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Reforestation with different tree species could alter soil properties and in turn affect
the bacterial community. However, the effects of long-term reforestation on bacterial
community structure and diversity of subtropical forest soils are poorly understood. In
the current study, we applied error-corrected barcoded pyrosequencing to characterize
the differences in the soil bacterial community in a low mountain, subtropical forest
subjected to reforestation. The communities were sampled in the summer and winter
from a native broadleaved forest (BROAD-Nat) and two adjacent coniferous plantations,
a Calocedrus formosana forest of 80 years (CONIF-80) and a Cunninghamia konishii
forest of 40 years (CONIF-40). The soil bacterial communities among three forest
types were dominated by Acidobacteria and Alphaproteobacteria. The distribution of
abundant genera among communities was different. Based on the Shannon diversity
index, the bacterial alpha diversity of CONIF-40 community was significantly higher than
that in the CONIF-80 and BROAD-Nat soils. In both of the coniferous plantations, the
soil bacterial diversity in summer was also higher than that in winter. Distribution of
some abundant phylogenetic groups, K-shuff and redundancy analysis of beta diversity
among communities showed that the bacterial structure of three soil communities
differed between two seasons. These results suggest that seasonal differences influence
the diversity and structure of bacterial soil communities and that the communities remain
different even after a long period of reforestation.

Keywords: 16S rRNA genes, soil bacterial community, long-term reforestation, coniferous, broadleaved

INTRODUCTION

Soil bacteria play an important role in soil processes, including mineralization of organic matter
and biogeochemical cycling of carbon and nitrogen (Bardgett et al., 2008; Chatterjee et al., 2008;
Burton et al., 2010). The soil bacterial community can be influenced by soil properties (Stres
et al., 2008; Ushio et al., 2008; Lauber et al., 2009). Different plant species can also result in
distinct soil bacterial communities (Oh et al., 2012). Similarly, other environmental factors can
play important roles, such as litter quality and root exudates (Quideau et al., 2001; Grayston and
Prescott, 2005; Xu et al., 2008). Seasonal differences in temperature and precipitation also alter soil
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bacterial communities. For example, soil microbial phospholipid
fatty acid (PLFA) composition associated with organic matter
decomposition was significantly affected by temperature
differences (Zhou et al., 2016). Multiple factors, including
temperature, resulted in the complex responses of bamboo
soil bacterial composition and diversity across altitudinal
gradients (Lin et al., 2015). Previous studies also indicated
that precipitation could affect bacterial communities indirectly
by changing the soil moisture, which may have resulted
in composition differences between perhumid forest sites
with similar elevations but different precipitation (Lin et al.,
2014).

The disturbances caused by forest management and other
land uses are another important factor affecting soil microbes.
They can alter soil characteristics and then influence the diversity
and structure of the microbial community (Hartmann et al.,
2014). For instance, the abundances of Proteobacteria and
Firmicutes were significantly correlated with the disturbances of
soil compaction associated with logging (Hartmann et al., 2014).
Rainforest conversion to rubber plantation significantly
increased the abundance of Chloroflexi in the bacterial
community, while the most abundant phylum, Acidobacteria,
was largely unchanged (Kerfahi et al., 2016). The proportion of
some abundant bacterial groups differed between communities
of native and regenerated perhumid montane forest soils (Lin
et al., 2011b).

