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Kupffer cells, the resident macrophages of the liver, comprise the largest pool of tissue
macrophages in the body. Within the liver sinusoids Kupffer cells perform functions
common across many tissue macrophages including response to tissue damage and
antigen presentation. They also engage in specialized activities including iron scavenging
and the uptake of opsonized particles from the portal blood. Here, we review recent
studies of the epigenetic pathways that establish Kupffer cell identity and function. We
describe a model by which liver-environment specific signals induce lineage determining
transcription factors necessary for differentiation of Kupffer cells from bone-marrow
derived monocytes. We conclude by discussing how these lineage determining
transcription factors (LDTFs) drive Kupffer cell behavior during both homeostasis and
disease, with particular focus on the relevance of Kupffer cell LDTF pathways in the setting
of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis.

Keywords: non-alcohol ic steatohepatit is, immunity, macrophage, epigenetics, transcript ion,
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INTRODUCTION

Elie Metchnikoff discovered macrophages in 1882 when he observed that, following injury, certain
specialized cells of the starfish larva would surround and phagocytose foreign material. Although
named for their ability to engulf pathogens, it is now understood that macrophages engage in
remarkably diverse functions throughout the body (1, 2).

At homeostasis, tissue macrophages exist in equilibrium with the surrounding parenchyma. Niche
specific signals within organs play major roles in specifying tissue macrophage phenotypes (3).
Abbreviations: KC, Kupffer cell; BM-MF, Bone marrow macrophage; BM-KC, Bone marrow derived KC; SAMac, Scar
associated macrophage; ER, Endoplasmic reticulum; LXR, Liver X receptor; LSEC, Liver sinusoidal endothelial cells; PPAR,
Peroxisome proliferator-activated receptor; SREBP, Sterol responsive element binding protein; IRF, Interferon response factor;
TLR, Toll-like receptor; HAT, Histone Acetylase; HDAC, Histone Deacetylase; HDACi, Histone Deacetylase Inhibitor;
HKMT, Histone methyltransferase; H3K27Ac, Histone Lysine 27 Acetylation; H3K27me3, Histone Lysine 27 Trimethylation;
LncRNA, Long non-coding RNA; HCC, Hepatocellular carcinoma; MiRNA, MicroRNA; VDR, Vitamin D receptor; ATF,
Activating transcription factor; YAP, Yes associated protein; AP1, Activator protein 1; CEBP, CCAAT/enhancer binding
proteins; TF, Transcription factor; LDTF, Lineage determining transcription factor; SDTF, Signal dependent transcription
factor; ATAC-seq, Assay for transposase accessible chromatin followed by next generation sequencing; ChIP-seq, Chromatin
immunoprecipitation followed by next generation sequencing; TNF, Tumor necrosis factor; BMP, Bone morphogenic protein;
LPS, Lipopolysaccharide; DT, Diptheria toxin; DTR, Diptheria toxin receptor; NAFLD, Non-alcoholic fatty liver disease;
NASH, Non-alcoholic hepatosteatosis.
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Transcriptomic and epigenomic surveys of tissue macrophages
demonstrate that while tissue macrophages share expression of
some core transcription factors (TFs), they also express distinct TFs
capable of driving tissue-specific gene expression patterns (4, 5). TFs
drive gene expression by binding to enhancers and promoters.
While promoters are the essential start sites for initiation of
transcription of mRNA, they frequently do not provide sufficient
information necessary for developmental and physiologic
regulation. This additional information is generally provided by
enhancers, which are genetic sequences located upstream,
downstream or within genes that act to modulate promoter
activity. The mammalian genome is estimated to contain on the
order of a million putative enhancer elements, with each cell type of
the body typically exhibiting twenty to thirty thousand active
enhancers (6). The enhancer repertoire of a particular cell is a
major determinant of its particular gene expression profile. The
selection and activation of enhancers by TFs can be explained by a
collaborative-hierarchal model of TF binding (Figure 1A) (8).
Enhancer selection is initially driven by collaborative interactions
between relatively simple combinations of lineage-determining TFs
(LDTFs) that enable their binding to enhancers in regions of closed
chromatin. Common macrophage LDTFs include the ETS domain
TF PU.1, the CCAAT/enhancer binding proteins (C/EBPs), and
activator protein 1 (AP1) (Figure 1A) (9). The genome wide
binding pattern of a particular transcription factor can be
determined using chromatin immunoprecipitation followed by
next generation sequencing (ChIP-seq) (9). The collaborative
Frontiers in Immunology | www.frontiersin.org 2
binding of LDTFs to closed regions of chromatin results in
remodeling of the nucleosome landscape from a closed chromatin
structure to an open chromatin structure. Open chromatin regions
can be detected by DNase hypersensitivity or the assay for
transposase accessible chromatin followed by sequencing (ATAC-
seq) (6, 10–12). These open regions of chromatin bound by TFs are
known as primed or poised enhancers that contribute to basal levels
of gene transcription from their target promoters and/or provide
access to hierarchical binding of signal-dependent TFs (SDTFs)
(Figure 1A). SDTFs are often widely expressed proteins responsible
for responding to internal and external stimuli. In most cases,
SDTFs alone cannot remodel chromatin to establish poised
enhancers, but instead are recruited to the pre-existing poised
enhancer landscapes established by LDTFs as well as promoters
(13, 14). SDTF binding to a poised enhancer recruits co-regulators
and co-activators including histone acetyltransferases and histone
methyltransferases, ultimately resulting in increased enhancer
activity and target gene expression (15). An important
consequence of the hierarchical dependence of SDTFs on the
prior actions of LDTFs is that the resulting genome wide binding
and function of the SDTFs is determined by each cell’s specific
enhancer landscape, resulting in cell-specific transcriptional outputs
(Figure 1A).

Kupffer cells (KCs), the tissue-resident macrophages of the
liver, were first described in 1899 as hepatic cells that phagocytose
India Ink (16). Today, KCs are understood to perform a diverse
array of functions beyond phagocytosis. At homeostasis KCs
A B

FIGURE 1 | The Kupffer cell epigenome. In the collaborative-hierarchal model of TF binding, closed chromatin is remodeled by lineage determining transcription
factors, which bind to DNA collaboratively to create poised enhancers (A). Signal dependent transcription factors are then recruited to poised enhancers upon
activation of cellular signaling pathways. Kupffer cell LDTFs include LXRa and SPIC. Circulating monocytes recruited to the liver following KC depletion rapidly
assume a TF profile similar to resident KCs (B). TFs associated with lipid metabolism are particularly enriched during monocyte to Kupffer cell differentiation. Data for
panel (B) were taken from Sakai et al. The blue-red expression heatmap in panel (B) shows expression (in TPM) normalized such that expression in blood
monocytes is equal to 1 (7).
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scavenge iron, clear microbial products from the gut, andmaintain
a tolerogenic immune environment within the liver. KCs also
sense the state of hepatic tissue. Their responses to changes in the
environment play an important role in the pathogenesis of
liver disease.

KCs line the sinusoidal endothelium of the liver and are one
of the first cells in the body exposed to portal blood, which carries
metabolic products, nutrients, and compounds derived from the
gut microbiota. KCs preferentially induce tolerogenic immunity
in the absence of inflammation and are important for clearing
gut-derived microbial material from the systemic circulation
(17–20). KCs express surface receptors that mediate the
sampling and uptake of portal blood contents, including
complement receptors, toll-like receptors, and other pathogen
recognition receptors (Figure 2A). In addition to sensing
pathogenic material, recent work suggests that these pathways
are important for sensing damage to the hepatic parenchyma.

