
RESEARCH Open Access

Bacteroides vulgatus and Bacteroides dorei
predict immune-related adverse events in
immune checkpoint blockade treatment of
metastatic melanoma
Mykhaylo Usyk1, Abhishek Pandey2, Richard B. Hayes1,2, Una Moran2,3, Anna Pavlick4, Iman Osman2,3,4,
Jeffrey S. Weber2,4 and Jiyoung Ahn1,2*

Abstract

Background: Immune checkpoint blockade (ICB) shows lasting benefits in advanced melanoma; however, not all
patients respond to this treatment and many develop potentially life-threatening immune-related adverse events
(irAEs). Identifying individuals who will develop irAEs is critical in order to improve the quality of care. Here, we
prospectively demonstrate that the gut microbiome predicts irAEs in melanoma patients undergoing ICB.

Methods: Pre-, during, and post-treatment stool samples were collected from 27 patients with advanced stage
melanoma treated with IPI (anti-CTLA-4) and NIVO (anti-PD1) ICB inhibitors at NYU Langone Health. We completed
16S rRNA gene amplicon sequencing, DNA deep shotgun metagenomic, and RNA-seq metatranscriptomic
sequencing. The divisive amplicon denoising algorithm (DADA2) was used to process 16S data. Taxonomy for
shotgun sequencing data was assigned using MetaPhlAn2, and gene pathways were assigned using HUMAnN 2.0.
Compositionally aware differential expression analysis was performed using ANCOM. The Cox-proportional hazard
model was used to assess the prospective role of the gut microbiome (GMB) in irAES, with adjustment for age, sex,
BMI, immune ICB treatment type, and sequencing batch.

Results: Two natural GMB clusters with distinct community compositions were identified from the analysis of 16S
rRNA data (R2 = 0.16, p < 0.001). In Cox-proportional hazard modeling, these two clusters showed a near 7-fold
differential risk for developing irAEs within 1 year of initiating treatment (HR = 6.89 [95% CI: 1.33–35.58]). Using
shotgun metagenomics, we further identified 37 bacterial strains differentially expressed between the risk groups,
with specific dominance of Bacteroides dorei within the high-risk GMB cluster and Bacteroides vulgatus in the low-
risk cluster. The high-risk cluster also appeared to have elevated expression of several functional pathways,
including those associated with adenosine metabolism (all FDR < 0.05). A sub-analysis of samples (n = 10
participants) at baseline and 6 and 12 weeks after the start of treatment revealed that the microbiome remained
stable over the course of treatment (R2 = 0.88, p < 0.001).
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Conclusions: We identified two distinct fecal bacterial community clusters which are associated differentially with
irAEs in ICB-treated advanced melanoma patients.

Keywords: Microbiome, Melanoma, Immune-related adverse events, Toxicity, Biomarkers, Survival, Prospective
design

Background
Immune checkpoint blockade (ICB) with therapeutics
such as the anti-CTLA-4 antibody ipilimumab (IPI) and
anti-PD-1 antibodies nivolumab (NIVO) and pembroli-
zumab have revolutionized the treatment of advanced
melanoma, producing durable clinical benefit [1]. How-
ever, not all patients receiving ICB treatment benefit,
and a substantial portion experience immune-related
adverse events (irAEs), including colitis, diarrhea, endo-
crinopathies, rashes, pneumonitis, myocarditis, and
hepatitis. irAEs are sometimes life-threatening, often re-
quiring systemic immunosuppression or complete dis-
continuation of therapy [2]. It is urgent to identify
biomarkers that predict for irAEs before the initiation of
therapy, in order to implement personalized treatment
to mitigate their effect.
Increasing evidence suggests that the gut micro-

biome (GMB) plays an important role in regulating
innate and adaptive immunity [3]. In the context of
ICB treatment, we [4] and others [5–7] have demon-
strated that the structure of the human gut micro-
biome is an important pre-treatment predictor for the
efficacy of ICB treatment, but the relationship of the
pre-treatment microbiome with irAEs remains un-
clear. irAEs are generally associated with more ag-
gressive forms of ICB treatment (i.e., combination
IPI/NIVO), which in turn are associated with greater
treatment efficacy [8]. Healthy donor fecal microbial
transplant (FMT) into melanoma patients was re-
ported to reverse ICB therapy-related colitis, without
compromising the success of the cancer treatment
[9], suggesting that GMB may be directly involved in
the control of irAEs. Cross-sectional studies also have
identified bacteria associated with irAEs, but the spe-
cific taxa that were present were not consistent
among studies [10].
We performed a study using stool samples prospect-