In the current study, we analyzed the differences of soil
bacterial communities at a subtropical low mountain forest
subjected to reforestation. This forest ecosystem is mainly
covered by natural broadleaved forest. In the same region,
the natural forest was replaced by a Calocedrus plantation
80 years ago and a Cunninghamia plantation 40 years ago.
In a previous study using 16S ribosomal ribonucleic acid
(rRNA) gene clone libraries and Sanger sequencing, we found
that the reforestation with conifers altered the structure of
the bacterial community and increased bacterial diversity (Lin
et al., 2011a). In addition, another study indicated that the
microbial biomass, PLFA content and soil enzymatic activities
were higher in the summer than in the winter (Chang et al.,
2016). However, the PLFA method cannot provide information
about microbial populations at the genus or family level
(Papadopoulou et al., 2011), and the low number of sequences
from clone library only provided data on the abundant members
of the community (Caporaso et al., 2011), leaving a gap in
our understanding of the effects of season and disturbance
on the soil bacterial community at this ecosystem. Hence,
we applied the barcoded pyrosequencing method to obtain a
more comprehensive survey of the soil bacterial communities.
Compared to the clone library, the pyrosequencing method is
less labor intensive and can provide between 4,500 and 52,000
unique sequences or operational taxonomic units (OTUs) in
soils (Acosta-Martínez et al., 2010). Thus, it quickly provides
much more comprehensive information about the microbial
community structure. We hypothesized that both the change in
management and seasonal differences would increase the soil
bacterial diversity and alter the abundance of some bacterial
taxa. The first objective of this study was to determine the soil

bacterial diversity and structure in natural broadleaved forest
compared to the coniferous plantation soils. Our second objective
was to compare the effects of season on these soil bacterial
communities.

MATERIALS AND METHODS

Site Description and Soil Sampling
This study was conducted at Lienhuachi Experimental Forest,
a subtropical low mountain area (about 700 m.a.s.l.) in central
Taiwan (23◦54′N, 120◦54′E). It is a long-term ecological study
site of low altitude forest ecosystem and encompasses 461 ha,
with 261 ha covered by evergreen natural hardwood forest.
Approximately 50% of the region has been replanted by
coniferous plantations, including Calocedrus formosana and
Cunninghamia konishii. The mean annual precipitation is about
2,200 mm. Nearly 90% of which occurs between March and
September. The mean annual temperature is about 21◦C (30◦C
in July and 10◦C in January) (Lee et al., 2008). Soil samples
were collected in July, 2010 (summer) and February, 2012
(winter). A native broadleaf forest (BROAD-Nat), and secondary
coniferous Calocedrus plantation of 80 years (CONIF-80) and
Cunninghamia plantation of 40 years (CONIF-40) were included
for sampling. Each vegetation type was sampled at four
(winter) or five (summer) 50 m × 50 m plots established
50 m apart along transect lines. The plots were marked to
facilitate subsequent sample collections at the same location.
After removing the surface litter, three subsamples at each
plot were collected with a soil auger, 8 cm in diameter
and 10 cm deep and pooled. The soil samples were passed
through a 2 mm sieve, and a portion was stored at 4◦C
for soil biochemical assays. The remainder of the samples
was freeze-dried and stored in −20◦C for DNA extraction.
The soils in sampling sites were moderately well-drained and
classified as Typic Dystrudept (U.S. Soil Taxonomy) (Jien
et al., 2009). The soils were strongly acidic, and the pH
values of the surface soils ranged from 3.6 to 3.8. Other
characteristics of each soil site are described in Chang et al.
(2016).

DNA Extraction and Amplification of
16S rRNA Genes and Pyrosequencing
The soil communities DNA from 0.25 g of soil from each plot
were extracted using the PowerSoilTM Soil DNA Isolation kit
(MoBio Industries, Carlsbad, CA, United States) in accordance
with manufacturer’s instructions. The V1 to V2 regions of
the bacterial 16S rRNA gene were amplified using 27F and
338R primers (Lane, 1991). Polymerase chain reactions (PCRs)
were performed as described previously (Lin et al., 2015).
Secondary PCR (3 cycles rather than 20) was carried out to
add the different barcodes for each sample (Lin et al., 2015).
The unique and error-correcting barcodes facilitated sorting of
sequences from a single pyrosequencing run (Hamady et al.,
2008). Products were then purified using the PCR clean up
system (Viogene BioTek Corp., New Taipei City, Taiwan). The
qualities and concentrations of the purified barcoded PCR
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products were determined using a NanoDrop Spectrophotometer
(Thermo Fisher Scientific). Amplicon pyrosequencing was
performed by Mission Biotech (Taipei, Taiwan) using a
454/Roche GS-FLX Titanium Instrument (Roche, Branchburg,
NJ, United States).