KCs express a variety of SDTFs that integrate the signals from
their surface receptors. Similar to other myeloid lineage cells,
Frontiers in Immunology | www.frontiersin.org 3
many KC SDTFs are involved in innate immunity, including
NFkB and the majority of the interferon response factor (IRF)
transcription factors (7, 21). The diversity of immune signaling
pathways active in KCs suggests that KCs are capable of fine-
tuned responses that integrate the particular pathogen and the
status of the larger hepatic environment. Lipopolysaccharide, a
pathogen associated molecular pattern of Gram-negative
bacteria, binds to toll-like receptor 4 (TLR4), leading to a
signaling cascade that results in the activation of NFkB, AP1,
and IRF signaling, which induces the expression of inflammatory
genes including the inflammatory cytokines pro-IL1b and pro-
Il18. In their propeptide state IL1b and IL18 require cleavage by
the inflammasome for activation, secretion, and inflammation.
While at homeostasis there is evidence for NFkB activity as
the NFkB motif is enriched in the total set of KC-specific
enhancers compared to blood monocytes (7, 21, 22), there is
little evidence of inflammasome activation in KCs. This suggests
a role of the TLR4–NFkB pathway in sensing and responding to
portal lipopolysaccharide (LPS), a TLR4 agonist derived from
FIGURE 2 | Hepatic niche signals induce monocyte to Kupffer cell differentiation. Following depletion of KCs by diptheria toxin, hepatic stellate cells and liver
sinusoidal endothelial cells secrete chemokines and adhesion molecules, recruiting circulating monocytes to the hepatic sinusoid (A). Notch signaling subsequently
activates expression of KC LDTFs (B), which in turn establish the Kupffer cell cistrome.
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Gram-negative bacteria, in a manner that does not result in IL1b-
driven inflammation. However, inflammasome activation is an
essential pathway in the progression of NASH, as will be
discussed later in this review.

Here, we review the recent findings concerning the epigenetic
control of KC function, focusing on TF pathways that are known to
be active in homeostatic KCs. We then discuss how the hepatic
environment guides KC differentiation, with particular attention on
recent studies that examine KC differentiation in unprecedented
resolution. We conclude by discussing the epigenetic regulation of
KC function in non-alcoholic fatty liver disease (NAFLD) and how
knowledge of KC epigenetics could guide the development of future
NAFLD therapies.
HOMEOSTATIC TRANSCRIPTIONAL
REGULATION OF KC FUNCTION

KC cells are myeloid lineage cells derived from fetal yolk sac
macrophages that seed the liver during embryogenesis (23). As
myeloid lineage cells, KCs express high levels of the monocyte/
macrophage LDTFs PU1 (encoded by Spi1), CEBPa, and
activator protein 1 (AP1) family of transcription factors (8).
Motifs for each of these TFs are significantly enriched in KC-
specific enhancers. Comparative analysis of the epigenomes of
tissue macrophages have also identified the nuclear receptor
LXRa (encoded by Nr1h3) and SpiC as KC LDTFs (Figure
1A) (5, 24). According to the collaborative-hierarchical model of
TF binding, these lineage determining factors bind in a
collaborative manner to open closed regions of chromatin,
thereby creating a KC-specific enhancer landscape (8). These
open regions of chromatin then provide a location for SDTFs to
bind and further regulate transcriptional activity. Here we will
review the SDTFs that have been studied in KCs and the
homeostatic functions that they control.

While NFkB is the most well studied inflammatory SDTF in
KCs, many others are expressed at high levels, including the
interferon regulatory factors (IRFs). In particular, Irf3 has been
shown to mediate KC necroptosis in response to both viral and
bacterial infections. In mice infected with Listeria monocytogenes,
Irf3 mediated KC necroptosis leads to an early inflammatory
response and late reparative response that ultimately results in
the clearing of infection (25, 26). Interestingly, this function of Irf3
does not require any of its known transcriptional activators (26).

Transcriptomic surveys of tissue-resident macrophages found
relative enrichment for genes involved in lipid metabolism.
Examples of lipid-metabolic genes include the TFs Nr1h2,
Nr1h3, Ppard, Pparg, Srebf1, and Srebf2. Indeed, Nr1h3
encoding the liver x receptor a (LXRa) is the highest expressed
TF in KCs (Figure 1B). The LXRs are type I nuclear receptors that
control cellular cholesterol export and bind to DNA as a
heterodimeric complex with the retinoid x receptor a (27). In
macrophages, LXR is activated by cholesterol derivatives and
cholesterol synthesis intermediates, which then induce
corepressor–coactivator exchange leading to transcription of
LXRa target genes, including Abca1 and Abcg1 (Figure 2A)
Frontiers in Immunology | www.frontiersin.org 4
(28, 29). LXRa and LXRb have both distinct and overlapping
functions in macrophages. For example, both LXRa and LXRb
activate expression of Abca1, but Cd5l induction requires LXRa,
while Apoc-I induction requires LXRb (30, 31). Oxysterols such as
24-Hydroxysterol, 27-Hydroxysterol, and 24-25 epoxycholseterol
were the first endogenous LXR ligands discovered and were long
thought to be the dominant LXR ligands in the liver. This theory
has been challenged by recent lipidomic analysis of LXR ligands in
the liver at homeostasis and during NASH, which show that
desmosterol is the predominant LXR ligand in the murine liver (7,
21, 32). Desmosterol, which is converted into cholesterol by
Dhcr24 in the last step of the Bloch cholesterol synthesis
pathway, was first described as a non-oxysterol LXR ligand by
Helen Hobbs in 2006 (32). Desmosterol was also shown to control
LXR activity in macrophage foam cells in vivo, suggesting that it
could act as an LXR agonist across many tissue macrophage
populations (33). Once LXR is bound by sterol ligands, it
activates LXR target genes that facilitate export of cellular to
high-density lipoprotein, which then delivers cholesterol to the
liver in a process known as reverse cholesterol transport.

Interestingly, KC specific deletion of LXRa does not result in
decreased expression of the canonical macrophage specific LXR
target genes that are linked to cholesterol homeostasis. Instead,
LXRa functions predominantly as a KC LDTF by guiding
expression of genes specific to the KC niche. Genetic ablation
LXRa specifically in KCs was associated with decreased expression
of KC specific genes such as Cd5l, Kcna2, and Il18b (7), suggesting a
key role inpioneering regulatory regions for controlling expressionof
linked genes. In linewith this, in the absence of LXR,KCswere found
less fit for establishment in the KC niche (22). Similarly, splenic
marginal zoned andmetallophilic macrophages also depend on LXR
for proper existence in the tissue (34). In addition to controlling
lineage survival of some tissue macrophage populations, LXRa
ablation in KCs also resulted in large scale changes in open
chromatin as defined by ATAC-seq, indicating a direct role as a
LDTF in enhancer selection. LXR signaling has also been shown to
decrease inflammatory activity of macrophages in response to LPS
(35, 36). Whether this pathway is active in KCs has not
been determined.

In addition to the LXRs, Srebf1 and Srebf2, which encode sterol
response binding proteins 1 and 2 (SREBP1 and SREBP2), are
expressed by KCs and have key roles in lipid metabolism (Figure
1B). Srebf1 expression is induced by LXR activation, leading to
increased levels of SREBP1 protein (37). In settings of low cellular
cholesterol, SREBPs are translocated from the ER to the Golgi in a
SCAP-dependent manner, where they are proteolytically processed
to generate active forms that translocate to the nucleus. Srebp1
primarily induces fatty acid synthesis whereas SREBP2 primarily
induces cholesterol synthesis (38). The SREBPs are also linked to
macrophage inflammatory pathways: following LPS activation,
SREBP1 is required for synthesis of monounsaturated fatty acids
that mediate inflammation resolution (39), while SREBP2 is
required for the resolution of inflammation mediated by tumor
necrosis factor (TNF) (40). Production of anti-inflammatory lipids
is important for macrophages to return to homeostasis following
tissue injury. Prolonged inflammatory activation following liver
January 2021 | Volume 11 | Article 609618
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damage could lead to chronic hepatic inflammation and permanent
tissue damage such as fibrosis. Genetic studies will be essential in
evaluating the functional role of the SREBP pathway in KCs in both
homeostasis and disease.

