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Enveloped viruses must fuse their lipid membrane to a cellular

membrane to deliver the viral genome into the cytoplasm for

replication. Viral envelope proteins catalyze this critical

membrane fusion event. They fall into at least three distinct

structural classes. Class II fusion proteins have a conserved

three-domain architecture and are found in many important

viral pathogens. Until 2013, class II proteins had only been

found in flaviviruses and alphaviruses. However, in 2013 a class

II fusion protein was discovered in the unrelated phlebovirus

genus, and two unexpectedly divergent envelope proteins were

identified in families that also contain prototypical class II

proteins. The structural relationships of newly identified class II

proteins, reviewed herein, shift the paradigm for how these

proteins evolved.
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Introduction
Viral envelope proteins are the principal effectors of virus

assembly and cell entry. Enveloped viruses must fuse

their lipid membrane with a host-cell membrane in order

to deliver their genome into the cytoplasm for replication.

This membrane fusion event is catalyzed by viral envel-

ope proteins. Viruses also rely on their envelope proteins

to recognize host cells by binding cellular receptors.

Envelope proteins shield viruses from the immune sys-

tem and bear most of the neutralizing antibody epitopes

against any given virus. The envelope proteins of many

viruses form a rigid outer structural shell, which usually

takes the form of a quasi-spherical icosahedral assembly.

Viral membrane fusion proteins fall into at least three

distinct structural classes. The influenza virus hemagglu-

tinin (HA) is the prototype of ‘‘class I’’ fusion proteins [1],

which encompass those of other orthomyxoviruses and
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paramyxoviruses, retroviruses, filoviruses, and corona-

viruses [2]. The unifying structural feature of class I

fusion proteins is a core consisting of three bundled a-

helices [3,4]. Class II fusion proteins are a structurally

unrelated class found in flaviviruses, alphaviruses, and

most recently in rubella virus (sole member of the rubi-

virus genus) and Rift Valley fever virus (from the phle-

bovirus genus) [4,5��,6��]. Class II proteins share a three-

domain architecture consisting almost entirely of b-

strands, with tightly folded ‘‘fusion loops’’ in the central

domain serving as the anchor in the cellular membrane

targeted for fusion (Figure 1). Class III fusion proteins,

found in herpesviruses, rhabdoviruses and baculoviruses,

possess structural features from both class I proteins (a

core three-helix bundle) and from class II proteins (a

central b-stranded fusion domain) [7].

Until recently, class II proteins had only been found in

flaviviruses and alphaviruses (in the Flaviviridae and

Togaviridae families, respectively), which share many

key characteristics. Indeed viruses from these two genera

all have positive-stranded RNA genomes of 11–12 kilo-

bases with similar gene organizations, icosahedral outer

protein shells with a diameter of approximately 50 nm,

and lifecycles that alternate between vertebrates and

arthropod vectors [8]. The most plausible evolutionary

model had thus been one in which flaviviruses and

alphaviruses evolved from a common ancestor virus.

However, a class II fusion protein was recently discovered

in the unrelated Bunyaviridae family [5��]. Conversely,

divergent fusion protein architectures have emerged

within the Flaviviridae and Togaviridae families in which

the prototypical class II proteins were first identified

[6��,9��,10��]. Together, these recent discoveries shift

the evolutionary paradigm from a divergent model (com-

mon ancestor virus), to a model in which class II fusion

proteins evolved independently by borrowing from a

common (or related) ancestral class II cellular membrane

fusion protein.

Unifying structural features of class II
envelope proteins
The class II fusion protein fold was first discovered in

glycoprotein E from tick-borne encephalitis virus, a mem-

ber of the Flaviviridae family [11]. The E proteins from

other flaviviruses were subsequently found to have very

similar structures [12–18], and the E1 proteins from three

alphaviruses (Semliki Forest, Sindbis and Chikungunya

viruses) have the same fold despite a lack of sequence

similarity to flavivirus E proteins (Figure 1) [19–21]. The
www.sciencedirect.com
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Figure 1
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Representative class II membrane fusion glycoproteins in their prefusion and postfusion conformations. (a) The class II fold consists of three domains.

