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Abstract: The key factors playing a role in the pathogenesis of metabolic alterations observed in
many patients with obesity have not been fully characterized. Their identification is crucial, and it
would represent a fundamental step towards better management of this urgent public health issue.
This aim could be accomplished by exploiting the potential of machine learning (ML) technology. In a
single-centre study (n = 2567), we used an ML analysis to cluster patients with metabolically healthy
(MHO) or metabolically unhealthy (MUO) obesity, based on several clinical and biochemical variables.
The first model provided by ML was able to predict the presence/absence of MHO with an accuracy
of 66.67% and 72.15%, respectively, and included the following parameters: HOMA-IR, upper body
fat/lower body fat, glycosylated haemoglobin, red blood cells, age, alanine aminotransferase, uric
acid, white blood cells, insulin-like growth factor 1 (IGF-1) and gamma-glutamyl transferase. For
each of these parameters, ML provided threshold values identifying either MUO or MHO. A second
model including IGF-1 zSDS, a surrogate marker of IGF-1 normalized by age and sex, was even more
accurate with a 71.84% and 72.3% precision, respectively. Our results demonstrated high IGF-1 levels
in MHO patients, thus highlighting a possible role of IGF-1 as a novel metabolic health parameter to
effectively predict the development of MUO using ML technology.

Keywords: metabolic syndrome; insulin-like growth factor 1; artificial intelligence

1. Introduction

Artificial intelligence (AI) is becoming increasingly present in the swiftly evolving
medical field, and it is expected to generate impactful advancements in the management of
a variety of diseases. The potential medical applications of AI are endless and include the
possibility of focusing on primary or secondary prevention, personalisation of treatment,
evaluation of risk factors and likelihood of developing specific disorders. Machine learning
(ML) is a form of AI which creates algorithms, learning from and acting on data [1]. Unlike
traditional analytical approaches, ML can probe information even with only a small amount
of prior knowledge and learning from data given as input [2]. The advantage of ML is
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the possibility to analyse an increasing amount of qualitative and quantitative data in
an integrated system [3]. ML has already been successfully exploited to design the best
model to yield good metabolic control in type 2 diabetes mellitus (T2DM) [2] and to predict
the risk of obesity in early childhood and young people [4,5]. In certain diseases such as
obesity, marked by a wide variety of phenotypes and heterogenous manifestations, ML has
the potential to optimally characterise individuals, and can provide valuable information
to design a personalised management plan. With the help of ML technology, a recent
study has succeeded in subclassifying obese phenotypes into different metabolic clusters,
reflecting underlying pathophysiology [6].

Obesity is defined as an abnormal fat accumulation, with a detrimental effect on
health that has been historically diagnosed as a body mass index (BMI) equal or greater
than 30 kg/m2 [7,8]. The current diagnostic criteria, however, have poorly characterized
the obese population, as they do not take into account body fat distribution, which is
largely responsible for the cardiometabolic risk associated with obesity. The pattern of fat
deposition presents with a great interindividual variability and results in different clinical
presentations. As an example, visceral fat has been associated with a growing burden
of noncommunicable diseases, such as metabolic syndrome, diabetes and cardiovascular
disease [9]. The metabolic syndrome refers to the co-occurrence of several known cardiovas-
cular risk factors, including altered glucose metabolism, obesity, atherogenic dyslipidaemia
and hypertension. There has been recent controversy about its definition, although the most
widely used criteria for the diagnosis are those established by the National Cholesterol Ed-
ucation Program Adult Treatment Panel III (NCEP ATP III) and the International Diabetes
Federation (IDF) [9]. Given the frequent association between metabolic syndrome and
obesity, clinical scientists distinguish a metabolically healthy obesity (MHO), characterized
by the absence of the parameters defining metabolic syndrome except for waist circum-
ference, from a metabolically unhealthy obesity (MUO), characterized by a significantly
higher risk of complications and mortality [10]. The factors involved in the pathogenesis of
metabolic impairment in obesity have yet to be fully elucidated. As far as cardiovascular
risk is concerned, the prognostic significance of obesity phenotypes is still under debate; a
few studies have characterised their transition trajectories considering that alterations in
the physical activity level and morbidity disabilities may precede the onset of metabolic
abnormalities [11]. Findings from epidemiological studies have shown that the prevalence
of MHO ranges from less than 10% to almost 50% in obese individuals according to dif-
ferent definitions of metabolic health and the population studied [12–14]. Substantially,
poor metabolic health may increase mortality regardless of obesity status [15,16]. The
characterization of metabolic status would allow to identify obese patients who are at
higher risk of complications, since moderate weight loss can be sufficient to transition from
MUO to MHO and might also lower the risk of adverse outcomes. Applying the concept of
metabolic health in management strategies may allow to easily achieve attainable goals
and ultimately protect from cardio-metabolic diseases and early death [17].