The peroxisome proliferator-activated receptors (PPARs) bind
DNA in heterodimers with retinoid X receptors and are activated
by fatty acids and fatty acid metabolites. In the context of
atherosclerosis, PPARg regulates transcriptional responses of
macrophages invading atheroscleroic plaques. PPARg does this
in part by controlling expression of Cd36 andMsr1 (encoding SR-
A), key scavenger receptors involved in lipid uptake (41, 42).
Activation of PPARg also induces expression of LXRa, resulting in
increased expression of target genes such as Abca1 and cholesterol
efflux (43). Beyond lipid metabolism, PPAR activation promotes
an anti-inflammatory state in macrophages by blocking
inflammation-induced expression of Il1b, Il6, and Nos2) (41,
42). Consistent with this, synthetic ligands of PPARg have been
shown to reduce atherosclerosis in mouse models (41). Myeloid
deletion of PPARd, but not PPARg, led to decreased expression of
alternative activation markers in KCs, suggesting that PPARd
signaling exerts more transcriptional control in homeostatic KCs
than PPARg (Figure 1B) (44, 45). Specific roles addressing PPARd
or PPARg in KCs during disease are currently unknown.

KCs also participate in iron recycling by scavenging senescent
red blood cells, heme, and hemoglobin. Iron from ingested heme is
shuttled to hepatocytes for recycling via ferroportin (encoded by
Slc40a1) (46). This activity is in part controlled through elevated
expression of Bach1, Nfe2l2 (encoding NRF2), and Spic, the three
key factors that control macrophage iron homeostasis (Figure 2A)
(47, 48). Accumulation of heme in the KC in settings of
extravascular hemolysis leads to degradation of BACH1, which
promotes activation of NRF2 and increased transcription of Spic,
resulting in the induction of genes required for heme degradation
(46). Notably, SPIC is also required for the development of iron-
scavenging red pulp macrophages in the spleen. Interestingly, the
iron recycling capacity of KCs may not be sufficient in cases of
extreme hemolysis. In such cases, KCs that are overloaded with
heme have been shown to undergo ferroptosis, leading to the
recruitment of monocytes from the bonemarrow. Upon entry into
the liver, bone marrow monocytes rapidly increase the
transcription of SPIC, which then activates the iron recycling
gene program (49).
SIGNALS IN THE SINUSOIDAL NICHE
GUIDE THE EXPRESSION OF KC TFS

Recent studies show that KCs extend cellular processes into the
perisinusoidal space, where they make contact with hepatocytes
and hepatic stellate cells in addition to their contacts with the
sinusoidal endothelium (22). This close cellular contact suggests
integrated cell-cell communication between KCs and the
surrounding cells of the liver parenchyma (Figure 2A).
Recently, two papers identified liver-derived signals that
instruct KC identity by leveraging KC depletion/repopulation
in the mouse as a model system (7, 22). Treatment of mice
Frontiers in Immunology | www.frontiersin.org 5
expressing the diphtheria toxin receptor (DTR) specifically in
KCs with diphtheria toxin (DT) resulted in rapid and nearly
complete ablation of the KC population (47). Loss of KCs
induced the transient expression of chemokines and adhesion
molecules in hepatic stellate cells and liver sinusoidal endothelial
cells (LSECs), resulting in rapid colonization of the empty
sinusoidal niche by circulating monocytes (Figure 2A) (22).
Within hours of their recruitment to the liver, these blood
monocytes began differentiating to KC-like liver macrophages.
A week after KC depletion, the transcriptional profiles of the
recruited macrophages were nearly indistinguishable from
embryonic KCs (Figure 1B) (7, 22, 47). This KC-DTR
depletion model provided a powerful system for identifying
molecules and pathways required for KC differentiation.

In two recent papers, Sakai et al. and Bonnardel et al. used the
KC-DTR model to discover three signals in the hepatic sinusoid,
Notch ligand DLL4, TGFb/BMP family ligands, and endogenous
LXR ligands that sequentially drive KC differentiation (7, 22).
Bonnardel et al. utilized deep transcriptional profiling of hepatic
non-parenchymal cells coupled with the bioinformatic
algorithm NicheNet to identify putative signals that induce
KC differentiation following DT mediated KC depletion
(22). NicheNet predicts ligand-receptor interactions using
transcriptomic data and known gene regulatory networks (50).
NicheNet predicted that hepatic stellate cell derived Csf1 and bone
morphogenic proteins (BMPs) including BMP4, BMP5, BMP9,
BMP10, and GDF6 could influence blood monocytes within the
hepatic niche (Figure 2A) (22). LSECs were also shown to express
ligands that could bind receptors expressed during KC
differentiation, including BMPs (BMP2, BMP, INHBB) as well
as the Notch pathway ligands DLL1 and DLL4 (Figure 2A) (22).
In parallel, Sakai et al. studied the transcriptional and epigenetic
landscape of blood monocytes as they differentiated into KCs.
H3K27Ac ChIP-seq identified large changes in the enhancer
landscape of recruited liver macrophages 24 h after KC
depletion. The majority of activated enhancers were associated
with pre-existing open chromatin regions as determined by
ATAC-seq, including enhancers upstream of highly expressed
KC transcription factors such as LXRa, SPIC, and MAFb,
whose transcription is rapidly induced upon recruitment of
monocytes into the hepatic parenchyma (Figure 2B) (7). As
discussed above, ligands for the LXRa and SPIC pathways are
abundant in the hepatic sinusoid, including desmosterol,
hydroxysterols, and heme (32, 51–53). Motif enrichment
analysis of enhancers activated in recruited liver macrophages at
24h revealed enrichment for the motif of the Notch pathway TF
RBPJ (7). This finding supports Bonnardel et al.’s identification of
the Notch ligands DLL1 and DLL4 as essential for KC
differentiation (Figure 2B). Sakai et al. then demonstrated that
the TFs LXRa and SMAD4 were essential for maintenance of
homeostatic KC identity (7). Notably, SMAD4 signaling is
downstream of the BMP signals identified as essential for KC
differentiation by Bonnardel et al. Collectively, these results
suggest a model where DLL1 and DLL4 on LSECs induce rapid
activation of a poised enhancer landscape in monocytes, leading to
the rapid increase in expression of KC LDTFs such as LXRa and
January 2021 | Volume 11 | Article 609618
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SPIC. Once translated into protein, collaborative interactions
between LXRa, SPIC, and existing macrophage LDTFs such as
PU.1 and CEBP establish the KC specific cistrome (Figure 2B).

The Notch–RBPJ pathway is essential for the differentiation
of specific tissue macrophages, including tumor-associated
macrophages (54) and mammary gland stromal macrophages
(55). In the mammary glands, stem cells express the ligand DLL1
to activate macrophage Notch signaling and induce Wnt family
ligand expression (55). Interestingly, the consequences of Notch
activation differ in each of these examples and the mechanisms
by which Notch activation induces cell specific responses is a
promising area for future study. The diverse consequences of
Notch activation in macrophages might be caused by other
tissue-specific signals acting in concert with Notch signaling.
Support for this idea comes from in vitro studies showing that
stimulation of bone marrow progenitor cells with TGF-b in
addition to DLL4 induces more KC-specific genes than either
DLL4 or TGFb alone (7). In addition to different ligand co-
expression patterns, diversity in tissue macrophage responses to
Notch activation could depend on the particular Notch ligand
expressed in a given niche. The Notch ligands DLL1 and DLL4
activate distinct targets by pulsatile or sustained Notch activation
dynamics (56). Whether these differences in Notch dynamics
could result in the establishment of different macrophage
transcriptional responses is an interesting area for further study.

SPIC is a transcription factor known to be expressed in iron-
recycling macrophages. As discussed above, heme is the most
well-known activator of SPIC expression in macrophages, and
SPIC is highly expressed in KCs (Figure 1B) (57). Interestingly,
Notch signaling also induced SPIC expression in KCs (7, 22).
Furthermore, Spic expression is upregulated in SMAD4
knockout KCs, even as other KC TFs such as Nr1h3 are
downregulated (7). BMP2 and BMP6 secreted by LSECs are
involved in iron-regulated hepcidin expression by hepatocytes
(58). BMPs might also regulate iron metabolism in KCs though
Spic suppression via SMAD signaling in KCs.