ively collected from 27 patients prior to the initiation of
ICB treatment of melanoma to identify GMB risk factors
for developing irAEs. We performed a thorough
characterization of the GMB using three different se-
quencing approaches to both ensure the consistency of
the results and improve the generalizability of the data
by identifying the strain-level microbial differences asso-
ciated with the risk of irAES. Specifically, we utilized 16S
rRNA sequencing to characterize the overall GMB struc-
ture of patients. We then performed deep shotgun

metagenomic sequencing in order to identify the reliable
strain-level differences associated with irAEs. Further-
more, we used the shotgun data and additional confirm-
ation with RNA-seq analysis to identify taxon
independent risk markers. Finally, we used Cox-
proportional hazards time-to-event analysis to relate
pre-treatment GMB to irAE development. Our study
suggested that elements of the GMB were associated
with the development of irAES with ICB in advanced
stage melanoma.

Methods
Study population
We studied 27 metastatic melanoma patients (stages 3–
4) scheduled to receive immunotherapy at NYU Langone
Health as previously described [4]. Briefly, subjects were
recruited in 2016–2017 and followed for the develop-
ment of outcomes until September 2018. All patients
were educated about the study and provided written in-
formed consent prior to the initiation of ICB treatment
(IRB#10362) and entrance into our prospective observa-
tional study. Stool kits were provided prior to the initi-
ation of treatment. In addition, stool collection kits were
also provided at 6 and 12 weeks after treatment initi-
ation. Survival analysis outcomes for irAEs were defined
to be the time to the incidence of a grade 2+ toxicity
event following initiation of ICB treatment. Grade 2 tox-
icity represents moderate side effects and would usually
result in the suspension of ICB treatment. Examples of
grade 2 toxicity include abdominal pain, mucus or blood
in stool, and diarrhea frequency 4–6/day above a pa-
tient’s normal levels [11].

Stool collection
Patients collected stool at home prior to the start of im-
munotherapy. Kits included a stool collection tube with
10mL RNAlater, instructions for stool collection, and a
return addressed box with pre-paid postage. Patients
were instructed to mail the samples back within 1 day;
upon receipt, samples were stored at − 80 °C until use.
This procedure was also followed for the 6- and 12-week
collection.

16SV4 sequencing
Stool samples underwent 16SV4 rRNA gene sequencing
at the Environmental Sample Preparation and Sequen-
cing Facility at Argonne National Laboratory, as
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previously described [4]. DNA was extracted using
the Mo Bio PowerSoil DNA isolation kit, following
the manufacturer’s protocol. The V4 region of the
16S rRNA gene was PCR amplified with the 515F/
806R primer pair, which included sequencer adapter
sequences used in the Illumina flow cell and sample-
specific barcodes [12]. Each 25 μL PCR reaction con-
tained 9.5 μL of Mo Bio PCR Water (Certified DNA-
Free), 12.5 μL of QuantaBio’s AccuStart II PCR
ToughMix (2× concentration, 1× final), 1 μL Golay
barcode tagged forward primer (5 μM concentration,
200 pM final), 1 μL reverse primer (5 μM concentra-
tion, 200 pM final), and 1 μL of template DNA. The
conditions for PCR were as follows: 94 °C for 3 min
to denature the DNA, with 35 cycles at 94 °C for 45 s,
50 °C for 60 s, and 72 °C for 90 s, with a final exten-
sion of 10 min at 72 °C. PCR products were quantified
using PicoGreen (Invitrogen) and a plate reader (In-
finite 200 PRO, Tecan). Sample PCR products were
then pooled in equimolar amounts, purified using
AMPure XP Beads (Beckman Coulter), and then
quantified using a fluorometer (Qubit, Invitrogen).
Molarity was then diluted to 2 nM, denatured, and
then diluted to a final concentration of 6.75 pM with
a 10% PhiX spike for sequencing on the Illumina
MiSeq. Amplicons were sequenced on a 151 bp × 12
bp × 151 bp MiSeq run [13].