One of the key predictive factors for metabolic disruption in obesity is insulin-like
growth factor 1 (IGF-1), a mitogenic hormone involved in several processes like growth,
angiogenesis and differentiation. In individuals with obesity, lower IGF-1 serum levels
and a blunted response to growth hormone-stimulating dynamic tests are associated
with greater metabolic impairment [18–25]. However, the usefulness of IGF-1 serum
measurement is limited by a poor standardization of its normal values, as they vary
significantly with gender, age and body fat [26]. In order to overcome this limit, the IGF-1 z
standard deviation score (IGF-1 zSDS) has been previously adopted as a surrogate marker
of IGF-1 normalized by age, gender and BMI [27].

Taking these considerations into account, the aim of the study was to define a model
predicting the diagnosis of MHO in the cohort of patients that have accessed the High
Specialization Centre for the Care of Obesity, Sapienza University of Rome, between 2010
and 2019 through ML technology.

In particular, we aimed to:
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(1) Describe the cohort of patients at the time of their first access to our obesity specialisa-
tion centre with a rigorous collection of anthropometric, clinical and metabolic data.

(2) Apply AI with a logic ML approach in the obese subgroup of patients to identify new
parameters possibly involved mechanistically in the pathogenesis of the metabolic
syndrome (either clinical, biochemical or instrumental), which could help distin-
guish MUO from MHO patients and define the best model capable of predicting the
development of MUO, with a special focus on IGF-1 zSDS.

2. Materials and Methods
2.1. Study Design

This was an observational retrospective study. Data were derived from a database
including medical records of all patients attending the High Specialization Centre for the
Care of Obesity, Sapienza University of Rome, between 2001 and 2019. The study was
approved by the Medical Ethical Committee of Sapienza University of Rome (ref. CE5475)
and was conducted in accordance with the Declaration of Helsinki (1964) and subsequent
amendments. All patients undergoing clinical examination provided written consent
upon admission to our specialisation centre. Inclusion of patients in the ML analysis was
regulated by the following criteria:

− Inclusion criteria: age ≥ 18 years old and body mass index ≥ 30 kg/m2.
− Exclusion criteria: (1) pregnancy or breastfeeding; (2) patients with type 1 diabetes

mellitus and severe chronic liver or kidney dysfunction; (3) tobacco habit and alcohol
abuse; (4) current medication with drugs that could lead to weight gain.

2.2. Subjects and Measurements

All clinical, anthropometric, biochemical and hormonal parameters that are routinely
part of the diagnostic path that patients undertake when hospitalized in our centre were
included in the database. All patients had extensive blood tests performed, such as complete
blood count and a comprehensive metabolic panel, including but not limited to renal and
liver function testing, serum electrolytes and additional analyses as needed.

2.2.1. Anthropometric Measurements

Anthropometric parameters were obtained between 8 and 10 a.m. in fasting sub-
jects wearing light clothing and no shoes. Body weight was obtained with the use of a
balance-beam scale (Seca GmbH & Co., Hamburg, Germany). Height was rounded to the
nearest 0.5 cm. Waist circumference was measured at the level of the iliac crest and hip
circumference at the level of the symphysis-greater trochanter to the closest centimetre.
Subsequently, the following indirect anthropometric indices were derived: body mass
index (BMI) calculated as weight divided by squared height in metres (kg/m2); waist hip
ratio (WHR) calculated as waist circumference (cm) divided by hip circumference (cm).
Arterial blood pressure was measured at the right arm, with the patients in the sitting
position after five minutes of rest. The average of three different measurements with a
mercury sphygmomanometer was used for the analysis.