These studies provide an example of how transcriptomic and
epigenetic-led hypothesis generation can be used to predict key
molecular pathways coordinating monocyte to tissue resident
macrophage differentiation. Using molecules which mimic liver
environment signals, it is possible to partially induce KC-specific
genes in mouse bone marrow-derived macrophages (7, 22). This
technology will provide improved in vitro systems for modeling
pathological features of KCs in metabolic and inflammatory liver
diseases. However, the transcriptome of bone marrow-derived
macrophages treated with DLL4, TGF-b, and the synthetic LXR
agonist DMHCA still does not recapitulate the transcriptome of
ex vivo KCs or repopulating liver macrophages. This disparity
indicates the limitations of the in vitro study of tissue
macrophages (7). There are likely to be many contributing
factors to the remaining differences, including a requirement
for additional liver-derived factors and inhibitory effects of the in
vitro environment. For example, the enrichment of NFkB motifs
in KC-specific enhancers may reflect exposure of KCs to gut-
derived LPS present in portal blood (7). The in vitro environment
also lacks the three-dimensional structure of the hepatic
Frontiers in Immunology | www.frontiersin.org 6
environment as well as the hepatic cells that KCs are in close
contact with in vivo (22). Collectively, these studies provided
significant new insights into the sequential mechanisms by which
niche signals induce the selection and action of LDTFs during
KC differentiation.
NAFLD AND NASH ALTER REGULATION
OF THE KC EPIGENOME

NAFLD is a growing threat to public health in Westernized
societies. In the United States alone, liver-related deaths amongst
individuals with NAFLD are predicted to grow exponentially over
the next ten years, reaching 206,300 deaths by 2030 (59). The
development and progression of NAFLD is associated with
sequential changes in the hepatic environment. Simple NAFLD is
diagnosed by the presence of hepatic steatosis without clinically
significant consumption of alcohol (60). A subset of NAFLD
patients subsequently develop non-alcoholic steatohepatitis
(NASH) which is associated with histologically observable
hepatocyte dysfunction and immune infiltration (60). Roughly
20% of patients with NASH will go on to develop hepatic fibrosis,
inwhich areas of the hepatic parenchyma are replacedwith collagen
scars (61).Hepaticfibrosis is a featureof severeNAFLDanda strong
clinical predictor of liver related mortality (62).

KCs express a suite of TFs that respond to the metabolic and
inflammatory signals found in both NAFLD and NASH. Lipid
metabolic TFs such as the LXRs, SREBPs, and PPARs respond to
changes in nutrient levels while inflammatory TFs such as NFkB
respond to tissue damage (Figure 3C). However, early studies of
KCswere limited due to the difficulty of resolving differentmyeloid
cell populations in the liver during NAFLD. Recent advances in
immunology and single-cell sequencing have provided deep insight
into the transcriptional and epigenomic profile of KCs and other
hepatic macrophages during the progression of NAFLD. Early in
NASH, KCs produce cytokines such as TNFa and IL1b, which
worsen hepatic steatosis by inhibiting hepatic PPARa activity (63)
andact as paracrine signalsby increasingKCandhepatic stellate cell
expression of Ccl2, which recruits inflammatory monocytes to the
liver (64, 65). Interestingly, a recent single cell study of hepatic
macrophages in NASH suggests that KCs do not upregulate
inflammatory gene expression early in NASH (66). It is possible
that apoptotic KCs are the source of TNF during NASH
progression, as KC apoptosis in the KC-DT model system
induces TNF dependent upregulation of CCL2 in stellate cells
(22). KCs also contribute to metabolic disease, as depletion of
KCs after 3 days, 2 weeks, and 3 weeks of high fat diet improves
glucose tolerance and insulin resistance (67, 68).During later stages
of NASH, the myeloid population of the liver increases in size and
complexity to include KCs, Ly6Chi and Ly6Clo macrophages
(Figure 3A). While at homeostasis embryonic KCs are self-
renewing and constitute the majority of hepatic macrophages
(68), but in late-stage NASH embryonic KCs coexist with bone
marrow derived KCs that arise from Ly6Chi hepatic macrophages
recruited from the systemic circulation (69). Upon entry into the
liver, Ly6Chi monocytes differentiate into F4/80+ macrophages.
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Eventually, a subset of F4/80+ BM-MF differentiate into BM-KCs
expressing the KC marker gene CLEC4F. CLEC4F+ BM-KCs are
transcriptionally similar to embryonic derived KCs; however, a
small subset of genes remains differentially expressed (7).
Importantly, embryonic derived KCs can be differentiated from
BM-KCs by expression of the surface marker (Figure 3A) Timd4
(TIM4+) (47). Whether BM-KCs and embryonic derived KCs
function differently in NASH is unclear. One recent study
showed that replacement of embryonic derived KCs with BM-
KCs prior to initiation of the methionine-choline deficient NASH
model diet resulted in impaired hepatic triglyceride storage and
increasedhepatocyte damage asmeasuredbyALT (70). In contrast,
a second study found no changes in inflammatory cytokines or
NASHhistology in livers populated by BM-KCs compared to livers
populated by embryonic KCs (21).

During NASH KCs recruit BM-MF at least in part by TLR4-
and TNF-mediated upregulation of CCL2. Both genetic and
Frontiers in Immunology | www.frontiersin.org 7
pharmacologic approaches to blocking CCR2 mediated
infiltration of bone marrow derived macrophages decrease
fibrosis, inflammation, and metabolic disease during NASH
(71, 72). Cenicriviroc, a CCR2/CCR5 antagonist, is in phase III
clinical trials for the treatment of fibrosis in NASH (73).
Collectively, hepatic macrophages (BM-MF, BM-KCs, KCs)
augment metabolic disease during NASH; hepatic steatosis,
insulin resistance, and oral glucose tolerance improve in mice
with fibrotic NASH following depletion of hepatic macrophages
(64, 74–76).

Hepatic macrophages can also be found in areas of hepatic
fibrosis. These Scar associated macrophages (SAMacs) can be
distinguished from other macrophage populations by their high
expression of TREM2, CD9, and SPP1, as well as their close
physical association with areas of hepatic fibrosis in both mice
and humans (Figure 3A) (66, 77, 78). The SAMac phenotype is
evolutionarily conserved between mice and humans, as SAMacs
FIGURE 3 | The NASH environment induces changes in the Kupffer cell niche. NAFLD and NASH alter the Kupffer cell microenvironment. Within the sinusoid, NASH
increases the amount of LPS, oxidized LDL, and cholesterol circulating in portal blood(A). In Kupffer cells NASH is associated with a loss of LXR at Kupffer cell
specific enhancers and the recruitment of LXR to de novo NASH enhancers in collaboration with ATF3 (B). The blue-red expression heatmap shows expression (in
TPM) normalized such that expression in homeostatic Kupffer cells is equal to 1 (C). Data in panel (C) were adapted from Seidman et al. (21).
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have been observed in multiple different mouse models of
hepatic fibrosis. SAMacs are transcriptionally similar to KCs
and BM-KCs (77–79). Ontologically SAMacs have been shown
to arise from embryonic derived KCs and BM-KCs in mice,
whereas in humans in silico pseudotemporal analysis of human
SAMacs suggests that SAMacs derive mainly from recruited BM-
MF (21, 77–79). While it is possible that these results reflect a
species-specific difference in KC biology, in our view it is more
likely that SAMacs can arise from either embryonic KCs or bone
marrow derived KCs. Therefore, the differences in results in mice
and humans could instead reflect a much higher proportion of
bone marrow derived KCs in the human liver compared to
the mouse.

The SAMac phenotype appears to be linked to disease burden.
In human NAFLD patients, TREM2 mRNA levels correlated with
markers of liver damage and fibrosis (78). However, the functional
role of SAMacs during NASH progression is not understood.
Current evidence suggests that the functions of SAMacs in NASH
are complex. scRNA-seq data from fibrotic human livers shows
that SAMacs express the profibrotic ligands TGFb, IL1b, and
PDGFb, suggesting that SAMacs could promote collagen
deposition by stellate cells (Figure 3A) (77). However, SAMacs
also express high amounts of TREM2, which has been associated
with protective macrophage functions in Alzheimer’s disease and
obesity (80, 81). Future studies will be needed to fully assess the
functions of SAMacs in the fibrotic liver.

