 1B). Meanwhile, increased serum levels of lncRNA 
Zfas1 were associated with higher serum levels of IL-2 (rs= 
0.397), TNF-α (rs=0.353), IFN-γ (rs=0.409), and HMGB-1 (rs= 
0.392) in TLE patients (Fig. 1C). Additionally, serum levels of 
S100B (rs=0.543), NSE (rs=0.469), and GFAP (rs=0.497) were up-
regulated, while serum level of CGRP were down-regulated 
(rs=-0.378), with increases in lncRNA Zfas1 levels in TLE pa-
tients (Fig. 1D).

Influence of lncRNA Zfas1 on viability and apoptosis 
of hippocampal neurons 
LncRNA Zfas1 expression in neurons was heightened after 
transfection of pcDNA3.1-Zfas1 in comparison to pcDNA3.1 
(p<0.05) (Fig. 2A), but reduced when si-Zfas1-1 or si-Zfas1-2 
was transfected (p<0.05) (Fig. 2B). Furthermore, the viability 
of neurons in the pcDNA3.1-Zfas1 group decreased to 60.33% 
of pcDNA3.1 group (p<0.05), while neuron viability in the si-
Zfas1 group was significantly improved when compared with 
NC group and si-NC group (p<0.05) (Fig. 2C). The multiplica-
tive potential of neurons was also impeded when pcDNA3.1-
Zfas1 was transfected (p<0.05), but markedly enhanced in the 
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presence of si-Zfas1 (p<0.05) (Fig. 2D). On the contrary, hip-
pocampal neurons in the pcDNA3.1-Zfas1 group were more 
vulnerable to apoptosis than those in the pcDNA3.1 group (p< 
0.05), whereas neurons in the si-Zfas1 group were less liable to 
apoptosis in comparison to the si-NC group (p<0.05) (Fig. 2E). 
Moreover, Bcl-2 expression was decreased and Bax, Caspase-3, 
Caspase-9, p53 and Fas expressions were increased in neurons 
transfected with pcDNA3.1-Zfas1, compared with pcDNA3.1 
(p<0.05) (Fig. 3A). In contrast, transfection of si-Zfas1-1 into 
neurons down-regulated the expressions of Bax, Caspase-3, 
Caspase-9, p53, and Fas and up-regulated the expression of 
Bcl-2, compared with si-NC (p<0.05) (Fig. 3B). 

Impact of lncRNA Zfas1 on inflammation responses of 
hippocampal neurons
Compared with the NC group, lipopolysaccharide (LPS) treat-
ment significantly increased the expressions of ICAM-1, IL-1, 
IL-6, and TNF-α in hippocampal neurons (p<0.05) (Fig. 4). 
PcDNA3.1-Zfas1 transfection in combination with LPS treat-
ment strongly promoted neuronal release of ICAM-1, IL-1, IL-
6, and TNF-α, compared with LPS treatment alone (p<0.05). 
Conversely, expression of ICAM-1, IL-1, IL-6, and TNF-α de-
creased in neurons from the si-Zfas1-1+LPS group relative to 
the LPS group (p<0.05). In addition, NF-κB p65, pIκBα, and 
IKKβ levels in hippocampal neurons were boosted, while IκBα 
levels were depressed after LPS treatment (p<0.05) (Fig. 5). 

Meanwhile, NF-κB p65, pIκBα, and IKKβ expressions were 
maintained, while IκBα expression decreased in neurons from 
the pcDNA3.1-Zfas1+LPS group, compared with the LPS group 
(p<0.05). Silencing of Zfas1 (i.e., si-Zfas1-1+LPS group) could 
reverse the contributions of LPS to neuronal secretion of NF-κB 
p65, pIκBα, IκBα, and IKKβ (p<0.05). 

DISCUSSION

TLE, pathologically embodied as hippocampal mossy fiber 
sprouting and synaptic remodeling, has proven difficult to cure 
due to its tolerance against various anti-epileptic drugs. Mean-
while, although TLE development has been found to result 
from neuronal loss, gliocyte proliferation, nerve regeneration, 
axon growth, and abnormal inflammation,21,22 molecular expla-
nations for TLE progression have remained far from compre-
hensive. 

