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Editorial on the Research Topic

Identifying Neuroimaging-Based Markers for Distinguishing Brain Disorders

The current diagnosis of brain disorders heavily relies on clinical presentation. Neuroimaging
is gaining more importance with the potential to provide useful markers in revealing
biological substrates and benefit brain disorder diagnosis. Magnetic resonance imaging (MRI),
electroencephalography (EEG), positron emission tomography (PET), diffusion tensor image
(DTI), and magnetoencephalography (MEG) have been widely applied to measure the brain
structure, decode the brain function, and explore the disease mechanism from different aspects.
This Research Topic takes action by publishing 24 papers that proposed new methods for
identifying biomarkers from these modalities and utilized neuroimaging measures to differentiate
between patients with brain disorders or differentiate patients from healthy controls. Papers in the
topic involved different disorders such as schizophrenia (SZ), autism spectrum disorder (ASD),
Alzheimer’s disease (AD), attention-deficit/hyperactivity disorder (ADHD), and epilepsy.

Resting-state functionalMRI (fMRI) has been successful in estimating brain functional networks
and connectivity via data-driven methods (Calhoun et al., 2001; Beckmann et al., 2005; Du and
Fan, 2013), providing features for the classification between various brain disorders and the
prediction of disorder progression (Du et al., 2015, 2018b; Arbabshirani et al., 2017). There has
been evidence that brain functional connectivity is time-varying, and clustering (e.g., K-means)
and decomposition methods can be used to extract connectivity states from dynamic connectivity
patterns (Hutchison et al., 2013; Allen et al., 2014; Calhoun et al., 2014; Preti et al., 2017). Most
previous dynamic connectivity studies focused on the dynamics of the connectivity between
different brain regions or networks (Damaraju et al., 2014; Yu et al., 2015; Du et al., 2016, 2017,
2018a). A study by Bhinge et al. proposed a novel approach to measure both the voxelwise
spatial variability in functional networks and the dynamic functional network connectivity
(dFNC). Time-varying spatial networks were estimated by a constrained independent vector
analysis. Their method successfully captured distinct information between healthy controls and SZ
patients, resulting in relatively high classification accuracy by using dynamic spatial information.
Another shortcoming of previous dynamic analyses is that clustering was often performed to
all time-varying connectivity matrices without considering their temporal relationship. In the
topic, Espinoza et al. incorporated the temporal variation of functional network connectivity into
clustering, thus providingmore information than regular dFNCmethod in investigating differences
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between SZ patients and healthy controls. In another study,
Zhao et al. also focused on improving the clustering performance
in identifying reliable connectivity states from dynamic
connectivity. They used the node centrality of brain regions
rather than the original functional connectivity strengths as
features, showing that repeatable dynamic features can be found
between repeated scans. All these newmethods would benefit the
biomarker identification from dynamic functional connectivity.
On the other hand, potential neuroimaging biomarkers are most
meaningful when they can be replicable and used to predict new
subjects in clinical practice (Jiang et al., 2018). A previous study
(Sun et al., in press) proposed a connectome-based predictive
model that can be used to predict depressive rating changes and
remission status of major depressive disorder (MDD) patients.
In the topic, Zhu et al. identified abnormal brain connections
in the lateral habenula and thalamus, and found that they may
serve as connectome-based biomarkers to predict the precursor
to MDD. Luo et al. investigated the MDD in terms of the
functional connectivity between the brainstem regions and other
brain regions, providing a new insight for the neurobiology
of MDD. Cui et al. proposed a method to integrate local and
global properties of brain functional networks for improving
the classification performance between early mild cognitive
impairment (EMCI) and healthy control groups, based on
the minimum spanning tree and graph kernel techniques. A
work from Yang et al. obtained high classification accuracy
by fusing amplitude of low frequency fluctuation (ALFF)
and fractional ALFF features for distinguishing individuals
with subjective cognitive decline, patients with amnestic mild
cognitive impairment, patients with AD, and healthy controls.
Xu, Yang et al. investigated the altered resting-state whole
brain functional connectivity in premature ejaculation patients
compared to healthy controls via a classification method. Using
fMRI, network topological property is one of the most important
techniques to elucidate the brain function (Wang et al., 2010;
Bullmore and Sporns, 2012). One study by Liu et al. revealed
the alterations in diabetes mellitus patients using long-range
and short-range functional connectivity degree. Xu, Guo et al.
compared the topological properties between diabetes mellitus
patients and healthy controls using fMRI connectivity. Wang,
Tao et al. studied the topology of frontal parietal attention
network in children with ADHD using a graph theory analysis
method including the minimum spanning tree technique.