The development of NASH is associated with increased
diversity in the hepatic myeloid compartment. NASH is also
associated with changes in the behavior of KCs themselves.
However, knowledge gained from studying homeostatic KCs
cannot always be extended to KCs in diseased tissue. KCs from
healthy livers can behave quite differently than KCs from NASH
livers (82, 83). One notable study showed that KCs from healthy
livers preferentially promoted expansion of Foxp3+ CD25+ T
cells when presented with ovalbumin coated antigenic particles,
suggesting that KCs act as tolerogenic antigen presenting cells.
However, KCs from mice fed the methionine choline deficient
NASH diet displayed decreased surface PDL1 and increased
surface levels of the activating marker CD80. Following this
result, KCs lost their ability to induce Foxp3+ CD25+ T cells
expansion during NASH (82). The hierarchal collaborative
model holds that differences in a cell’s response to the same
stimulus can be explained by changes in the enhancer landscape
and LDTFs of that cell. Using these studies as a guide, we can
begin to study the epigenetic circuits that guide macrophage
behavior during NASH and delineate both adaptive and
maladaptive gene expression programs. Here we review the
current understanding of the transcriptional control of hepatic
macrophages during NASH and how these pathways may be
targeted by future therapeutic strategies.

NASH Induced Reprogramming of LXR
LXRs function in cholesterol metabolism was first described in
1998, when it was shown that mice lacking LXRa develop NASH
when fed a 2% cholesterol diet due to impaired hepatocyte
cholesterol excretion (84). Following this pioneering work,
Frontiers in Immunology | www.frontiersin.org 8
LXRs have been shown to control important functions in
stellate cells, LSECs, and KCs during NASH. It is well
established that LXR activation inhibits inflammatory signaling
in macrophages both in vivo and ex vivo. This function of LXR
extends to KCs, as activation of LXR signaling led to decreased
TNF production by KCs in a mouse model of endotoxemia (85).
Conversely, loss of LXR signaling in KCs is associated with
increased inflammation in response to LPS. Mice lacking one or
both LXRs were fed a NASH model diet and subsequently
injected with LPS. Macrophages from mice lacking LXRa or
both LXRa and LXRb produced more inflammatory cytokines
following LPS injection than control mice (86). This could be due
to loss of LXR mediated trans-repression of inflammatory
signaling, as LXR activation in ex vivo KCs was shown to
inhibit inflammatory activation in a neuron-derived orphan
nuclear receptor-1 dependent manner (87). Increased
inflammatory activation of KCs lacking LXR could also be due
to changes in endoplasmic reticulum cholesterol levels or direct
competition with the inflammatory TF IRF3 for binding with
transcriptional co-activators (36, 88). These studies convincingly
demonstrate the involvement of LXR signaling in modulating
KC inflammatory signaling.

In a recently published paper, Seidman et al. demonstrate that
KC LXR signaling is fundamentally altered during NASH
pathogenesis. RNA-seq revealed that KCs from NASH livers
expressed lower amounts of KC specific genes such as Timd4,
Pcolce2, and Arg2. Timd4 and Arg2 were also decreased in KCs
lacking LXRa knockout, suggesting that loss of LXR activity at
their enhancers results in deactivation in the NASH environment
(21). Genome wide analysis of LXR binding in KCs revealed that
the NASH environment significantly alters the localization of LXR
in KCs and that of the sites with reduced LXR binding during
NASH, 39% were linked KC specific gene Figure 3B) (21). Similar
analysis of KC specific enhancers demonstrated that LXR binding
was required to maintain the homeostatic KC enhancer landscape
during NASH (21). Taken together, this result suggests a loss of
LXR LDTF function in KCs during NASH. The loss of KC specific
genes could have important functional consequences in NASH
(Figure 3B). Tim-4 (encoded by Timd4) is a phosphatidylserine
receptor involved in the clearance of apoptotic cells (89). Il18bp is
another KC specific gene with decreased expression during NASH.
Il18bp blocks Il18 signaling by binding Il18 with higher affinity
than Il18 receptors (90). Il18 is required for metabolic homeostasis
in the liver, as genetic deletion of Il18 leads to development of
NASH in chow-fed mice (91). Loss of Il18bp expression by KCs
during NASH could therefore adaptively promote proper
metabolism, however this hypothesis has not been explicitly
tested. In contrast to the decrease in LXR LDTF function, LXR
ChIP-seq also showed that LXR retained many of its canonical
targets (Abca1, Abcg1,Mylip) in KCs during NASH (21). How the
loss of KC specific gene expression affects the development of
NASH has not been studied, but remains a promising area for
future research.

Globally, NASH was associated with loss of LXR binding at
over 1,000 genomic loci. In loci that lost LXR binding during
NASH the SPIC motif was highly enriched, suggesting that loss
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of the SPIC-LXR collaborative pair leads to enhancer
deactivation and histone deacetylation at NASH deactivated
loci (Figure 3B). KC expression of SPIC steadily decreased as
mice developed NAFLD and then NASH (Figure 3C). KC
expression of SPIC target genes such as Hmox1 was also
decreased during NASH, suggesting that this loss of SPIC also
led to less transcriptional activity at its target enhancers (Figure
3B). Based on these observations, it is tempting to speculate that
NASH KCs have a lower capacity for erythrophagocytosis and
iron. The striking loss of SPIC transcription that occurs in KCs
during NASH progression could be explained by a loss of an
activating homeostatic signal or gain of a repressive NASH-
associated signal. The interplay of NASH and iron homeostasis
in KCs could be a promising area for future research.

The most enriched motif in NASH-specific LXR binding sites
was the AP1 motif (21). The AP1 motif is bound by many
transcription factors, including c-FOS, c-JUN, and the activating
transcription factor (ATF) family of TFs. Amongst these TFs,
ATF3 is highly induced in KCs during NASH. Subsequent ChIP-
sequencing of ATF3 bound genomic loci found that the NASH
environment roughly tripled the number of loci bound by Atf3 in
KCs (21), with a substantial fraction of new ATF3 binding sites
occurring and new LXRa binding sites. These findings support the
hypothesis that activation of ATF3 promotes relocalization of LXR
during NASH to genomic locations that contain combinations of
ATF3 and LXR binding motifs (Figure 3B). Of particular interest,
genes with NASH induced enhancer that are occupied by increased
levels of ATF3 and LXRa include Trem2 and Cd9, which are
markers of the SAMac phenotype. ATF3 is canonically induced by
endoplasmic reticulum (ER) stress along with Atf4 and Xbp1, and
activates a gene expression program necessary for the restoration of
cellular homeostasis (92, 93). ER stress can be induced by the
accumulation of cholesterol in the ER, which has a low tolerance
for the changes in membrane fluidity associated with increased
levels of cholesterol. Recently cholesterol has begun to be
appreciated as an important mediator of NASH pathogenesis:
cholesterol was shown to be correlated with hepatic fibrosis in
mice fed high fat diets with different concentrations of cholesterol
(94), and cholesterol has a direct fibrogenic role in mouse
hepatocytes (95). The connection between ER stress and
epigenetic reprogramming of KCs remains an interesting area for
future study.

Inflammasome Activation
and NFkB Signaling
NASH is associated with increases in gut permeability and
increased translocation of gut-derived microbial products from
the intestinal lumen to the portal blood (Figure 3A) (96–98).
Patients with NASH had higher serum levels of lipopolysaccharide
compared to healthy controls. NASH patients also had a higher
concentration of TLR4+ macrophages in their liver (96). Ligand
mediated activation of TLR4 leads to activation of a number of
TFs, including NFkB, AP1, IRF3, and others. Collectively, these
signal dependent TFs promote a large transcriptional response in
LPS stimulated macrophages (99). This response includes
increased expression of the proinflammatory cytokines Il1b, Il6,
Frontiers in Immunology | www.frontiersin.org 9
and Tnf as well as components of the inflammasome.
Inflammasome activation lies downstream of multiple important
NASH pathways. Cholesterol crystals have been shown to activate
the inflammasome in macrophages within atherosclerotic plaques
(100). Furthermore, cholesterol crystals have been shown to
accumulate in KCs and hepatic macrophages in murine models
of NASH (Figure 3A) (101). Similar to pathogen associated
molecular patterns, damage associated molecular patterns from
dying hepatocytes such as mitochondrial DNA and ATP and
reactive oxygen species produced by metabolic dysfunction are
also thought to activate the inflammasome during NASH (Figure
3A). Finally, activation of TLR4 by LPS alone has been shown to
lead to inflammasome activation via IRAK-1 activation (102, 103).
This pathway is essential for the progression of NASH, as deletion
of the NLRP3 inflammasome resulted in decreased inflammation
and fibrosis in mice (104). Targeted inhibition of hepatic NLRP3 is
a promising approach in the treatment of NASH. NFkB is an
upstream activator of inflammasome transcription, therefore
therapeutic approaches that block NFkB activation could also
prove beneficial in NASH. However, this approach is limited by
non-transcriptional mechanisms of inflammasome activation,
many of which occur during NASH.