2.2.2. Routine Laboratory Assessments

Blood samples were collected between 8 and 9 a.m. by venepuncture from fasting
patients. Samples were then transferred to the local laboratory and handled according to
the local standards of practice.

The following assays were measured: complete blood count (CBC), fasting blood glu-
cose (FBG), insulin, total cholesterol (TC), triglyceride (TG), high-density lipoprotein choles-
terol (HDL-C), low-density lipoprotein cholesterol (LDL-C), glycosylated haemoglobin
(HbA1c), aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phos-
phatase (ALP), gamma-glutamyl transferase (γ GT), serum albumin, serum creatinine,
direct and indirect serum bilirubin, C-reactive protein (CRP), erythrocyte sedimentation
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rate (ESR), serum sodium, serum potassium, serum calcium, serum phosphorus and
25-hydroxyvitamin D.

To predict insulin resistance, a homeostatic model assessment of insulin resistance
(HOMA-IR) was calculated according to the following formula: HOMA-IR = (insulin (mU/l)
× fasting blood glucose (mmol/l))/22.5.

2.2.3. Hormonal Assessments

In accordance with the European Society of Endocrinology Clinical Guideline on the
Endocrine Work-up in Obesity [28], patients were tested for secondary forms of obesity,
such as hypothyroidism or hypercortisolism, as appropriate.

TSH measurements were based on a chemiluminescent immunoassay (CLIA) using
ADVIA Centaur (Siemens Medical Solutions Diagnostics, Tokyo, Japan), whereas serum
cortisol was measured by an immunoradiometric assay (Abbott Diagnostics, Chicago,
IL, USA).

Moreover, insulin-like growth factor 1 (IGF-1) was measured in all patients presenting
with signs and symptoms of adult-onset growth hormone deficiency [29]. Specifically,
IGF-1 was assayed by an immunoradiometric assay, after ethanol extraction (Diagnostic
System Laboratories Inc., Webster, TX, USA). The normal ranges in <23, 23–30, 30–50,
50–100-year-old patients were 195–630, 180–420, 100–415, 70–250 mg/l, respectively. Since
IGF-1 serum levels strictly depend on age and gender, we calculated the SDS of IGF-1 levels
according to age (zSDS) to analyse the relationships between IGF-1 levels and the other
parameters. In order to obtain a z-score, we calculated the mean and S.D. of IGF-1 levels in
young (<30 years), adults (30–50 years), middle-aged (50–65 years), and elderly (>65 years)
women and men, as previously described [27]. zSDS is defined by the following formula:
IGF-1 zSDS = (IGF-1 − mean)/S.D.

2.2.4. Dual-Energy X-ray Absorptiometry

Human body composition parameters were measured with dual-energy X-ray ab-
sorptiometry (DXA) (Hologic A Inc., Bedford, MA, USA, QDR 4500W). All scans were
administered by trained research technicians using standardized procedures recommended
by GE-Healthcare. The instrument was calibrated daily. Whole body as well as regional
body composition were assessed. Delimiters for regional analysis were determined by
standard software (Hologic Inc., Marlborough, MA, USA, S/N 47168 VER. 11.2). Regions
of the head, trunk, arms and legs were distinguished with the use of specific anatomic
landmarks.

Therefore, for each patient, the following parameters were measured: whole-body fat
mass (FM, kg and %), truncal fat mass (TFM, kg and %), appendicular fat mass (AFM), lean
mass (kg). Appendicular lean mass (ALM, kg) was determined by summing lean mass
measurements of the arms and legs. Fat distribution was assessed by upper body/lower
body fat index, calculated as the ratio between upper body fat (head, arms and trunk fat,
kg) and lower body fat (leg fat, kg) [30].

2.3. Characteristics of the Logic Machine Learning (LML)

ML is a subdomain of AI that “learns” inherent statistical patterns in data to make
predictions about unseen data [31]. The power of this technology involves the analysis of a
plethora of variables, with subsequent identification of models that stratify patients at risk,
thus guiding the appropriate therapeutic strategy [3].