16SV4 rRNA bioinformatics
Sequence reads were processed using QIIME2 [14].
Briefly, sequence reads were demultiplexed, and paired-
end reads were trimmed to remove bases that fell had a
PHRED quality score of 25 or lower using priseq-lite
[15]. Reads were then joined using PANDAseq [16].
DADA2 [17] was then used to error correct the merged
reads and to identify the amplicon sequence variants
(ASVs). The DADA2 pipeline works by utilizing the
error profile of the Illumina reads in order to achieve
single-nucleotide resolution. This allows our 16S data to
be grouped at a sequence level, which offers higher taxo-
nomic resolution over traditional clustering into oper-
ational taxonomic units [17]. ASVs are then assigned
taxonomy a bacterial taxonomy using a naïve Bayes clas-
sifier [18] pre-trained on the Greengenes 13_8 99%
OTUs [19].

Shotgun metagenomic sequencing
Stool samples underwent shotgun metagenome sequen-
cing at the Environmental Sample Preparation and Se-
quencing Facility at Argonne National Laboratory. DNA
was extracted as above and quantified using a
fluorometer (Qubit, Invitrogen). DNA was then mechan-
ically sheared to the desired insert size of the final
library using the Covaris S-series system, and products

were brought to 15 μL using Agencourt AMPure XP
beads (Beckman Coulter). The Apollo 324 system
(Takara Bio) was then used for end-repair, A-tailing,
Illumina adaptor and barcode ligation, and size selec-
tion to generate the libraries. Libraries are run
through 10–15 cycles of PCR with Kapa Biosystems
Library Amplification kits, followed by further size se-
lection with Blue Pippin Prep (Sage Science). Final li-
brary quantification is achieved using the Qubit
Fluorometer (for concentration) and the Agilent 2100
Bioanalyzer (for library insert size and length). Librar-
ies were sequenced on the Illumina HiSeq 2500 on a
2 × 101 bp paired-end run.

Shotgun metagenomic bioinformatics
Reads were demultiplexed, and Trimmomatic [20] was
used for read length filtering, trimming of Illumina
adapter sequences, and trimming of low-quality read
ends. Reads mapping to the human genome were identi-
fied using Bowtie2 [21] and removed. Forward and re-
verse reads were concatenated for input into the
taxonomic and functional profiling tools, MetaPhlAn2
and HUMAnN2. MetaPhlAn2 [22] uses a set of ~ 1 mil-
lion clade-specific markers (average 184 marker genes
for each species) from > 7500 species to unequivocally
identify and quantify specific microbial clades at the spe-
cies level or higher. Reads belonging to either Bacter-
oides dorei or Bacteroides vulgatus were extracted from
raw fastqs using Bowtie2 [21]. Reads were then assem-
bled into contigs using metaSPADEs with default set-
tings [23]. Final genome assembly and annotation were
performed using PATRIC [24].

Statistical analysis
All data analysis was performed using R [25]. Beta diver-
sity was calculated employing the package using Jensen-
Shannon divergence (JSD) distances [26]. The Ward.D2
clustering algorithm was used to identify sample entero-
types using the JSD distances [27, 28]. Cox-proportional
hazards models were used to determine whether micro-
biome enterotypes were associated with the development
of a grade 2+ toxicity event within 1 year of the start of
treatment. PERMANOVA within the vegan [29] package
was used to determine the significance of enterotype
clustering, and kernel-based regression from the MiR-
KAT [30] package was used to adjust for covariates. The
adjustment was made for age, sex, BMI, cancer stage, se-
quencing batch in survival, and beta diversity analysis.
The Wilcoxon test was used to identify differentially
abundant genera within the amplicon data. ANCOM
[31] was used to identify species significantly differen-
tially abundant between the identified enterotypes within
shotgun data.
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Results
GMB risk clusters
Patients with metastatic melanoma (n = 27), scheduled
to receive immunotherapy at NYU Langone Health from
September 2016 to November 2017, provided stool sam-
ples at three time points (pretreatment [baseline], during
[6 weeks], and after [12 weeks] treatment). The majority
of the patients were male (78%) and Caucasian (96%),
and 56% of the patients were receiving IPI+NIVO treat-
ment, with the remainder receiving NIVO alone. We
completed fecal 16S V4 rRNA gene amplicon and recov-
ered an average of 71,152 reads ± 13,485, per sample,
across 2209 amplicon sequence variants (ASVs) that rep-
resented 217 unique genera and 123 species. Based on
unsupervised hierarchical clustering at the amplicon se-
quence variant (ASV) level, two distinct clusters (one
designated as “GMB1” and shown in orange and the
other designated as “GMB2” and colored as blue) were
identified (Fig. 1A). These clusters represented signifi-
cant differences in the overall GMB structure, based on
unadjusted PERMANOVA analysis (R2 = 0.16 p < 0.001;
Fig. 1B) and with kernel-based covariate adjustment for
subject age, sex, BMI, and treatment type (p < 0.001).
We examined whether these naturally occurring GMB

clusters were associated with immune-related adverse
events (irAEs). In Kaplan-Meir analysis, we showed that
irAE grade 2+ occurred more frequently for study par-
ticipants in the GMB1 (orange, n = 11) versus the