A b-sandwich domain (red) organizes the structure; an elongated domain (yellow) bears a hydrophobic ‘‘fusion loop’’ (orange) at its tip, which serves as

an anchor in the target cellular membrane; an Ig-like domain (blue) contains the structural determinants of cellular tropism and virulence, as well as

most neutralizing antibody epitopes. The following viral fusion proteins are shown in their prefusion conformation: E from the flavivirus tick-borne

encephalitis virus (TBEV) [11]; E1 from the alphavirus Semliki Forest virus (SFV) [19]; Gc from Rift Valley fever virus (RVFV), a phlebovirus from the

Bunyaviridae family [5��]. (b) Class II proteins in their postfusion conformation. Shown here are TBEV E [42], SFV E1 [43] and E1 from rubella virus (RV)

[6��]. Class II proteins are trimeric in the postfusion conformation, (c). (d) Envelope protein E2 from bovine viral diarrhea virus (BVDV) has a novel fold

despite being in the Flaviviridae family (genus pestivirus) [9��,10��].
envelope proteins from flaviviruses and alphaviruses

assemble into icosahedral outer shells, but the mode of

assembly differs in the two families, with alphaviruses

forming canonical (T = 4) quasi-equivalent assemblies

[19,22�,23�] and flaviviruses forming unusual non-equiv-

alent icosahedral assemblies [24,25,26�]. Class II proteins

are anchored in the viral membrane via a C-terminal

transmembrane anchor, which is linked by a flexible

‘‘stem’’ region to the ectodomain (Figure 2). The ecto-

domain consists of three domains: a b-barrel (domain I);

an elongated, mostly b-stranded domain bearing a tightly

folded ‘‘fusion loop’’ that inserts into the target cellular

membrane (domain II); and an IgC-like module that

bears the epitopes responsible for cellular tropism and

efficient antibody neutralization (domain III) [11,27–29].

Remarkably, despite evidence that domain III is directly

involved in cellular attachment of flaviviruses [30,31], no

receptors that bind to class II proteins in flaviviruses or

alphaviruses have yet been identified. However,
www.sciencedirect.com 
protein–glycan interactions involving class II glyco-

proteins have been shown to contribute to attachment

(but not endocytosis [32,33]) of certain flaviviruses in a

subset of host-cell types. These interactions involve the

C-type lectins DC-SIGN and L-SIGN [15,34–36], man-

nose receptor [37], and cell-surface heparan sulfate [38].

In alphaviruses, it is the non-fusogenic E2 spike protein

that mediates receptor binding but interestingly E2 also

recognizes DC-SIGN, L-SIGN and heparan sulfate

[39,40].

Crystal structures of various class II envelope proteins

before and after the conformational change that catalyzes

membrane fusion provide a molecular outline of the

fusion mechanism (Figure 1) [11–15,19–21,41–45]. Com-

plementing these prefusion and postfusion structures,

structures thought to represent fusion intermediates pro-

vide invaluable insights on the steps required for fusion

[5��,20,45,46]. In the mechanism that is emerging
Current Opinion in Virology 2014, 5:34–41
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Figure 2
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Membrane fusion by class II envelope proteins. (a) The protein forms dimers in the outer protein shell of the virion. The ‘‘stem-anchor’’ (cyan) tethers

the protein to the viral membrane. Gc from Rift Valley fever virus (RVFV) is shown as an example [5��]. (b) The protein responds to the reduced pH of an

endosomal compartment with a hinge motion that exposes the hydrophobic fusion loop (orange). The fusion loop inserts into the cell membrane. A

crystal structure of RVFV Gc proposed to correspond to this ‘‘prehairpin’’ intermediate is shown [5��]. (c) The protein then folds back on itself, directing

the fusion loop toward the transmembrane anchor. The refolding energy bends the apposed membranes. Creation of additional trimer contacts