Pyrosequence Analyses
All the sequences were processed through the Ribosomal
Data Project (RDP) pyrosequencing pipeline1 (RDP release
11.5; release date: 2016.09.30). Sequences were assigned to
each sample by recognition of the barcode and trimmed to
remove the barcodes, primers, and linker. The pyrosequences
were then filtered, and those that did not have Ns, were
more than 200 bp in length, were free of chimeras using
Uchime (Edgar et al., 2011), and had quality scores >25
were used for further analyzes. The trimmed and filtered
sequences used for the subsequent analyses were submitted
to the Sequence Read Archives with the accession number of
SRP136858. Taxonomic information was analyzed using the
Naïve Bayesian rRNA classifier of the RDP with a confidence
cutoff of 80% (Wang et al., 2007). OTUs were formed with
an evolutionary distance of 0.03. Singletons that appeared only
once in the data set were removed. To avoid measurement
differences due to differences in sample size for estimation
of the alpha and beta diversity (Roesch et al., 2007; Will
et al., 2010), the sample size of each replicate was normalized
to 1800 sequences by random selection from larger samples.
Although this procedure reduced the number of rare OTUs
analyzed, it was justified because the goals of these studies
were to compare the effects of season and vegetation on
the bacterial communities and not to capture all OTUs. To
estimate bacterial alpha diversity, Shannon diversity indexes
(Shannon and Weaver, 1963) were calculated based on the
Complete Linkage Clustering data for OTUs with an evolutionary
distance of 0.03. The “Venn” command of Mothur program
(Schloss et al., 2009) was applied to visualize the shared
OTUs among bacterial communities. The abundant genera and
genus-level groups of three forest soil bacterial communities
were identified with the Naïve Bayesian rRNA classifier of the
RDP. The differences in distribution between the seasons were
analyzed with one way ANOVA. The heat map was plotted with
Heatmapper (Babicki et al., 2016). Community comparisons were
further performed using K-shuff analysis (Jangid et al., 2016).
Correlations (Spearman rank correlation ρ) between resemblance
matrices of bacterial composition based on the distribution
of OTUs, diversity, and soil properties were assessed using
RELATE as implemented in the PRIMER V6 software (Clarke
and Gorley, 2006). A permutation test (999 permutations) was
applied to evaluate significance. The resemblance matrix was
derived from normalized data. Under the null hypothesis that
there is no relation between the two similarity matrices, ρ will
be approximately zero. Redundancy analysis was carried out by
using the vegan package in R v.3.2.1 to determine the relationship
between the distribution of OTUs of bacterial community and
soil properties.

1http://pyro.cme.msu.edu

RESULTS

Bacterial Community Composition
Using barcoded pyrosequencing, the 16S rRNA gene sequences
were retrieved from three forest soils in summer and winter to
investigate the bacterial composition. About 12,300 to 24,000
pyrosequence reads were obtained from each soil communities
(Supplementary Table S1). These sequences were dominated
with Acidobacteria (42–48%) and Proteobacteria (30–33%)
(Supplementary Figure S1). Actinobacteria was the third most
abundant phyla, but accounted for less than 6% of the sequences.
The proportion of other phyla, such as Bacteroidetes, Chloroflexi,
and Firmicutes, were all less than 4% (Supplementary Figure S1).
The Gp1, 2, and 3 were the most abundant groups of
Acidobacteria, and the relative abundance of Gp2 was higher
in winter (Table 1 and Figure 1). In contrast, Acidobacteria
Gp3 was more abundant in summer. Within the Proteobacteria,
Alphaproteobacteria was the most abundant group (17–22%),
and Bradyrhizobium of the Rhizobiales was the most abundant
genus, especially in the summer. The Beta-, Gamma- and
Delta-proteobacteria were all only about 2–5% of sequences
among the three communities in both seasons. In summary,
although the same bacterial genera and genus-level groups
were abundant under all the conditions examined, the relative
abundances of some phylogenetic groups varied significantly with
season.