A specific type of ML approach is the “rule generation method”, which constructs
models that are described by a set of intelligible rules, thus allowing to derive important
insights about the variables included in the analysis and their relationships with the target
attribute. In particular, Rulex®® (Innovation Lab, Rulex Analytics, Genova, Italy), which
was chosen for this analysis, is a logic machine learning (LML) original proprietary “clear
box-explainable” AI algorithm. This type of algorithm, unlike “black box” AI, does not pose
the problem of transparency and can be used with the objective of understanding a given
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phenomenon by producing sets of intelligible rules expressed in the form “if premise . . . ,
then consequence . . . ”, where “premise” refers to the combination of conditions (conditional
clauses) on the input variables, and “consequence” contains information about the target
function (yes or no/presence or absence of disease) [2,32]. Therefore, the Rulex®® data
analysis process can be summarized in the following steps: (1) ML technology creates
a model from known variables and is able to establish a ranking with the most relevant
variables that explain the starting premise; (2) the model makes it explicit if there are
threshold values of the most important variables previously identified; (3) the model, if
used in a prediction, starting from variables of a new patient, makes it explicit why the
response is yes or no.

In our study, the premises were the following two: (1) “the patient is metabolically
healthy” and (2) “the patient is metabolically unhealthy”. Specifically, patients were con-
sidered as metabolically healthy obese if they did not show any of the features of metabolic
syndrome described by the ATP III criteria on top of increased waist circumference (≥94 cm
for men and ≥80 cm for women) [33], whereas they were considered as metabolically
unhealthy when two or more of the features of metabolic syndrome were present. Patients
taking antidiabetic, antilipidemic and antihypertensive drugs were considered to have
diabetes, dyslipidaemia and hypertension, respectively.

Sample size for ML analysis was measured using the Vapnik–Chervonenkis dimension,
according to which at least 500 patients per class were required.

Rulex®® ML selected the most relevant variables to predict the development of MUO,
starting from all those included in the database (anthropometric data, biochemical and
hormonal assays, body composition by DXA) apart from blood pressure, lipid profile and
glycaemic parameters that are included in the definition of metabolic syndrome itself. Two
different predictive models were created with the highest accuracy, the first including IGF-1
among the variables selected and the second with IGF-1 zSDS instead of IGF-1. Given the
collinearity of these two variables, it was not possible to include them together in the same
model.

3. Results
3.1. Population

Our centre registered a total of 4541 hospitalizations from 2001 to 2019. Among them,
3529 patients accessing the centre in this period were diagnosed with obesity. Of these,
2824 individuals underwent only one hospitalization, while 705 more than one in different
years. Only 2567 met the inclusion criteria and were included in the ML analysis. Baseline
characteristics and age distribution of the study population are summarized in Table 1,
broken down by metabolic status. Specifically, metabolic syndrome, diagnosed according
to the ATPIII criteria [33], was significantly more prevalent among male subjects compared
to their female counterparts (Table 1). Patients with MUO had significantly higher blood
pressure, HOMA-IR, uric acid, TG, total cholesterol, LDL-cholesterol and upper/legs fat
ratio. Intriguingly, patients with MHO had higher IGF-1 values than their counterparts
with MUO (Table 1).

The calculated IGF-1 SDS was −0.86 ± 1.98 in our population, and its distribution
in the overall study population, as well as in the metabolically healthy and unhealthy
obese subgroups, is summarized in Figure 1A,B, respectively. It is noteworthy that it was
significantly lower in the group of patients with MUO compared to the metabolically
healthy counterparts (−0.6 ± 0.8 vs. −0.2 ±0.6, p < 0.0001, Table 1).
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Table 1. Baseline characteristics of study population included in the ML analysis, broken down by
presence/absence of metabolic impairment.