between the stem-anchor and the ectodomain leads to fusion of the viral and cellular membranes. The postfusion conformation of dengue type 2 virus

is shown [41].
(Figure 2), the fusion protein responds to the reduced pH

of an endosomal compartment with a motion that breaks

most or all of the intersubunit contacts in the outer

protein shell, exposing a hydrophobic ‘‘fusion loop’’,

which spontaneously inserts into the outer bilayer leaflet

of the host-cell membrane [5��,20,41,47,48]. The fusion

protein then folds back on itself, directing its transmem-

brane anchor toward the fusion loop. This fold-back

forces the host-cell membrane (held by the fusion loop)

and the viral membrane (held by the transmembrane

anchor) against each other, resulting in fusion of the

two membranes. The ectodomains of class II fusion

proteins are either monomers or dimers in the prefusion

conformation, but always form trimers in the postfusion

conformation (Figure 1). The mechanism and structural

basis of membrane fusion are conserved in all class II

proteins examined to date. Indeed the overall topology of

dual membrane anchors being driven toward each other

by a fold-back of the fusogen appears to be conserved in

all viral fusion proteins (reviewed in Refs. [3,4]).

Until 2013, class II proteins had only been found in

flaviviruses and alphaviruses, but recent studies suggest

that the class II fold is more widely prevalent than

previously anticipated. Indeed, Dessau and Modis

showed that glycoprotein C (Gc) from Rift Valley fever
Current Opinion in Virology 2014, 5:34–41 
virus (RVFV) is a class II fusion protein [5��]. RVFV

belongs to the phlebovirus genus in the Bunyaviridae
family, which is unrelated to flaviviruses or alphaviruses.

Moreover, rubella virus E1 was shown to have a class II

fold, albeit with a more divergent structure than expected

for a virus in the same Togaviridae family as alphaviruses

[6��]. However, despite the presence of some novel

structural features in both RVFV Gc and rubella E1,

the two proteins still possess each of the core structural

features (described earlier in this section) that unify class

II fusion proteins (Figures 1 and 2). These parallels even

extend to receptor binding in the case of phleboviruses,

since RVFV and Uukuniemi virus were recently shown to

utilize DC-SIGN as a receptor [49]. In the case of rubella,

myelin oligodendrocyte glycoprotein (MOG) was

recently identified as a putative receptor for E1 [50],

making MOG the first receptor reported to bind to a

class II protein via protein–protein interactions.

Unexpected similarities in class II proteins
from flaviviruses and phleboviruses
The identification in 2013 of a class II fusion protein in

RVFV [5��], although it had been predicted by amino acid

analysis [51], was nevertheless unexpected because phle-

boviruses such as RVFV do not have any of the key

characteristics shared by flaviviruses and alphaviruses.
www.sciencedirect.com
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Figure 3
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Conserved structural features in class II fusion proteins. (a) Gc from Rift Valley fever virus (RVFV) crystallizes in a dimeric head-to-tail configuration

[5��]. The Gc dimers are strikingly similar to the flavivirus E dimers (dengue type 2 E shown here [12]). E dimers are the building block of the icosahedral

outer protein shell in flaviviruses [26]. (b) The fusion loop serves as the anchor in the target cellular membrane during the fusion reaction (see Figure 2).

The structure of the fusion loop is highly conserved in class II fusion proteins. Shown here are the fusion loops of, from left to right, RVFV Gc [5��],

Sindbis virus (SINV) E1 [20], West Nile virus (WNV) E [13], and rubella virus (RV) E1 [6��].
Phleboviruses have segmented negative-sense and ambi-