Similar conclusions were obtained by K-shuff analysis of the
soil bacterial communities (Table 2). Within summer or winter,
the community structures were significantly different between the
three forest soils except for the comparison of CONIF-80 and
CONIF-40 in summer. Moreover, the soil bacterial community of
each forest type also differed significantly between two seasons.
However, in all cases, the differences were relatively small, with
Kcf values of less than 0.005.

Bacterial Community Diversity
Although the major taxa present in all three forest soils were
similar, the bacterial alpha diversity among three communities
was different. Based on the Shannon diversity indexes calculated
from the OTUs formed at an evolutionary distance <0.03 (about
97% sequence similarity), the CONIF-40 forest soil community
was more diverse than both the CONIF-80 and BROAD-Nat
communities in both the summer and winter (Figure 2). While
the diversity of both the CONIF-40 and CONIF-80 forest
communities appeared to be higher in the summer than the
winter, this difference was not significant (Figure 2). Rarefaction
curves supported these conclusions, and the slopes of the CONIF-
40 curves were higher than the other communities in each season
(Supplementary Figure S3). In addition, the rarefaction curves
for the BROAD-Nat communities were nearly identical in both
seasons.

Bacterial Community Comparison and
Relationship With Soil Properties
While the same genera and genus-level groups were abundant
in all the bacterial communities, there were significant variations
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TABLE 1 | The relative abundance (%) of some abundant genera and genus-level groups of three forest soil bacterial communitiesa.