LncRNAs are intertwined with epilepsy pathogenesis by ma-
nipulating neurogenesis, neurotransmitter production, and ion 
channel and synaptic plasticity.23 For example, lncRNA BDN-
FOS reduced expression of brain-derived neurotrophic factor 
and promoted neuronal regeneration and remodeling.24 Here, 
we discovered that increased serum levels of lncRNA Zfas1 are 
reflective of disordered neuronal apoptosis and inflammation 
in TLE patients (Fig. 1), suggesting that Zfas1 is a pronounced 

Fig. 2. LncRNA Zfas1 affects the activity of hippocampal neurons. (A) Expression of lncRNA Zfas1 in hippocampal neurons was monitored after trans-
fection of pcDNA-Zfas1. *p<0.05 when compared with NC group. (B) LncRNA Zfas1 expression was evaluated in hippocampal neurons after trans-
fection of si-Zfas1-1 and si-Zfas1-2. *p<0.05 when compared with NC group. (C-E) Viability (C), proliferation (D), and apoptosis (E) of hippocampal neu-
rons were evaluated among NC, pcDNA3.1, pcDNA3.1-Zfas1, si-NC and si-Zfas1-1 groups. *p<0.05 when compared with NC group. NC, negative control.
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biomarker for TLE onset and severity. 
Research has indicated that immoderate proliferation of as-

trocytes could dramatically affect synaptic transmission, which 
then stimulates the occurrence of TLE.25,26 Another study indi-
cated that TLE onset is accompanied by JNK phosphorylation, 
which promotes apoptosis of hippocampal neurons.27 Alto-
gether, we suspect that balanced proliferation and apoptosis 
of neurons may be indispensable to averting TLE onset, and 
our study demonstrated that lncRNA Zfas1 is a potent regula-
tor of neuronal proliferation and apoptosis (Figs. 2 and 3). In-

terestingly, apart from neurons, reduced Zfas1 expression has 
been found to enable tumor cells (e.g. U87 and U25I cell lines) 
to stagnate in the G0/G1 phase of the cell cycle,28 insinuating 
that lncRNA Zfas1 exerts identical effects in various cell types. 
In addition, lncRNA Zfas1 has been found to be responsible 
for elevating expression of b-cell lymphoma protein-2 (bcl-2) 
(Fig. 3), which plays key roles in antagonizing apoptosis of 
hippocampal neurons.29 Moreover, Bax was reported to pro-
mote the influx of cytochrome C,30 which activates Caspase-3 
via cascade amplification and finally leads to cell apoptosis 
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[PMID: 25674005]. Collectively, we discovered that lncRNA 
Zfas1 restrained neuronal apoptosis by deactivating the Bax/
Caspase-3 axis (Fig. 3). Other pro-/anti-apoptosis signaling 
pathways, such as non-sense-mediated decay, NF-κB pathway 
and Wnt/β-catenin pathway, have also been found to be modi-
fied by lncRNA Zfas1 in cells other than neurons.31-33 Support-
ing these results, we showed for the first time that lncRNA Zfas1 
regulates proteins of the NF-κB pathway in neurons (Fig. 5) and 
demonstrated that lncRNA Zfas1 contributes to neuronal 
damage by strengthening NF-κB signaling. 

Inflammation can cause seizures of convulsion and promote 
chronic self-seizures. Convulsion, in turn, also enhances re-
lease of pro-inflammatory cytokines in the brain.34 In particu-

lar, IL-2 has been found to manipulate calcium concentrations 
and stimulate neuronal excitability,35 and TNF-α, originating 
from mono-nuclear macrophages, has been shown to directly 
give rise to neuronal damage.36 Moreover, research has shown 
that IFN-γ and HMGB-1 are adept at modulating the sprout-
ing and migration of neurons, thereby facilitating neuronal 
discharge.37 Interestingly, IL-1β, IL-6, and TNF-α have been 
found to be involved in worsening inflammation in neurons, 
and anti-inflammatory treatments have proven effective at over-
coming intractable epilepsies, such as infantile spasm and ac-
quired epileptic aphasia.38 Thus, we suggest that since lncRNA 
Zfas1 elicits over-production of inflammation cytokines in neu-
rons, including ICAM-1, IL-1, IL-6, and TNF-α (Fig. 4), targeting 
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it might be conducive to hindering epileptic onset. 
This study had several limitations. First, the association of 

lncRNA Zfas1 expression with clinical symptoms of TLE was 
not explored, and the potential of lncRNA Zfas1 in diagnosing 
TLE was not estimated. Second, downstream lncRNA Zfas1-
related miRNA and genes contributing to the aberrant func-
tions of neurons were not investigated. Finally, animal models 
were not constructed to simulate in vivo effects of lncRNA Zfas1 
on TLE development. All of these shortcomings need to be ad-
dressed in future studies.
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