GMB2 (blue, n = 16) group (Fig. 2A, p = 0.021). In Cox-
proportional hazard analysis, we showed that the ad-
justed risk of an adverse event (irAE grade 2+) was
nearly 7-fold greater for the GMB1 than the GMB2
group (hazard ratio (HR) = 6.88 [95% CI: 1.33–35.58] p
= 0.021) (Fig. 2B, data adjusted for age, sex, BMI, and
immunotherapy type). Males appeared to be less likely
to develop irAEs compared to women, HR = 0.092 [95%
CI: 0.010–0.83] p = 0.033; BMI on a continuous scale
was positively associated with irAEs, HR = 1.20 [95% CI:
1.02–1.42] p = 0.032; and, consistent with previous stud-
ies [32], mono-antibody treatment had an overall lower
risk of irAEs, HR = 0.13 [95% CI: 0.020–0.80] p = 0.028.
In order to identify what was driving the composition

of these distinct naturally occurring GMB risk clusters,
we analyzed the top ASVs identified using DADA2 ana-
lysis (Additional file 1, Fig S1). There appeared to be
two unclassified sequence clusters belonging to the
Genus Bacteroides which uniquely dominated each of
the identified GMB clusters; that is, the GMB2 and
GMB1 clusters were both dominated by Bacteroides but
by different strains of this genus (Additional file 1, Fig
S1). In order to resolve the dominant taxa at the strain
level, we performed compositionally aware differential
abundance analysis using ANCOM, employing our shot-
gun metagenomic sequencing data. The data suggested
that the two distinct clusters associated with irAEs were
largely attributed to two distinct strains of the

Fig. 1 Gut microbiome clustering at the ASV level reveals two distinct communities. A Hierarchical clustering of samples based on the JSD
distance matrix made using the relative abundance of ASVs reveals two primary clades designated as high risk (GMB1, shown in orange) and low
risk (GMB2, shown in blue). B PCoA visualization of the JSD matrix. PERMANOVA analysis results (top of PCoA figure) added to quantify the
amount of variance explained by ASV level clustering show a significant association between the GMB1 and GMB2 groups; R2 = 0.16, p < 0.001

Usyk et al. Genome Medicine          (2021) 13:160 Page 4 of 11



Bacteroides genus (Fig. 3); Bacteroides vulgatus was
dominant in the GMB2 group and Bacteroides dorei in
the GMB1 group (effects adjusted for patient age, sex,
BMI, and ICB treatment type, FDR < 0.001). Based on
the shotgun metagenomic sequencing analysis, we deter-
mined that within the GMB1 cluster, B. dorei accounted
for an average of 7.5% ± 9.1% shotgun reads vs. 0.50% ±
0.57% in the GMB2 group. In contrast, B. vulgatus was
more dominant in the GMB2 group with an average
read count of 3.1% ± 2.2% compared to 0.64% ± 1.1% in
the GMB1 group. The full ANCOM analysis revealed an
additional 37 strains identified to be differentially abun-
dant between the two GMB risk clusters (W-stat > 10,
Additional file 1, Table S1). Figure 3 shows the top 20
strains ranked, based on the number of validating micro-
bial ratios. To further test whether the two distinct spe-
cies act as risk factors for irAE, we created an additional
Cox-proportional hazard model that considered the log
ratio of the two bacteria as the core predictor, with ad-
justment for the patient age, sex, BMI, and ICB treat-
ment. The results validated the cluster results with the
tested bacterial ratio presenting an adjusted hazard ratio
of 1.20 [1.004–1.40] p = 0.046.
In order to identify taxon-independent markers associ-

ated with GMB risk clusters, we performed differential
abundance analysis of the identified genes. In order to
remove core genes from the analysis, gene variance was
computed for all remaining genes, and the top 25% of
the genes were used for final analysis. Figure 4 shows a
volcano plot that displays a total of 40,749 genes differ-
entially abundant between the two risk clusters (median
log2FC > 2, q-value < 0.05, Additional file 1, Fig S2). To