Affiliation Summer Winter % of all reads

BROAD-Nat CONIF-80 CONIF-40 BROAD-Nat CONIF-80 CONIF-40

Acidobacteria Gp1 24.1 22.9 20.2 20.1 22.4 20.5 21.8

Acidobacteria Gp2∗ 7.5 6.9 9.7 14.7 11.1 14.3 10.3

Acidobacteria Gp3 6.8 5.3 5.3 4.6 4.7 4.3 5.2

Bradyrhizobium∗ 2.2 2.4 2.0 1.7 1.8 1.6 2.0

Acidobacteria Gp5 1.9 1.1 1.1 1.1 0.9 1.1 1.2

Burkholderia∗ 0.7 1.2 2.9 4.3 4.3 4.9 1.1

Acidobacteria Gp6 0.9 0.8 1.2 0.9 1.0 1.1 1.0

Thermosporothrix∗ 0.6 0.6 0.7 0.8 0.8 1.0 0.8

Rhizomicrobium 0.7 0.8 0.5 0.7 0.8 0.4 0.8

Mycobacterium 0.6 0.5 0.3 1.2 0.3 0.2 0.6

Rhodoplanes∗ 0.5 0.5 1.4 1.7 1.7 2.4 0.5

Aciditerrimonas 0.3 0.5 0.5 0.5 0.5 0.3 0.5

Granulicella 0.7 0.5 0.2 0.4 0.5 0.1 0.4

Caulobacter 0.4 0.4 0.3 0.6 0.4 0.2 0.4

Mucilaginibacter 0.2 0.5 0.2 0.3 0.3 0.3 0.4

Bacillus 0.3 0.5 0.1 0.3 0.3 0.2 0.3

Dyella 0.2 0.4 0.8 0.7 1.3 1.3 0.3

Gemmatimonas∗ 0.2 0.3 0.3 0.1 0.2 0.0 0.2

Acidobacteria Gp13 0.2 0.2 0.3 0.1 0.3 0.1 0.2

Armatimonadetes Gp3 0.1 0.1 0.2 0.2 0.2 0.1 0.2

Streptophyta 0.1 0.1 0.2 0.1 0.1 0.2 0.1

Rhodomicrobium 0.3 0.1 0.0 0.2 0.0 0.1 0.1

Aquicella∗ 0.1 0.2 0.4 0.5 0.5 0.6 0.1

Armatimonadetes Gp1 0.1 0.1 0.1 0.1 0.2 0.2 0.1

Acidobacteria Gp4 0.2 0.0 0.1 0.1 0.1 0.1 0.1

Methylocystis 0.0 0.2 0.1 0.1 0.1 0.1 0.1

Gaiella 0.1 0.2 0.1 0.1 0.1 0.0 0.1

Nitrospira∗ 0.1 0.1 0.2 0.4 0.4 0.4 0.1

Sorangium 0.0 0.1 0.1 0.1 0.1 0.1 0.1

Ktedonobacter 0.1 0.1 0.1 0.0 0.1 0.1 0.1

Phenylobacterium 0.1 0.1 0.0 0.1 0.0 0.0 0.1

Edaphobacter 0.1 0.0 0.1 0.2 0.0 0.0 0.1

Verrucomicrobia Gp3 0.2 0.1 0.1 0.0 0.0 0.0 0.1

Novosphingobium 0.2 0.1 0.0 0.1 0.0 0.0 0.1

Paenibacillus 0.1 0.1 0.0 0.0 0.0 0.0 0.1

Affiliations with an asterisk indicate a significantly different (P < 0.05) in distribution between seasons analyzed with one way ANOVA. aThe data was based on the results
from the Naïve Bayesian rRNA classifier of the RDP. The total reads included in table were about 50% of normalized data.

in the relative abundance of some specific groups (Table 1).
To examine the differences in more detail, the distributions
of the OTUs with more than 10 reads in the normalized
data set were visualized in Venn diagrams (Supplementary
Figure S2). These OTUs represented 53–65% of the total
number of reads. The minimum number of reads of 10 was
chosen because the rarefaction curves indicated that the
communities had not been completely sampled (Supplementary
Figure S3), and OTUs with fewer reads might be found
in only one community by chance even if it was evenly
distributed throughout the samples. In all comparisons,
either by management or season, nearly 70% of the OTUs
were only found in one condition. Moreover, statistical
analyses of the K-shuff results indicated that the communities

were significantly different in both seasons (Supplementary
Table S2). These results strongly supported the conclusion
that the communities varied greatly with both season and
management.

Based on the RELATE analysis, soil properties, including soil
pH and organic carbon, were significantly correlated with the
alpha diversity of bacterial communities (Table 3). Redundancy
analysis was further performed based on the distribution of
shared OTUs and the soil properties. The soil communities
between two seasons, especially those in BROAD-Nat forests,
formed separate clusters (Figure 3). This result supported the
analyses of abundant genus-level groups and OTUs (Table 1),
which reached similar conclusions. In addition, the results of
Supplementary Table S2 also supported the conclusion that
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FIGURE 1 | Heat map of the 35 most abundant genera or genus-level groups of three forest soil communities. Dendrogram of the Euclidean distances between the
bacterial communities is shown at the top.
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TABLE 2 | Statistical significance (P-value) of differences among forest soil communities using K-shuff analysisa.

Season Forest Summer Winter

CONIF-80 CONIF-40 BROAD-Nat CONIF-80 CONIF-40 BROAD-Nat

Summer CONIF-80 – 0.06 0.01 0.01 0.21 0.02

CONIF-40 0.000092 – 0.01 0.01 0.01 0.11

BROAD-Nat 0.001825 0.001833 – 0.02 0.01 0.01

Winter CONIF-80 0.001372 0.001280 0.004077 – 0.01 0.03

CONIF-40 0.001320 0.001228 0.004026 0.000052 – 0.01

BROAD-Nat 0.000350 0.000441 0.002356 0.001701 0.001670 –

The lower parts of the matrix were the KCF values between forest soil communities. aValues in bold are P ≤ 0.05.

FIGURE 2 | Shannon diversity index of three forest soil bacterial communities.
OTUs were calculated at the 3% evolutionary distance. Bars of the same
season with different letters indicate significant differences at P ≤ 0.05
analyzed with one way ANOVA. The bacterial diversity of the same forest
types between two seasons was not significantly different.

replicate samples mostly clustered together, as in Figure 3.
The microbial biomass carbon was also positively associated
with the BROAD-Nat and CONIF-80 forest communities in
summer. The Org. C and TN showed positive associations with
the summer CONIF-40 community, and the pH was positively

TABLE 3 | Correlations of bacterial community composition based on the
distribution of OTUs and Shannon diversity index with soil properties using the
RELATE in the PRIMER V6 softwarea.