sense RNA genomes, undergo membrane fusion much

later in late endosomes [52], and their envelope proteins

form much larger (103 nm diameter) T = 12 icosahedral

lattices [53,54] with a novel mode of assembly [5��]. The

structure of RVFV Gc is strikingly similar to flavivirus E

structures (especially dengue E), more similar in fact than

flavivirus and alphavirus envelope proteins are to each

other. The most notable similarity is that Gc forms dimers

that have the same head-to-tail configuration as flavivirus E

dimers, with the fusion loop buried at the dimer interface

(Figure 3). This is particularly surprising given that the E

dimer is the building block of the flavivirus non-equivalent

‘‘herringbone’’ assembly, which is very distinct from the

T = 12 phlebovirus assembly, although interestingly a non-

equivalent configuration has been proposed for the latter

[5��]. Another noteworthy similarity between Gc and E is

the fusion loop, which has the same tightly folded glycine-

rich structure in the two proteins (Figure 3). Together, the

structural similarities of Gc and E are strongly suggestive of

some sort of evolutionary link between the Bunyaviridae
and Flaviviridae families.

Divergence of the class II fold within the
Togaviridae family
In another recent advance, the E1 protein of rubella virus

was found to have the most divergent class II fold identified

so far. This was unexpected given that rubella virus

belongs to the same Togaviridae family as alphaviruses.
www.sciencedirect.com 
The most notable differences of the rubella E1 structure,

which was crystallized in the trimeric postfusion confor-

mation, are in domain II (Figure 1). Domain II is larger due

to three insertions. Instead of a single 10–15-amino acid

fusion loop, rubella E1 has two fusion loops that project a

total of 15 aromatic side chains (mainly tyrosines) for

interaction the cellular membrane (Figure 3) [6��]. A metal

ion (Na+ or Ca2+) is coordinated between the two fusion

loops and bound Ca2+ allows rubella E1 to bind lipid

membranes a neutral pH [6��]. There are no metal sites

in the other class II fusion proteins, or in the fusion motifs

of any other viral fusion protein reported to date. Another

distinctive feature of the rubella E1 structure is that

domain III is swapped in the E1 trimer, occupying the

position of domain III from the neighboring subunit in the

flavivirus and alphavirus postfusion E trimers. Addition-

ally, the rubella E1 structure includes the stem (Figure 1),

which connects domain III to the transmembrane anchor

and is either absent or mostly disordered in the structures of

other class II proteins. Lastly, rubella virus particles exhibit

a large degree of pleomorphy [55�], making rubella E1 the

only class II fusion protein known not to form an icosahe-

dral assembly.

A new envelope protein fold in the Flaviviridae
family
The Flaviviridae family contains four genera: flavivirus,

pestivirus, pegivirus (GB viruses) and hepaciviruses

(hepatitis C viruses) [8]. Until 2013, envelope protein
Current Opinion in Virology 2014, 5:34–41
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Figure 4
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Structural relationships of viruses that contain class II fusion proteins. The class II fold is highly conserved in flaviviruses, alphaviruses and

phleboviruses, even though these viruses differ in their genomic organization, coding strategies and outer protein shell assemblies. These three genera

have in common that they have lifecycles that alternate between vertebrate and arthropod hosts. Rubella virus (RV) E1 has the most divergent class II

fold even though rubella belongs to the same family as alphaviruses (Togaviridae). Glycoprotein E2 from the pestivirus bovine viral diarrhea virus has a

novel fold even though pestiviruses belong to the same family as flaviviruses (Flaviviridae) [9��,10��]. Rubella virus and pestiviruses, and their close

relatives the hepaciviruses, have in common that they infect strictly vertebrate hosts, and also that they do not form rigid icosahedral outer protein

shells. Thus, structural conservation in viral fusion proteins does not correlate with overall phylogenetic relatedness. The virus particles shown here are,

clockwise from top right, dengue virus, Semliki Forest virus, RV, Rift Valley fever virus and hepatitis C virus (HCV). The electron micrographs of RV [55�]

and HCV [61] are not drawn to scale with the particles in color. The phylogenetic tree is based on qualitative structural and genetic relationships

between envelope proteins and is not based on a quantitative phylogenetic analysis.
structures were available only from the flavivirus genus.