MHO
(n = 695)

MUO
(n = 1872)

Overall
(n = 2567)

Age (yrs) 45.9 ± 13.5 47.6 ± 13.5 ** 47.1 ± 13.4

Gender (%F) 82.3% 74.6% * 76.7%

Obesity duration (yrs) 25.5 ± 15.4 26.4 ± 15.1 26.1 ± 15.2

BMI (kg/m2) 38.0 ± 6.1 39.8 ± 6.8 *** 39.3 ± 6.6

WC (cm) 116.6 ± 15.3 121.9 ± 15.4 ** 120.5 ± 15.4

HC (cm) 121.5 ± 14.5 122.4 ± 14.9 122.2 ± 14.7

WHR 0.95 ± 0.12 0.99 ± 0.09 1.0 ± 0.1

SBP (mmHg) 126.4 ± 10.9 131.9 ± 16.3 * 130.4 ± 15.2

DBP (mmHg) 79.3 ± 10.8 83.1 ± 11.1 ** 82.1 ± 11.0

IGF-1 (ng/mL) 165.2 ± 77.2 154.4 ± 74.5 * 157.3 ± 76.1

IGF-1 zSDS −0.96 ± 2.3 −1.1 ± 1.96 −1.1 ± 2.1

AST (U/L) 19.5 ± 7.5 22.1 ± 12.1 *** 21.4 ± 8.7

ALT (U/L) 23.7 ± 16.4 30.3 ± 22.1 *** 28.5 ± 21.3

γ GT (U/L) 23.4 ± 24.4 28.9 ± 16.5 * 27.4 ± 19.4

Uric acid (mg/dL) 4.9 ± 1.3 5.5 ± 1.5 *** 5.3 ± 1.4

HOMA-IR 3.5 ± 3.2 5.7 ± 5.4 *** 5.1 ± 4.5

HbA1c (%) 5.7 ± 1.1 6.2 ± 1.1 6.1 ± 1.1

Vitamin D (ng/mL) 21.9 ± 10.2 20.5 ± 10.3 ** 20.9 ± 10.3

Folate (ng/mL) 7.9 ± 23.2 8.8 ± 35.3 8.6 ± 28.4

TG (mg/dL) 91.6 ± 27.2 150 ± 80.1 *** 134.2 ± 62.7

TC (mg/dL) 144 ± 33.3 195.1 ± 41 *** 181,3 ± 37.2

HDLC (mg/dL) 59.6 ± 11.3 45.2 ± 10.6 ** 49.1 ± 10.9

LDLC (mg/dL) 116.5 ± 30.7 120.1 ± 30.2 ** 119.1 ± 30.5

Creatinine (mg/dL) 0.7 ± 0.16 0.8 ± 0.23 0.8 ± 0.19

Ca (mg/dL) 9.32 ± 0.44 9.34 ± 0.44 9.3 ± 0.44

Ph (mg/dL) 3.5 ± 0.5 3.5 ± 0.6 3.5 ± 0.6

Na (mmol/L) 141.5 ± 2.6 140.9 ± 2.5 141.1 ± 2.5

K (mmol/L) 4.2 ± 0.3 4.2 ± 0.4 4.2 ± 0.4

Albumin (g/dL) 4.3 ± 0.4 4.3 ± 0.4 4.3 ± 0.4

CRP (µg/L) 0.5 ± 0.5 0.7 ± 0.6 ** 0.6 ± 0.6

ESR (mm/h) 26.1 ± 16.4 27.9 ± 17.2 * 27.4 ± 16.8

Body fat (%) 41.6 ± 6.3 40.7 ± 6.7 ** 40.9 ± 6.5

Lean mass (%) 58.4 ± 6.4 59.3 ± 6.7 ** 59.1 ± 6.6

Trunk fat (%) 39.1 ± 6.5 39.4 ± 6.5 39.3 ± 6.5

Upper/legs fat 1.62 ± 0.3 1.97 ± 0.36 *** 1.9 ± 0.32
Abbreviation: MHO, metabolically healthy obese; MUO, metabolically unhealthy obese; yrs, years; BMI, body
mass index; WC, waist circumference; HC, hip circumference; WHR, waist to hip ratio; SBP, systolic blood
pressure; DBP, diastolic blood pressure; IGF-1, insulin-like growth factor 1; IGF-1 zSDS, insulin-like growth
factor z standard deviation score; AST, aspartate aminotransferase; ALT, alanine aminotransferase; γ GT, gamma-
glutamyl transferase; HOMA-IR, model assessment-estimated insulin resistance; HbA1c, haemoglobin A1C; TG,
triglycerides; TC, total cholesterol; HDLC, high-density lipoprotein cholesterol; LDLC, low-density lipoprotein
cholesterol; Ca, calcium; Ph, phosphate; Na, sodium; K, potassium; CRP, C-reactive protein; ESR, erythrocyte
sedimentation rate. * p < 0.05. ** p < 0.01. *** p < 0.001.
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Figure 1. (A) Distribution of IGF-1 zSDS in the overall study population. (B). Distribution of IGF-1
zSDS in the MUO and MHO subgroups. Abbreviations: IGF-1 zSDS, insulin-like growth factor 1 z
standard deviation score; MUO, metabolically unhealthy obese group; MHO, metabolically healthy
obese group. Variables are expressed as percentile of total population.

3.2. Logic Machine Learning

We considered in the ML analysis all variables in the database, except for those
included in the definition of metabolic syndrome itself, in order to identify the best model
for predicting the presence/absence of MHO. The machine learning system considered
all the variables in the database together and not one after the other. Six modelling cycles
were performed (learning set = 70% and test set = 30%) to analyse the various facets of