Soil Properties Correlation

Composition Diversity

pH 0.19 0.30

Organic C 0.17 0.18

Total N 0.01 0.06

C/N ratio 0.01 −0.14

Microbial biomass C 0.09 0.06

Microbial biomass N 0.05 −0.08

aValues were Spearman’s correlation coefficient (ρ)between bacterial composition,
diversity and soil properties. Values in bold are P ≤ 0.05.

associated with BROAD-Nat and CONIF-80 forest communities
in winter (Figure 3).

DISCUSSION

In the present study, the three bacterial communities were
dominated by two phyla, Acidobacteria and Proteobacteria.
With the other three less abundant groups, Actinobacteria,
Bacteroidetes, and Firmicutes, they comprised more than 90% of
the sequences in each of the communities. Using pyrosequencing,
similar results have also been observed in other bacterial
communities of forests (Lauber et al., 2009; Nemergut et al.,
2010), grasslands (Will et al., 2010), and agricultural systems
(Acosta-Martínez et al., 2008). These results indicated that a
variety of soils were mainly composed of similar dominant
bacterial groups, although the relative abundances of the taxa
varied between the study sites.

The bacterial structure in natural broadleaved forest soils
differed from those in secondary coniferous plantations. Several
studies have shown that land use is one of the important factors
to alter the soil bacterial structure (Deng et al., 2016; Wang
et al., 2017). Our previous study at higher elevations also showed
the bacterial structure changes between a natural broadleaved
forest and reforested cedar plantation (Lin et al., 2017). Forest
management in tree species changes could result in differences
in litter chemistry and influence soil properties and microbial
communities (Ushio et al., 2010). Soil nutrient availability is
correlated with the bacterial community (Hofmann et al., 2016).

Our results revealed that the community diversity of
coniferous CONIF-40 and perhaps the CONIF-80 plantation
soils was higher than that in the original BROAD-Nat forest
soils. Previous studies in different forest ecosystem also revealed
that the disturbance of forest soils increased the diversity of
microbial communities (Lin et al., 2011a, 2017). The disturbance
of reforestation could disturb soil water content and nutrient
conditions, which in turn could affect bacterial diversity (Jangid
et al., 2011). Although the apparent diversity in the coniferous
plantation soils was higher in the summer than the winter,
this increase was not significant. Temperature and soil moisture
are important factors that affect the soil bacterial community.
A landscape-scale study in Scotland revealed that the soil
bacterial composition was related to variation in precipitation
(Nielsen et al., 2010). Differences in soil water content due
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FIGURE 3 | Redundancy analysis of bacterial community based on the distribution of OTUs among three forest soils in different seasons. Org. C, organic carbon;
TN, total nitrogen; C/N, organic C/TN ratio; MBC, microbial biomass carbon; MBN, microbial biomass nitrogen.

to the temporal variability affected the soil bacterial alpha
diversity (Rasche et al., 2011; Lauber et al., 2013). In this study
site, precipitation is mainly between March and September.
The temperature in summer could be up to 30◦C and only
10◦C in winter. Lower temperature and precipitation in winter
could alter microbial activity (Sowerby et al., 2005) and shape
the communities (Romanowicz et al., 2016), resulting in lower
bacterial diversity in winter.

Using clone library method, a previous study at the same site
also revealed the community differences between hardwood and
coniferous plantations. However, the Proteobacteria comprised
more than half of sequences, and the Gammaproteobacteria
dominated within the Proteobacteria (Lin et al., 2011a). The
results were quite different from the present study. In the
present study, the soil samples were recollected and were
different from those in the previous one. Besides sampling time,
sequencing method could result in this difference. About 150
to 170 sequences per sample were used in the previous study
or far less than the present one. The low number of sequences
may have missed some parts of community, and 2,000 reads
have been suggested as necessary to characterize soil microbial
communities (Caporaso et al., 2011). In addition, an abundant
Stenotrophomonas-related OTU was present in the previous
study (Lin et al., 2011a). Less than five pyrosequences of this
genus was retrieved in the present study. Thus, the specific
cloning method may also have contributed to the differences.