Envelope proteins from pestiviruses and hepaciviruses

had been predicted to have class II folds based on the

disulfide bonding pattern [56] and on amino acid

sequence analyses of the E1 and E2 envelope proteins

[57]. It was therefore surprising when two groups dis-

covered in 2013 that the larger envelope protein, E2, from

the pestivirus BVDV (bovine viral diarrhea virus) is not a

class II fusion protein. Instead BVDV E2 has a novel fold,

suggesting that pestiviruses have a non-class II fusion

machinery. Since E1, with its 174-amino acid ectodomain,

is too small to be a class II fusogen, the E2 structure

appears to define a new structural class of fusion proteins

(Figure 4) [9��,10��]. The structure of BVDV E2 provides

an even more striking example than rubella E1 of how

structurally divergent viral envelope proteins can be

within a single virus family.

Evolutionary implications of the structural
relationships between class II proteins
The discovery of a class II fusion protein in a phlebovirus

[5��], in a virus family otherwise unrelated to flaviviruses

and alphaviruses, reveals that the class II fold is more

prevalent and more widely distributed across virus

families than was previously anticipated. The striking
Current Opinion in Virology 2014, 5:34–41 
structural similarity between the flavivirus E proteins and

RVFV G — which extends to the mode of dimerization

even though E and Gc dimers form different types of

icosahedral lattices — is strongly suggestive of a common

evolutionary origin for certain envelope proteins within

the Bunyaviridae and Flaviviridae families. But what is the

nature of this link? The two virus families clearly differ in

their genomic organization, coding strategies and outer

protein shell assemblies (Figure 4). In the light of these

differences it is tempting to speculate that, rather than

diverging from a common ancestor virus, class II fusion

proteins may instead have evolved independently from a

common (or related) and as yet unidentified ancestral

cellular class II membrane fusion protein. The concept of

independent transmission of class II fusion proteins from

hosts to viruses is supported by the discovery that certain

viruses within the same family with similar genomic

organizations can have distinct fusion machineries.

Indeed, pestiviruses have a non-class II fusion machinery

distinct from that of flaviviruses even though the two

genera are adjacent to each other in phylogenetic tree of

the Flaviviridae family [9��]. Thus, although pestiviruses

and flaviviruses may have evolved from a common ances-

tor virus, they evidently borrowed their fusion machi-

neries from different sources. These could presumably be
www.sciencedirect.com
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different host fusion proteins, but alternatively different

virus species could conceivably have borrowed fusion

proteins from each other during co-infections with

multiple viruses. The conservation of an a-helical coiled

coil architecture in class I viral proteins and in the

SNARE family of intracellular vesicle fusion proteins

provides a compelling precedent for the evolutionary

transfer of a structural membrane fusion fold between

host and virus during evolution. Although similarities

between class I fusion proteins and SNAREs have long

been recognized [58], the link was further strengthened

by a recent study demonstrating that a paramyxovirus

class I fusion protein resembles SNAREs in that it has a-

helical transmembrane anchors in both membranes

before fusion, with subsequent zippering of the coiled

coils during fusion resulting in a bundle of helical hairpins

that extends across the fused membrane [59�,60].

Alphaviruses and flaviviruses seem to have undergone a

more conservative evolution, despite belonging to differ-

ent families. The discovery of a divergent class II fold in

rubella virus within the same family as alphaviruses

(Togaviridae) was therefore unexpected [6��]. Notably,

the more canonical class II folds have all been found in

viruses alternating between arthropod and vertebrate

hosts, whereas rubella virus infects only humans. The

structural conservation of class II proteins in viruses with

vertebrate-arthropod lifecycles may reflect more stringent

evolutionary restraints exerted on these viruses. Rubella

virus, along with pestiviruses and hepaciviruses, each

have a single vertebrate host with which they seem to

have co-evolved more rapidly.

Together, the structural relationships that have emerged

between envelope proteins across different virus families

are consistent with an evolutionary model in which class

II fusion proteins originate from an as yet unidentified set

of ancestral class II membrane fusion proteins in the host.

Moreover, fusion proteins appear to have been transferred

as independent modules, implying that the class II mem-

brane fusion fold may have been hijacked by different

viruses at different times throughout evolution.
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