Histone Modifications
TFs are one class of many DNA binding proteins within the
nucleus. Histones are structural proteins that bind DNA into a
unit known as the nucleosome. The core nucleosome consists of
an octamer of four histones, H2A, H2B, H3, and H4, encircled by
roughly 147 bp of DNA (105, 106). TFs act in concert with
histone modifying enzymes that covalently alter histone proteins
at specific amino acid residues (106). Histone modifications
subsequently impact chromatin structure and the binding of
effector molecules, resulting in activation or repression of
enhancers and promoters. Here we will briefly review key
concepts in histone modifications, but interested readers are
encouraged to consult a number of excellent reviews in this area,
including a review of the relevance of histone modification to
innate immunity (105, 107, 108). Two of the most common
modifications are histone acetylation and histone methylation.
The most well studied of these modifications occur at lysine
residues in the N-terminal histone tail. Histone acetylation is
determined by histone acetyltransferases (HATs) and histone
deacetylases (HDACs) while histone methylation is determined
by histone lysine methyltransferases (HKMTs) and histone
demethylases (105). Genome wide studies of histone
modifications show that particular histone modifications are
enriched in certain regions of the genome (106). Histone
acetylation eliminates the positive charge of lysine residues and
results in the relaxation of chromatin locally, allowing increased
access to DNA by TFs and other modifying enzymes (105). The
bromodomain region of bromodomain and extraterminal (BET)
proteins such as BRD2 and BRD4 binds specifically to
ϵ-aminoacetyl groups present on acetylated histones. BRD2
recruits E2F proteins, HATs and HDACs that induce both
additional chromatin remodeling and active transcription
(109). Notably, the BET BRD4 is important for macrophage
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inflammatory signaling in response to LPS (110). Inhibition of
BRD4 with the synthetic inhibitor JQI was shown to suppress
NFkB mediated activation of Il1b and Il6 in vitro (111). Due to
the downstream activity of BETs, acetylation of lysine 27 on
histone 3 (H3K27Ac) is predominantly associated with active
regions of chromatin, particularly active enhancers and
promoters (106). The function of histone methylation depends
on the particular lysine that is methylated and whether the loci is
mono-, di-, or tri-methylated. This is due in part to the high
specificity of effector proteins for particular histone
modifications. H3K4 mono- and di-methylation are associated
with active enhancers, while H3K4 di- and tri-methylation are
associated with active promoters. In contrast, H3K9 di- and tri-
methylation are associated with inactive promoters (106).

Aberrant gene expression is a feature of diseases, including
NASH. Studying the H3K27Ac landscape of cells therefore allows
the inference of active transcriptional pathways. KC have a distinct
H3K27Ac landscape compared to blood monocytes (7). The KC
H3K27Ac landscape is also sensitive to environmental
perturbations. When KCs isolated from murine livers with
NASH were compared to KCs isolated from homeostatic
murine livers, over 6,000 enhancers were found to have
significant differences in H3K27Ac. Activated enhancers
(defined by increased H3K27Ac) were enriched for the AP1,
NFAT, RUNX, and EGR motifs, while repressed enhancers
(defined by decreased H3K27Ac) were enriched for the MITF,
MAF, IRF, and LXR motifs (21). The H3K27Ac data from the two
studies cited here provide a map of putative active enhancers in
murine KCs. However, no comparable map exists for human KCs.

Given that chromatin modifications lie upstream of changes
in gene expression, the chromatin remodeling enzymes discussed
above are compelling targets for correcting dysregulated gene
expression. However, given the broad functions of many histone
effector proteins, it is difficult to predict the exact consequences
of the inhibition or activation of a given histone modifier (112).
HDAC inhibitors (HDACis) have had some success in the
treatment of cancer, and show promise for the treatment of
type 2 diabetes, a disease closely linked to NAFLD (112). However,
current HDACis are limited by their low target specificity, leading
to off target effects. Targeted HDACis, such as MGCD0103, which
is selective for HDAC1, are being developed (112). The use of
targeted HDACis or other epigenetic drugs requires a deep
understanding of the cell specific functions of a given
histone modifier.

Certain histone modifiers have been shown to have functional
roles in KCs during liver disease. Histone deacetylace 11
(HDAC11) is induced in KCs from mice exposed to a model
of alcoholic liver disease and is associated with decreased IL10
expression (113). Furthermore, knockout of HDAC11 resulted in
increased IL10 expression and decreased TNF secretion by RAW
264.7 macrophages, suggesting a role for HDAC11 in promoting
inflammation (113). HDAC11 is the only class IV HDAC,
suggesting that targeted inhibition of HDAC11 could be
feasible. However, further work is required to establish whether
this pro-inflammatory function of HDAC11 in KCs is due to
acetyltransferase activity or a separate function of the protein.
Frontiers in Immunology | www.frontiersin.org 10
Histone methylation is an epigenetic mark associated with both
activation and repression. In KCs histone H3 lysine 4 trimethylation
of the TNF promoter was required for full induction of TNF
expression by LPS (114). Inhibition of KC methyltransferase
activity of KCs with the methyl group donor S-adenosylmethionine
or its metabolite methyladenosine blocked LPS mediated TNF
expression and secretion and iNOS expression by murine KCs by
inhibiting promoter H3K4 trimethylation (114). The transcription
factor and HKMT EZH2 acts as a methyltransferase to promote
H3K27 trimethylation (H3K27Me3) at promoters, which ultimately
results in gene repression. Induction of acute liver failure in mice
using LPS/d-galactosamine led to increased expression of KC TNF
and decreased H3K27Me3 and EZH2 occupancy at the TNF
promoter in KCs (115). These studies establish a functional role for
histone methylation in KCs at the TNF promoter. Extending these
findings to the whole genome level studies using ChIP-seq would
yield deeper insight into the function of each of these histone marks
and the TFs that guide their deposition across the genome.

DNA Methylation
DNA methylation is a covalent epigenetic mark found on
cytosine nucleotides, predominately within regions of the
genome enriched for cytosine-guanine dinucleotide repeats.
When deposited at promoters, DNA methylation is
predominately associated with transcriptional repression. DNA
methylation can be transmitted to offspring. In mice, maternal
high-fat diet is associated with changes in methylation at
metabolic genes in offspring (116). DNA methylation at
certain genomic loci can also be used as a proxy for aging, also
known as an ‘epigenetic clock’. Epigenetic clocks are constructed
by performing a supervised machine learning regression linking
chronological age with epigenetic marks such as DNA-
methylation (117). While the exact mechanisms underlying the
clock are unknown, the correlation of groups of methylation loci
with chronological age is well established across a variety of
tissues. In humans, NASH is associated with accelerated aging as
measured by the Horvath clock in peripheral blood monocytes
(118). DNAmethylation patterns vary by cell type and thus more
detailed work is required to unravel its cell specific functions
during NASH (119). DNA methylation patterns have also been
shown to be heritable, and a deep understanding of the function
of DNA methylation during NASH could shed light on non-
coding contributions to NASH heritability through actions in
KCs and other hepatic cell types.