Besides fMRI, other modalities including structural MRI
(sMRI), EEG, PET, and MEG can be utilized to provide useful
indicators. Xu, Chen et al. reported the first study to show
structural and functional brain abnormalities in patients with
hemifacial spasm using both fMRI and sMRI. Long et al. found
that various brain parcellation schemes may result in different
classification performance by using voxel-based morphometry
measures summarized in brain regions as features in classifying
MCI patients and healthy controls. Yan et al. proposed a new
matrix regression method that showed a promise in predicting
cognitive data of AD using voxel-based morphometry. Zeng
et al. focused on the prediction of medication response in
herpes zoster patients by applying a searchlight algorithm and
support vector machine on the voxel-based brain morphometry
measures. A paper by Ma et al. showed the tissue-specific

changes in gray matter and white matter of the mouse model
of tauopathy based on the in vivo and ex vivo conditions,
emphasizing the importance of longitudinal analysis. Based on
DTI data, Qin et al. applied the graph theory and network-
based statistic methods to compare the impairments between
obsessive-compulsive disorder and SZ. Wang, Li et al. revealed
the abnormality in the hemispheric topological asymmetries in
bipolar disorder using DTI-based network analysis. Using both
DTI and fMRI networkmeasures, Park et al. reported the changes
of individuals with eating disorder and found the brain regions
associated with the behaviors. In another study, Hu et al. used
the partial least square technique to aid the minimum variance
beamforming approach for source imaging with MEG arrays,
and verified its effectiveness in simulated data and epilepsy data.
Using EEG activity, Simões et al. identified group differences
between patients with ASD and healthy controls under the
visual stimulation and mental imagery tasks, revealing a possible
biomarker of face emotional imagery network of ASD. Shah
et al. explored the possible mechanism of depression in human
immunodeficiency virus (HIV) by analyzing the longitudinal
PET images of an animal model of HIV.

Since different types of neuroimaging techniques reflect the
brain’s function and structure from different angles, it has been
largely acknowledged that through the fusion of complementary
information from different modalities, biomarkers of mental
illness may be identified more precisely (Sui et al., 2018).
Efficient methods that can draw valid conclusions from high
dimensional multimodal imaging, cognitive or genetic data are
urgently needed (Calhoun and Sui, 2016; Qi et al., 2019). In
the topic, Acar et al. applied an advanced coupled matrix
and tensor factorizations (CMTF) method to the data of EEG,
fMRI, and sMRI collected from patients with schizophrenia
and healthy controls to reveal linked biomarkers across
different modalities. Compared to joint ICA, they revealed
more meaningful and reproducible biomarkers. Besides the
neuroimaging studies on brain disorders, increasing work
has recognized the role of genetics in the etiology of many
complex disorders (e.g., schizophrenia; Lin et al., 2018; Chen
et al., 2019). Imaging genetics, a rising field to bridge genetics
and neuroimaging, aims to investigate the genetic risk of
various imaging endophenotypes in relation to diseases, and
identify biomarkers (genetic and imaging) to facilitate the
disease diagnosis (Lin et al., 2014). In the topic, Jiang et al.
reviewed the current imaging genetics studies on schizophrenia,
particularly in revealing the heterogeneity within schizophrenia,
and also discussed the potential of imaging genetics in refining
disease diagnosis.
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