validate the metagenomic data, we performed a sub-
analysis using the RNA-seq data by comparing the nor-
malized RPK values of all of the identified genes in a
random subset of 18 samples. Additional file 1, Fig S3
shows the paired results from the RNA- and DNA-based
assays and suggests a good level of concordance with an
overall median correlation of 0.753 [95% CI 0.426–
0.906] for the 40,749 genes that were differentially
expressed between the GMB risk clusters. In order to
identify the consequence of this differential expression
on a more biologically relevant scale, the genes were or-
ganized into MetaCyc pathways. Of the 2251 analyzed
pathways, 17 showed significant differential expression
across the GMB clusters (FDR < 0.05). Figure 5 presents
these pathways, all of which were elevated in the GMB1
cluster (designated in orange). Five of the 17 pathways
associated with the GMB1 cluster were related to adeno-
sine metabolism: PWY-7219, adenosine ribonucleotides
de novo biosynthesis; PWY-7229, superpathway of ad-
enosine nucleotides de novo biosynthesis I; PWY-6126,
superpathway of adenosine nucleotides de novo biosyn-
thesis II; and PWY-7220, adenosine deoxyribonucleo-
tides de novo biosynthesis II.

Sub-analysis: GMB stability
In order to determine whether the GMB clusters
remained stable over the course of the ICB treatment,
we profiled the GMB of 10 samples at baseline and 6
and 12 weeks using 16S rRNA sequencing, as described
for the main analysis. The baseline gut microbiome was
stable through the course of immunotherapy treatment
over 12 weeks (Additional file 1, Table S1, JSD R2 = 0.88

Fig. 2 Toxicity-free survival using GMB clusters. A Kaplan-Meier curve is shown for the survival to 1st grade 2 (or higher) toxicity event. The GMB2
GMB cluster is shown in blue, and the GMB1 GMB cluster is shown in orange. B A forest plot showing the results of the proportional hazards
regression model analysis with the GMB clusters serving as the predictor with adjustment for the subject age, sex, BMI, and ICB treatment. The
results indicate a significantly higher risk of suffering a grade 2 toxicity even based on belonging to the GMB1 cluster; HR = 6.88 [95% CI: 1.33–
35.58], p = 0.021
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p < 0.001 and Jaccard R2 = 0.67 p < 0.001). Similarly, the
alpha diversity analysis showed no significant differences
across the three time points by either Chao1 (Kruskal-
Wallis p = 0.59) or Shannon measures (Kruskal-Wallis p
= 0.63). Beta diversity analysis across visits showed no
significant differences between visits by either distance
measure, JSD R2 = 0.005 p = 1.00 and Jaccard R2 = 0.032
p = 1.00 (Additional file 1, Fig S4A and SB).

Discussion
We identified two natural clusters of the gut micro-
biome, by using unsupervised cluster analysis, in melan-
oma patients receiving treatment with immune
checkpoint blockade (ICB). One cluster was represented
by a high abundance of Bacteroides dorei, and the other
was represented by a high abundance of Bacteroides vul-
gatus. On follow-up, patients whose gut microbiome at
baseline was characterized by a high abundance of Bac-
teroides dorei were at high risk (GMB1) for immune-
related adverse events (irAE 2+), compared to patients
characterized by high abundance of Bacteroides vulgatus
(GMB2, low-risk group). The microbial profiles of these
distinct clusters were related to differential expression of

several microbial gene functional pathways; in particular,
enzyme capacity for adenosine metabolism was over-
represented in the GMB1 cluster. We further showed
that these baseline pretreatment gut microbiome species
remained stable over follow-up, even with
immunotherapy.
Our results are in line with several studies involving

both human subjects [33–35] and mouse models [36,
37], where species within the genus Bacteroides are iden-
tified in association with the incidence of irAEs. Bacter-
oides species may act to maintain a state of continuous
systemic inflammation [38] which may be part of the
causal pathway for irAEs. This notion is further sup-
ported with studies showing that the dominance of Bac-
teroides dorei (dominant strain within the high-risk
GMB1 cluster) is the dominant GMB constituent dir-
ectly preceding an autoimmune response in a prospect-
ive cohort of children at risk of type 1 diabetes [39]. It
may be the case that the dominance of this particular
strain of Bacteroides presents a non-specific elevation of
risks towards various types of immune reactions. ICB
treatment may therefore act to initiate this patient-
specific microbial state.