this phenomenon.

In the model including IGF-1, the most important variables defining the outcome, start-
ing from the most influencing to the least, were: HOMA-IR, upper/legs fat, HbA1c, RBC,
age, ALT, uric acid, WBC, IGF-1, γGT. The model was predictive of the presence/absence
of metabolically healthy obesity with a precision of 66.67% and 72.15%, respectively
(Figure 2A). In a second model we included IGF-1 zSDS as variable in place of IGF-1.
In this model, the variables defining the outcome were: HOMA-IR, HbA1c, age, upper/legs



Nutrients 2022, 14, 373 8 of 14

fat, RBC, ALT, WBC, γGT, uric acid, neutrophils, AST, IGF-1 zSDS. In particular, in this
model IGF-1 zSDS values >0.03 and <0.52 predicted the presence/absence of MHO, re-
spectively. Overall, the model increased its precision, reaching the value of 71.84% for the
presence of MHO and 72.3% for its absence (Figure 2B).
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Figure 2. (A) Model no. 1 with the most relevant variables and threshold values that predict the
development of MUO. (B) Model no. 2 with the most relevant variables and threshold values that
predict the development of MUO. Abbreviations: yrs, years; HOMA-IR, model assessment of insulin
resistance; HbA1c, haemoglobin A1C; RBC, red blood cell; ALT, alanine aminotransferase; WBC,
white blood cell; γGT, gamma-glutamyl transferase; AST, aspartate aminotransferase, IGF-1 zSDS,
insulin-like growth factor 1 z standard deviation score; MUO, metabolically unhealthy obese group;
MHO, metabolically healthy obese group. IGF-1, insulin-like growth factor 1.

4. Discussion

In the current study (1) we described the characteristics of a relatively large population
of patients with obesity admitted to an Italian third tier obesity centre; (2) we adopted
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an ML approach to identify the variables involved in the characterization of MHO in the
study population.

Notably, we found that more women than men were hospitalized for obesity in the
study period. Moreover, male subjects were significantly more likely to be diagnosed with
MS, hypertension, dyslipidaemia and diabetes mellitus compared to the female counterpart.
This is in accordance with previous studies showing that women seek for medical attention
earlier than their male counterparts and that MS prevalence is higher among men compared
to women [34,35].

Moreover, we identified two models predicting the presence of MHO in our study
population through the use of an ML approach, including all the anthropometric, general
and biochemical data collected during hospitalisation. In both models, HOMA-IR proved
to be a robust tool for the characterisation of metabolic phenotype among patients with
obesity, as values >3.48 and <2.48 (in model 1) or >2.47 and <2.10 (in model 2) identified
MUO and MHO patients, respectively. These results are close enough to the optimal cutoffs
identified by Gayoso-Diz and colleagues, who found that HOMA-IR levels significantly
increased with rising number of MS components from 1.7 (without MS components) to 5.3
(with five components) [36]. ML confirmed that insulin resistance appears to be one of the
main players in the pathophysiology of metabolic derangement in obese patients, an aspect
that was already emphasised in the original, but now outdated, WHO definition of MS in
1998 [37], although it is no longer a requirement to make a diagnosis.