In this study, Acidobacteria predominated in the communities
of the three forests. The abundance is in accordance with findings
of other studies of the composition of soil bacterial communities

conducted in various environments, such as forest (Lauber
et al., 2009), grassland (Will et al., 2010), and agricultural soils
(Janssen, 2006). The Acidobacteria might also be metabolically
active as well as numerically dominant in soils (Lee et al.,
2008). They exhibit slow metabolic rates under low nutrient
conditions and are versatile heterotrophs (Ward et al., 2009) and
oligotrophs (Nemergut et al., 2010). The low soil pH value of
this study site also facilitates the presence of Acidobacteria, and
their distribution is negatively correlated with soil pH (Jones
et al., 2009). According to the genomic and physiological data,
Acidobacteria also well tolerate fluctuations in soil hydration
(Ward et al., 2009). Moreover, some studies showed that
Acidobacteria involve degradation of plant- and microorganism-
based polysaccharides and are linked to the soil N availability
(Fierer et al., 2007; Jones et al., 2009). In the present study, the
abundant acidobacterial Gp1 and Gp2 were also reported as the
two most abundant subdivisions of Acidobacteria in the tundra
soil bacterial communities. They responded to environmental
conditions differently, suggesting the wide functional diversity of
these organisms (Männistö et al., 2013). Hence, based on their
abundance, metabolic activity, and the presence in various soils,
the Acidobacteria appear to play important roles in this forest
ecosystem as well as in other environments.

Proteobacteria were abundant in the three soil communities.
Several studies in other soils showed similar trends (Mendes
et al., 2015; Montecchia et al., 2015). Members of this phylum
possess an enormous range of morphological, physiological,
and metabolic diversity and play essential roles in global
carbon, nitrogen, and sulfur cycling (Spain et al., 2009).
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Among Proteobacteria, many alphaproteobacterial pyrosequences
were related to the genus Bradyrhizobium of the Rhizobiales.
Some species related to this genus are able to fix nitrogen and
could contribute to the biogeochemical cycling in this ecosystem
(Zhang and Xu, 2008; Yarwood et al., 2009). In addition, the
members of Rhizobiales are considered a rhizospheric-plant
promoting group (Fierer et al., 2007). Their abundance could
indicate the essential roles in plant–microbe interactions
and soil function, as well as in nitrogen fixation. Within
Betaproteobacteria, the genus Burkholderia was also abundant
and relatively higher in the winter communities. This group is a
commonly part of rhizosphere soil communities. With functional
diversity in nitrogen fixation and plant growth promotion
(Coenye and Vandamme, 2003), it could play important role
in maintaining stability in the soil community.

In the three communities, Actinobacteria accounted for less
than 6% of the sequences. The abundance of Actinobacteria
increases in soils with high organic matter and alkaline pH
(Zhang et al., 2013; Li et al., 2016). The acidic pH value
(pH < 4) of the study soils could result in lower abundance
in Actinobacteria, since their relative abundance is positively
correlate with soil pH (Lauber et al., 2009).

The phylum Chloroflexi also comprised about 3–4% of
the three communities, with a relatively higher abundance in
CONIF-40 soils. The species of this phylum are able to hydrolyze
polysaccharides such as cellulose, xylan, and chitin (Yabe et al.,
2010, 2016), suggesting their roles in degradation of plant residue.

CONCLUSION

Though similar in composition, the bacterial structure among
forest types and seasons were significantly different. The

composition of the communities differed, especially between
seasons. The bacterial diversity was also higher in the
community with a shorter reforestation time and in summer,
except that in BROAD-Nat. The differences between two
seasons could have resulted from differences in soil moisture
and temperature. More environmental factors would need
to be examined to completely elucidate the relationship
between soil properties and soil bacterial communities and
the effects of season on the soil bacterial communities at this
site.
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