Long Non-Coding RNA Signaling
Non-transcriptional mechanisms of gene regulation are highly
relevant in metabolic disease. In particular, the role of RNA-
mediated gene regulation by micro-RNAs (miRNAs) and long
noncoding RNAs (lncRNAs) is increasingly recognized as
important to understanding the progression of liver disease.
LncRNAs are non-coding, transcribed RNA molecules greater
than 200 bp in length. LncRNAs engage in a diversity of cellular
functions, including activating or repressing genes via the
recruitment of transcriptional co-activators or co-repressors,
acting as scaffolds for the formation of large biological
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complexes, and acting as decoys for RNA and DNA binding
proteins (120). Similar to TFs, lncRNAs act in a cell specific
manner by modulating gene expression at the level of enhancer
and promoter activity. In the hepatic environment lncRNAs have
an established role in the progression of hepatocellular
carcinoma (HCC). The lncRNA downregulated in liver cancer
stem cells (lnc-DILC) controls proliferation of liver cancer stem
cells and is downregulated in aggressive subtypes of HCC (121).
Lnc-DILC acts as a transcriptional repressor by binding to the
IL6 promoter and blocking its transcription downstream of
NFkB activation. Loss of autocrine IL6 signaling led to
decreased expansion of liver cancer stem cells both in vitro and
in vivo (121). In contrast, increased expression of lncRNA-ROR
is associated with HCC. lncRNA-ROR acts as a molecular decoy
for miR-145, preventing miRNA mediated repression of the
transcription factor ZEB2 (122). Increased expression of ZEB2
downstream of lncRNA-ROR promoted epithelial to
mesenchymal transformation and metastasis of HCC (122).
The lncRNA-ROR signaling pathway is of interest in myeloid
cells, as ZEB2 is a LDTF for KCs and other tissue macrophages.
Another well studied lncRNA is MeXis, which amplifies LXR
mediated activation of the gene Abca1 in bone marrow
macrophages and in macrophages within the aortic plaque
(123). While LXR and Abca1 are highly expressed in KCs, this
pathway has not been confirmed to be active in KCs in vivo.

A number of lncRNAs have been also associated with NASH in
human studies, but in contrast to lncRNAs inHCC, the cell specific
mechanisms by which these lncRNAs act remain largely unknown
(124–126). Lnc18q22.2 was recently shown to be upregulated in
whole liver tissue frompatientswithNASHcompared to thosewith
NAFLD. In vitro knockdown of lnc18q22.2 in hepatocyte cell lines
resulted in slower cell growthand increased apoptosis in response to
cisplatin or hydrogen peroxide challenge, suggesting that
lnc18q22.2 is required for hepatocyte growth and viability (124).
RNA-seq studies of lnc18q22.2 knockdown suggest that it could
have a role in regulating the response of hepatocytes to oxidative
stress (124). However, much remains to be learned regarding the
function of lnc18q22.2 and other NASH associated lncRNAs.
Pertinent areas for further study include deeper study of the
molecular mechanisms of NASH lncRNAs, the identification of
transcriptional pathways upstreamof lncRNAexpression inNASH
and investigation of the cell type specific function for NASH
lncRNAs, particularly those that act by modulating chromatin
activity and gene expression. Notably, the lncRNA MeXis has
well described functions in macrophages (123). MeXis amplifies
LXR mediated activation of the gene Abca1 in bone marrow
macrophages and in macrophages within the aortic plaque (123).
While LXR and Abca1 are highly expressed in KCs, pathway has
not been confirmed to be active in KCs in vivo.

MicroRNA Signaling
miRNAs are short noncoding RNAs that act in concert with the
RNA-induced silencing complex (RISC) to repress translation
of target messenger RNAs (mRNAs). There are a number
of reviews on the functions of miRNAs in inflammatory
cells, including macrophages in the setting of liver disease
Frontiers in Immunology | www.frontiersin.org 11
(127–130). Here we will briefly review important miRNAs
known to function in myeloid cells during NASH.

miR-155was one of the initialmiRNAs to be directly implicated
in inflammation. In macrophages, miRNA-155 is a target of NFkB
and acts to repress inflammatory signalingby repressing translation
of PU.1, SOCS1, and SHIP1 in RAW 264.7 macrophages (131).
When fed a NASH model diet, mice lacking global miRNA-155
have less histological steatosis and inflammation, as well as lower
liver triglycerides and ALT (132). KCs extracted from mice in a
model of alcoholic liver disease expressed more miR-155 than
control KCs. In contrast, treatment of miR-155 deficient murine
KCs with LPS in vitro led to increased expression of the anti-
inflammatory cytokine IL10 and decreased expression of TNF. The
in vitro function of miR-155 in KCs was attributed in part to
interaction of miR-155 with the IRAK-M mRNA, suggesting that
miR155might have a different function inKCs than in otherNASH
relevant cell types (113). IRAK3, encoding IRAK-M, is specifically
expressed in monocytes and macrophages and is induced by TLR4
signaling (133). The IRAK-M protein negatively regulates TLR4
signaling by inhibiting IRAK and IRAK2 activation by TLR4 (133).
Cellular responses to TLR4 activation can therefore be toggled by
adjusting the amount of IRAK-M protein available in the cytosol
(133). Loss of IRAK-M repression by miR-155 should therefore
lead to increased NFkB activity in the nucleus of KCs stimulated
with LPS, making the observation that loss of mIR-155 leads to
increased IL-10 expression a surprising result (113). A possible
explanation for this observation is the presence ofNFkB responsive
enhancer regions near IL-10 in KCs. Careful study of dynamic
enhancer regulation from ex vivo KCs could yield deeper insight
into the role this signaling network plays in the KC LPS response.

miRNAs can also act intercellularly. Hepatocytes derived from
high-fat high-cholesterol diet treated rats secreted exosomes laden
with miR-192-5p (113). Treatment of macrophages with miR-
192-5p in vitro induced inflammation as assessed by upregulation
of IL6 and TNF. miR-192-5p was shown to bind and inhibit the
translation of Rictor, which has previously described roles in
macrophage inflammatory pathways (113). This mechanism is not
specific tomiR-192-5p, as hepatocytes treatedwith ethanol produced
exosomes with miR-122, which sensitized macrophages to LPS
mediated activation in vitro (134). Collectively, this work suggests
that miRNAs are important modulators of KC inflammatory
signaling. Notable KC TFs such as PU.1, STAT1, and LXR are
indeed targets of miRNA regulation, which suggests the possibility
thatmiRNAs can also tune KC transcription. However, further work
with KC specific knockouts will be necessary to understand the
specific function of miRNAs in KCs during NASH.

Transcription Factors
as Therapeutic Targets
Cholesterol/ER Stress Modulators
Cholesterol accumulation in hepatic macrophages is emerging as
a key feature of NASH (83, 94, 135). KCs have increased
concentrations of cholesterol and other lipids during NASH
and cholesterol crystals have been shown to directly activate
the NLRP3 inflammasome (101). Cholesterol accumulation also
induces ER stress and augments inflammatory TLR4 signaling in
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macrophages (Figure 3A) (35, 36). Furthermore, prolonged ER
stress has been shown to induce inflammation on macrophages
(136). Clinically, patients treated with cholesterol lowering
drugs such as statins tend to have improved liver histology
compared to matched, untreated patients, although the effect
is slight (135, 137, 138). Cell specific therapies that directly
reduce KC ER stress or lower KC cholesterol levels may
dampen NASH associated inflammation and slow or reverse
disease progression.

Activation of LXRs promotes cholesterol export from
macrophages to high density lipoprotein via Abca1 (28), and this
transcriptional circuit remains active despite significant
reprogramming of LXR in KCs during NASH (21). Treatment of
Ldlr−/− mice with the LXR agonist 27-hydroxycholesterol decreased
hepatic infiltration of macrophages, T cells, and neutrophils when
mice were fed a high-fat, high-cholesterol diet (139). Treatment with
27-hydroxycholesterol during NASH was also associated with
decreased appearance of foamy macrophages, and cholesterol
aggregates in the liver, suggesting that 27-hydroxycholesterol
promotes cholesterol export in KCs during NASH (138).
Subsequently, the same group also showed that raising the levels
of 27-hydroxycholesterol in myeloid lineage cells alone also
improved hepatic inflammation independently of increased serum
levels of 27-hydroxycholesterol (140). Historically, the development
of LXR agonist drugs has been limited by their induction of
steatohepatitis via activation of SREBP transcription (141).
However, recently a class of LXR agonists termed “desmosterol-
mimetics” raises the potential of circumventing this side effect by
simultaneously blocking SREBP processing through inhibition of
their association from INSIGs in the endoplasmic reticulum (51,
142). Furthermore, one of these compounds, DMHCA, specifically
activated LXR in macrophages but not hepatocytes (51). The
observation that DMHCA does not activate LXR signaling in
hepatocytes is promising, as LXR activation in hepatocytes is
associated with adverse side effects of LXR agonists, most notably
hypertriglyceridemia and hepatosteatosis (37, 143). The
combination of cholesterol-lowering and anti-inflammatory
actions make desmosterol-mimetic LXR agonists a promising
therapy in the treatment of NASH.