Furthermore, a previous study showed that there are age and gender-specific differ-
ences in HOMA-IR levels, with increased levels in women older than fifty [38]. Interestingly,
50 years of age is the same threshold value identified by Rulex®® to discriminate between
MHO and MUO. This result provides evidence that there are age differences in the way
metabolic health is expressed and that, as already proved [39], the prevalence of MS and con-
sequently of MUO has a steep increase with age. In this regard, recent strands of research
suggest that the prevalence of MUO increases with menopause and may partially explain
the apparent acceleration in cardiovascular diseases after menopause [40,41], although
menopause may be considered a predictor of MS independent of women’s age [42].

Although there is no doubt that insulin resistance is the major aetiological factor in
the development of MS, Osei and colleagues have recently investigated the significance
of HbA1c as a surrogate marker for MS, showing that in subjects with increased HbA1c,
some, albeit not all, of the components of MS could be defined by HbA1c [43]. In this
regard, as suggested by the Rulex®® model, a glycosylated haemoglobin above 5.25%,
although not diagnostic for diabetes or prediabetes, contributes to the identification of
metabolic impaired patients. Our finding confirms that HbA1c may be a valid predictor
of MUO status [44] and the threshold value we found reflects what is currently reported
in the literature according to which a HbA1c of 5.45% can predict the presence of MS [45].
Moreover, elevated levels of serum uric acid (SUA) have been suggested to associate with
cardiovascular disease, obesity and MS [46]. In this regard, the ML analysis confirmed that
patients with normal levels of SUA, and specifically below 6.25 mg/dl, are more likely to
have MHO.

Another interesting parameter that was identified by ML in predicting MUO is the
value of liver enzymes. Specifically, ALT levels above 29.35 U/L (first model) or 28.9 U/L
(second model) describe the cohort of patients with MUO. A slight increase in liver indices,
especially AST, can be considered as a red flag for the development of nonalcoholic liver
disease (NAFLD), commonly recognized as the hepatic manifestation of the MS, as reflected
by the presence of ALT, AST and BMI in the surrogate marker of NAFLD hepatic steatosis
index (HSI) [47,48]. ML confirmed that in subjects with obesity or MS, screening for NAFLD
by liver enzymes and/or ultrasound should be part of routine workup, as recommended in
the clinical practice guidelines for the management of NAFLD provided by the European
Association for the Study of Obesity [49]. ML also proved that ALT values in the normal
range may play a role in the identification of MHO patients, but failed to define a specific
threshold value for ALT in predicting MUO. Regarding γGT, which was also included
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in the models, serum levels higher than 17.45 U/L (first model) or 11.1 U/L (second
model) identify the group of patients with MUO. Of interest, both AST and γGT are
already included in validated, noninvasive tools for the assessment of liver fibrosis such as
Fibrosis-4 (FIB-4), NFS (NAFLD Fibrosis Score) and fatty liver index (FLI) [50]. In light of
this, as recently suggested by Godoy-Matos et al., the proper understanding of NAFLD
spectrum—as a continuum from obesity to MS and diabetes—may contribute to the early
detection and to the establishment of a targeted treatment [47,51].

Among all the variables of fat distribution evaluated with DXA, the upper/leg fat
index was identified by ML as the best predictor of MUO. An elevated ratio (>2.01), as
reported in our analysis, indicates upper body fat accumulation and central obesity, which
both lead to metabolic complications; contrarily to lower body fat, which confers reduced
risk [52]. Additionally, as we have already described, prominent upper body fat deposition
is likely to predispose individuals to apnoea. Indeed, fat accumulation in strategic locations,
such as the head and upper airway, predisposes to pharyngeal narrowing and upper
airways collapsibility resulting in obstructive sleep apnoea syndrome (OSAS) [30]. In
turn, OSAS is a risk factor for insulin resistance and diabetes and is often found in the
setting of MS. Occasionally, in a subset of patients with OSAS, secondary polycythaemia
will develop [53].