Fig. 3 Bacterial species associated with GMB risk clusters. Scatter plot shows the bacteria that are significantly increased in either the HR (orange)
or LR (blue) clusters. The y-axis shows the ANCOM W-stat, which indicates the number of microbial reference frames that were significantly
differentially abundant between the GMB clusters (FDR < 0.05). The x-axis shows the mean difference in shotgun reads between the two risk
clusters. ANCOM analysis was performed with adjustment for age, sex, BMI, and ICB treatment
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Fig. 5 Differentially abundant MetaCyc pathways. HUMAnN2-derived genes were collapsed into functional pathways using MinPath and analyzed
for differential expression. Of the 2251 analyzed pathways, 17 were significant (FDR < 0.05) and are shown in the figure. Bar plot shows the
median RPK values found within each group with a difference in the median coverage presented as a dot plot with associated 95%
confidence intervals

Fig. 4 Volcano plot showing differentially abundant genes between the GMB risk clusters. Volcano plot shows the top 25% of most variant genes
in terms of RPK. Genes were stratified by the microbial strain of origin when a confident identification could be made using HUMAnN 2.0. Genes
were considered to be significantly differentially abundant when the FDR < 0.05 and the log2FC > 2.0. The x-axis in the plot indicates which GMB
cluster the genes were elevated (left for GMB2 and right for GMB1). The y-axis shows the log of the significance level. The results show that
22,985/40,749 were significantly elevated within the GMB1 cluster and only 17,764/40,749 within the GMB2 cluster
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Not all species of Bacteroides, however, are associ-
ated with increased risk for irAE development. Here,
we show, for the first time, that Bacteroides vulgatus
is associated with a lowered risk of irAE, despite be-
ing closely related phylogenetically to Bacteroides
dorei [40]. Recently, Huang et al demonstrated that B.
vulgatus is associated with improved response to ICT
treatment in a mouse model [41]. Strikingly, the re-
searchers were able to demonstrate in this study that
the response effect could be transferred to mice with
a poor response via a fecal microbiome transplant.
Furthermore, B. vulgatus was also increased in non-
small cell lung cancer patients that did not experience
dermatological irAE, following PD1-based ICB treat-
ment [42].
Other studies of GMB and ICB treatment outcomes

have also identified the involvement of the genus Bacter-
oides. For example, Bacteroides fragilis appears to be
commonly associated with decreased systemic inflamma-
tion via recruitment of T-reg cells [43] and elevation of
the anti-inflammatory cytokine IL-10 [44]. These studies
are of further interest because the research groups found
that the Bacteroides-associated decrease in risk with
irAEs was independent of ICB treatment efficacy [45].
This is critical because ICB outcome and irAE develop-
ment have been shown to have a positive correlation in
some histologies [46]. It therefore seems promising that
GMB-targeted therapies may allow for a positive clinical
outcome while also mitigating irAE. In fact, one study
has already demonstrated that a fecal microbiome trans-
plant from healthy donors can reverse the symptoms of
treatment-induced colitis without impacting the efficacy
of treatment [9].
Some studies identifying species of Bacteroides in

immunoactive roles suggest the potential involvement
of NOD2. This receptor plays a critical role in im-
mune system function by acting as a microbial sensor.
It is triggered by muramyl-dipeptide, a component of
the bacterial cell wall found in all bacteria [47]. In
the context of the NOD2 sensing pathway, B. vulga-
tus was shown to activate an immune response by
translocation to the small intestine, in a mouse model
that lacked functionality in NOD2 [48]. This is rele-
vant because it indicates that the activity of species
like B. vulgatus may be dependent on host genetics.
B. dorei has also been suggested to have immune ac-
tivity via NOD2 interaction in the context of auto-
immune diabetes [49]. These findings are of
importance because they indicate that the activity of
bacteria may be dependent on specific host genetics.
Although our study is in line with others that report

the activity of Bacteroides with regard to ICB outcomes
in melanoma [33–35], other groups have proposed other
markers for treatment response, such as