Macrophage ER stress can also be alleviated by activation of the
vitamin D receptor (VDR) (144). VDR is expressed by hepatic
macrophages and activation interferes with TLR4 signaling,
making it an appealing candidate for the treatment of NASH
(Figure 3C) (145). Treatment of mice with a VDR agonist and
tunicamycin, an ER stress inducer, resulted in less hepatic
inflammation than mice treated with tunicamycin alone.
Subsequent experiments determined that VDR exerted its effect
by decreasing inflammatory activation of KCs (146). Recently,
Dong et al. showed that the VDR activation decreases hepatic
inflammation in a diet-induced model of NASH (147). Mice
treated with the VDR agonist calcipotriol showed decreased
hepatic inflammation, decreased steatosis, and improved insulin
resistance compared to vehicle treated controls. Furthermore,
hepatic macrophages were shown to be the primary target of
calcipotriol, as depletion of hepatic macrophages with clodronate
liposomes abrogated the effect of the treatment (147).
Frontiers in Immunology | www.frontiersin.org 12
Hippo Pathway Modulation
The Hippo pathway has an established role in promoting
hepatocellular carcinoma. Recently, members of the Hippo
pathway have also been shown to be activated in the
development of human and murine NASH (148). In NASH,
Hippo-mediated activation of the transcriptional coactivator yes-
associated protein (YAP) was essential for hepatic stellate cell
activation and production of collagen. Blocking YAP with
verteporfin or siRNAs led to decreased HSC activation in vitro.
In hepatocytes the YAP paralogue TAZ was found to promote
both features of inflammation and fibrosis development (95, 148).
Intriguingly, the Hippo pathway was recently found to be active in
KCs during NASH. Song et al. found that YAP promotes
inflammatory signaling downstream of TLR4 in KCs (Figure
3C) (149). Treatment of KCs with LPS led to increased
transcription of YAP in a TLR4 and AP1 dependent manner
(149). YAP was then found to bind to the promoters of Cxcl1 (also
known as monocyte-chemoattractant protein 1), Il6, and Tnf,
facilitating their transcription following LPS stimulation.
Deletion of YAP in myeloid cells decreased hepatic
inflammatory infiltration, AST, and ALT in a mouse model of
NASH. These results suggest that targeting the Hippo pathway
could ameliorate NASH through cell specific actions in multiple
hepatic cell types.

PPARg Agonists
The metabolic and anti-inflammatory functions of PPARg have
made it an appealing target for the treatment of NASH. In
humans, administration of thiazolidinedione class PPARg ligand
pioglitazone improved steatosis and hepatic inflammation, but
was also found to promote weight gain, which has limited its
clinical use thus far (150). The PPARg ligand rosiglitazone
was also found to have a beneficial effect on NASH while
also promoting weight gain (151). A meta-analysis of
thiazolidinediones in NASH echoed these findings, showing
that as a class they slightly improve histological evidence of
disease but also cause significant weight gain (152). Research in
animal models suggests that this effect is at least in part due to the
effect of PPARg ligands on myeloid lineage cells, including KCs.
Luo et al. found that treatment of RAW macrophages with
the PPARg agonist GW1929 decreased expression of the
inflammatory genes iNos2, Tnf, and Il6 in response to palmitic
acid treatment. The anti-inflammatory effect of PPARg agonism
was correlated with decreased activity of the NFkB signaling
pathway in vitro (153). Treatment of mice with rosiglitazone
during the final 4 weeks of a 16-week course of high-fat diet led to
decreased macrophage infiltration in the liver as measured by F4/
80 histological staining. KCs from mice treated with rosiglitazone
also expressed lower levels of Tnf, Il6, and IL1b compared to mice
treated with vehicle (153). Further research will be needed to
determine whether the effect of rosiglitazone is due to improved
lipid homeostasis in the liver, decreased inflammation in KCs, or
a combination of each of these effects. As mentioned above,
PPARg agonism also increases expression of LXRa, so it is
possible that some of the anti-inflammatory effect of
rosiglitazone is induced by activation of LXR target genes in KCs.
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DISCUSSION

KCs utilize use a diverse repertoire of transcription factors to
respond to metabolic and inflammatory signals from portal blood
and the hepatic parenchyma. KCs express scavenger receptors and
TFs involved in lipid metabolism and homeostasis as well as a
variety of TFs involved in sensing and responding to pathogenic
material found in portal blood. KCs also express a suite of genes
involved in the metabolism of heme under the control of the
transcription factor SPIC. With the exception of a small group of
genes, the KC transcriptome is specified by signals in the hepatic
microenvironment, both within and outside of the liver sinusoid.
KCspecific depletion and repopulation studies usingDT found that
a sequential series of hepatic signals induce differentiation of KCs
from blood monocytes. Depletion of KCs leads to increased
expression of adhesion molecules on the surface of LSECs,
inducing the attachment of blood monocytes. LSECs then activate
KC Notch signaling and induce an early wave of KC specific gene
expression, including theKCLDTFsNr1h3andSpiC.Liver intrinsic
signals subsequently activate LXRa, SPIC, and the TGFb pathway,
resulting in the expression of additional KC specific genes. In vitro
studies suggest that further niche specific signals are required to
produce the full repertoire of KC specific genes, and it will be of
interest to identify other ligands that are important for KC
differentiation. Further, the DT depletion and repopulation
framework could be applied to identify LDTFs in other tissue
macrophage populations that are replenished by blood monocytes.

NASH alters the hepatic environment and is associated with
large transcriptomic changes in all hepatic cell types. KCs from
NASH livers cluster apart from KCs isolated from healthy livers in
both humans and mice. Epigenetically, changes in the KC
transcriptome were associated with reprogramming of LXRa
and its recruitment to sites also bound by ATF3. Deletion of
LXR signaling in KCs recapitulated some but not all of the
transcriptional changes associated with NASH. NASH specific
enhancers were also enriched for the NFAT, RUNX, and EGR TF
motifs. Activation of LXR signaling with 27-hydroxysterol has
been shown to alleviate NASH in mouse models of disease, and
lower levels of cholesterol are thought to be beneficial for NASH
prognosis generally. LXR agonists have generally been avoided in
treatment of liver disease due to their SREBP mediated steatogenic
effect in hepatocytes. However recently a class of selective LXR
ligands has been identified that blocks SREBP activation at the ER
and avoids this side effect. These ligands are a promising area for
further study and drug development in NASH, which at the time
of publication still lacks any approved therapeutic options.
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Many questions remain open in the study of KC epigenetic
control during NASH. One interesting area of study is the
epigenetic pathways involved in the establishment and
maintenance of the SAM phenotype. While TREM2 signaling
has been shown to activate a number of TF pathways, the
upstream TFs responsible for the activation of TREM2 and the
SAM transcriptional profile in KCs remain unknown. Since
TREM2 has disease-related functions in other tissue
macrophages, including Microglia and adipose tissue
macrophages (80, 81), unraveling the transcriptional control of
this gene program is highly relevant for the study of NAFLD and
hepatic fibrosis. Additionally, the epigenetic changes between early
stage NAFLD versus late stage NASH are unexplored and this area
could provide insights useful for development of new treatments.

While this review focuses on NASH, the study of KCs is
relevant to any disease that extends to the liver. KCs perform
both metabolic and immune regulatory functions in the
homeostatic liver. KCs also exist in intimate contact with the
main cell types of the liver as well as areas damaged by disease.
One area of particular relevance today is the response of KCs to
viral infection, given that nearly 50% of patients hospitalized
with Sars-Cov-2 have recently been associated with liver damage
and elevated liver enzymes (154).
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