Even though a true polycythaemia is not generally found, according to our analysis an
RBC count >4.45 (1012/L) is a predisposing factor for MUO. When exclusively considering
the female population, the calculated cutoff was higher (>4.74 1012/L). These results are
along the line of already published data reporting that subjects affected by MS exhibit a
higher count of RBCs compared to metabolically healthy subjects. It has been reported
that, despite the presence of chronic inflammation which has suppressive erythropoietic
effects, erythropoiesis correlates with central obesity and insulin resistance [54] and that
RBC count is, even though still within normal range, significantly higher in the presence of
MS for each sex [55].

Innumerable etiopathogenetic mechanisms responsible for the onset of MS among pa-
tients with obesity have been identified, but chronic, low-grade and systemic inflammation
has been acknowledged as the common denominator [56]. The WBC count is an objective
marker of acute infection, tissue damage and inflammation [57]. A few studies have already
confirmed that the WBC count is correlated with the increase of certain variables of MS [58].
In this regard, our analysis found that a neutrophilic leucocytosis is often common in
MUO, suggesting an altered immune response and increased susceptibility to bacterial
and viral infections, as known from the recent COVID-19 pandemic [59–62] and previous
cross-sectional studies [63].

A further key predictive factor in the development of MS is IGF-1, a polypeptide
hormone structurally similar to insulin, which promotes tissue growth and maturation
through upregulation of anabolic processes. Adult-onset growth hormone deficiency (GHD)
is relatively common in patients with obesity, being associated with a worse metabolic
profile [64,65]. Epidemiological studies have suggested that IGF-1 levels in the upper
normal range are associated with increased insulin sensitivity, better liver status and
reduced blood pressure [66–69].

Noteworthy, the first model provided by Rulex®® including IGF-1, was predictive
of the presence/absence of metabolically healthy obesity with a precision of 66.67% and
72.15%, respectively. However, the usefulness of IGF-1 serum measurement is limited by a
poor standardization of its normal values, as both age and gender can significantly affect
serum IGF-1 concentrations. By the age of 65 years old, daily spontaneous GH secretion is
reduced by up to 50–70%, and consequently IGF-1 levels decline progressively as they vary
significantly with gender, age and body fat, similar to what happens with bone mineral
density (BMD). This leads to the need of a score keeping these factors into consideration,
such as the T- and Z-score developed to better evaluate BMD. In this regard, when added
IGF-1 zSDS as a variable, our second model increased its precision, reaching the value of
71.84% for the presence of metabolically healthy obesity and 72.3% for its absence.
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Our study suggests that ML may have a broad application in the risk stratification of
people suffering from obesity and supports its potential role in the health care system to
identify those at higher risk, among the wide population of subjects with obesity, and to
identify the parameters characterising the state of MHO, a phenotype that could represent
the first goal to be achieved in the management of chronic obesity in order to reduce the risk
of death. Moreover, we found that the surrogate marker IGF-1 zSDS, more than IGF-1 alone,
can increase the precision of the model in the prediction of the presence/absence of MHO,
suggesting its potential application in clinical practice as a marker of metabolic impairment.

The strengths and limitations of this study warrant mention. Firstly, this study was
conducted in a large cohort that was nationally representative of the Italian obese popula-
tion. However, our patient cohort is not gender balanced. The main limitation of the study
is that Rulex®®, like many other ML algorithms, needs a large amount of data to yield rele-
vant results. Further prospective studies, with a larger number of patients, and comparison
studies with other supervised machine learning models, such as support vector machine,
naïve Bayes algorithm and random forest algorithm, are needed to confirm our results.

5. Conclusions

Integration of ML technology in medicine may help scientists understand in a deeper
way the pathogenesis of complex diseases, such as the metabolic ones. One possible
application of this ML analysis is the development of an algorithm, which, in a similar way
to the fracture risk assessment tool (FRAX) for osteoporosis [70], can accurately predict the
risk of developing MUO at 5 or 10 years in the population of patients with obesity, thus
identifying the clinical phenotype with the highest risk and encouraging more and more
precise and targeted therapeutic approaches.
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