Ruminococcaceae and Faecalibacterium [5]. A possible
explanation of this discrepancy is a geographic variance
of the GMB which may limit generalizability across di-
verse geographic regions [50]. Geography also accounts
for differential distribution of enterotypes [51] and may
act as an effect modifier for certain taxa when consider-
ing biomarkers of irAE. In the context of the global
spectrum of human enterotypes, our data represents
samples that are dominated by species of the genus Bac-
teroides. It has been reported that Western populations
generally tend to have enterotypes dominated by Bacter-
oides, Prevotella, or Firmicutes. When interpreting our
data, it is therefore critical to keep in mind the focus on
this specific class of individuals where Bacteroides spe-
cies are the dominant taxa.
In contrast with taxonomic biomarkers, functional

microbiome profiles have been shown to be fairly con-
served between populations, as shown in the Human
Microbiome Project [52]. For this reason, we used shot-
gun metagenomics to demonstrate that the naturally oc-
curring GMB clusters, which were associated with
elevated risk for developing irAE, were differentiated by
the statistically significant elevation of 2905 genes in the
GMB1 group vs. the 109 genes that were elevated in the
GMB2 group. Pathway analysis also identified significant
differential expression between the GMB clusters. Spe-
cifically, we identified the upregulation of four pathways
associated with adenosine metabolism within the GMB1
cluster. Adenosine signaling is known to be associated
with the suppression of tumor immunity and has been
targeted as part of ongoing clinical trials [53]. Further-
more, adenosine is currently being targeted as a bio-
marker for toxicity in PD-1 and CTLA4 ICB treatment
[54]. In this context, host adenosine is known to act as a
potent inhibitor of the immune response [54]. Given the
association with the GMB1 cluster in our cohort, it may
be that the continual exposure to B. dorei acts to in-
crease immunotoxicity via regulation of the adenosine
signaling pathway, resulting in increased irAEs, as we
observed. It is important to note that our finding is
based on an analysis of the microbial DNA and that fur-
ther mass-spectrometry-based untargeted metabolomic
analysis could serve to solidify our observations on the
role of adenosine as a risk factor in irAEs. Additionally,
work is warranted to explore this association in the con-
text of a larger melanoma patient population as the
GMB may be directly affecting this pertinent host signal-
ing pathway.
Our data provide evidence that GMB composition

prior to the initiation of ICB treatment is associated with
the likelihood of developing irAEs. Our sub-analysis that
considered GMB samples at 6 and 12 weeks after the
initiation of treatment indicated that the GMB appears
to be unaffected by ICB treatment. These data indicate
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that baseline GMB presents a continuous exposure that
tends to be maintained throughout ICB treatment in
metastatic melanoma. Given the evidence in a small trial
that showed the benefit of a fecal microbiome transplant
(FMT) [9] in reversing irAEs in patients undergoing
ICB, it would be relevant to identify whether FMT pa-
tients exhibit a similar GMB trajectory. This would help
to determine whether the stability of the GMB as an ex-
posure is critical for lowering risk, or if acute inoculation
can achieve the same beneficial effect.
A strength of our study is the use of multiple plat-

forms to define components associated with the develop-
ment of irAE within advanced stage melanoma patients
receiving either single PD-1 antibody or combination
ICB treatment. We used deeply sequenced 16S rRNA
amplicon, shotgun metagenomic, and RNA-seq data (the
latter to confirm results from the functional analysis).
Both amplicon and shotgun data identified differences in
risk due to the presence of closely related species of Bac-
teroides that are significantly associated with the devel-
opment of irAEs following ICB treatment. Another
strength of our study is the follow-up of patients for a
year after ICB treatment initiation. This allowed us to
use time-to-event analysis to prospectively demonstrate
that components of the GMB are risk factors for irAE.
The use of multiple samples across different time points
also allowed us to demonstrate that GMB tends to re-
main stable throughout the course of treatment. This
finding may be of critical importance if GMB manipula-
tion is to be used to prophylactically prevent irAEs.
Our study is, however, limited by the small sample

size, limiting our statistical power for discovering micro-
bial taxa related to the small effect size. In addition,
given this is an observational study, we recognize that
there is a potential for residual confounding related to
other unmeasured clinical variables [55]. Further micro-
biome studies based on a large clinical trial are
warranted.

Conclusions
In conclusion, we present evidence using three inde-
pendent sequencing approaches showing that the pre-
treatment GMB predicts which patients with metastatic
melanoma will develop grade 2+ immune-related ad-
verse events in contrast to those who will not. Multiple
sampling across the course of treatment allowed us to
demonstrate that GMB composition tends to remain
stable throughout treatment, making it a promising tar-
get for prophylactic intervention, before and during the
course of treatment.
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