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ABSTRACT Alkaline hot springs in Yellowstone National Park (YNP) provide a frame-
work to study the relationship between photoautotrophs and temperature. Previous
work has focused on studying how cyanobacteria (oxygenic phototrophs) vary with
temperature, sulfide, and pH, but many questions remain regarding the ecophysiol-
ogy of anoxygenic photosynthesis due to the taxonomic and metabolic diversity of
these taxa. To this end, we examined the distribution of genes involved in phototrophy,
carbon fixation, and nitrogen fixation in eight alkaline (pH 7.3-9.4) hot spring sites near
the upper temperature limit of photosynthesis (718C) in YNP using metagenome
sequencing. Based on genes encoding key reaction center proteins, geographic isolation
plays a larger role than temperature in selecting for distinct phototrophic Chloroflexi,
while genes typically associated with autotrophy in anoxygenic phototrophs, did not
have distinct distributions with temperature. Additionally, we recovered Calvin cycle
gene variants associated with Chloroflexi, an alternative carbon fixation pathway in
anoxygenic photoautotrophs. Lastly, we recovered several abundant nitrogen fixation
gene sequences associated with Roseiflexus, providing further evidence that genes
involved in nitrogen fixation in Chloroflexi are more common than previously assumed.
Together, our results add to the body of work on the distribution and functional poten-
tial of phototrophic bacteria in Yellowstone National Park hot springs and support the
hypothesis that a combination of abiotic and biotic factors impact the distribution of
phototrophic bacteria in hot springs. Future studies of isolates and metagenome
assembled genomes (MAGs) from these data and others will further our understanding
of the ecology and evolution of hot spring anoxygenic phototrophs.

IMPORTANCE Photosynthetic bacteria in hot springs are of great importance to both
microbial evolution and ecology. While a large body of work has focused on oxy-
genic photosynthesis in cyanobacteria in Mushroom and Octopus Springs in
Yellowstone National Park, many questions remain regarding the metabolic potential
and ecology of hot spring anoxygenic phototrophs. Anoxygenic phototrophs are meta-
bolically and taxonomically diverse, and further investigations into their physiology will
lead to a deeper understanding of microbial evolution and ecology of these taxa. Here,
we have quantified the distribution of key genes involved in carbon and nitrogen me-
tabolism in both oxygenic and anoxygenic phototrophs. Our results suggest that
temperature .688C selects for distinct groups of cyanobacteria and that carbon fixation
pathways associated with these taxa are likely subject to the same selective pressure.
Additionally, our data suggest that phototrophic Chloroflexi genes and carbon fixation
genes are largely influenced by local conditions as evidenced by our gene variant analy-
sis. Lastly, we recovered several genes associated with potentially novel phototrophic
Chloroflexi. Together, our results add to the body of work on hot springs in Yellowstone
National Park and set the stage for future work on metagenome assembled genomes.
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Decades of research in Yellowstone National Park (YNP) hot springs show chloro-
phototrophic (chlorophyll-dependent phototrophs, herein “phototrophs”) bacteria

exhibit a temperature-dependent distribution, wherein eukaryotic algae predominate
in acidic hot springs at ,568C, and phototrophic cyanobacteria and Chloroflexi prevail
in alkaline hot springs at .608C (1–5). In alkaline environments, temperature can ex-
hibit further control over the distribution of a given cyanobacterial genus. This is most
evident in the distribution of Synechococcus, wherein Synechococcus ecotypes are parti-
tioned by 18C increments within mats in Mushroom and Octopus Springs (6). Beyond
cyanobacteria, anoxygenic phototrophs also exhibit variable distributions with temper-
ature in Octopus and Mushroom Springs (5, 7, 8) and in a handful of additional alkaline
springs in YNP revealed by single-marker gene surveys (9–14). However, anoxygenic
phototrophs are a metabolically and taxonomically diverse group with few character-
ized hot springs isolates, and broad distributions of these taxa in YNP hot springs are
not well understood. Here, we aim to explore the idea that geographic isolation and
temperature play important roles in environmental and geographic selection of anoxy-
genic phototrophs, an ongoing debate noted in the Becraft et al. (2011) study of cya-
nobacterial ecotypes (6).

Isolate studies and in situ experiments provide important insight into genetic content
and physiology within a given environment and are crucial to fully determine the role of
specific taxa in an ecosystem (2). However, the lack of isolate genomes of high tempera-
ture, alkaline hot spring, anoxygenic phototrophs limits our understanding of their physiol-
ogy. While there are at least 90 alkaline hot spring cyanobacteria genomes available (15),
there are only eight alkaline hot spring Chloroflexi isolate genomes to date (Roseiflexus cas-
tenholzii HL08, Roseiflexus sp. R2-1, Roseiflexus sp. R2-2, Chloroflexus aggregans DSM 9485,
Chloroflexus aurantiacus Y-400-fl, Chloroflexus aurantiacus OK-70-fl, Chloroflexus aurantiacus
J-10-fl, and Chloroflexus islandicus isl-2).

Chloroflexi are the most abundant and widespread anoxygenic phototroph in alkaline
hot springs (4, 5, 10, 11, 16, 17). Phototrophy (photoautotrophy, photomixotrophy, and pho-
toheterotrophy) in phylum Chloroflexi is limited to class Chloroflexales with one exception,
“Candidatus Roseilinea” (18, 19). Unlike cyanobacteria that rely on the Calvin cycle for auto-
trophy, photoautotrophic Chloroflexi (meaning both photoautotrophs and photomixo-
trophs) genomes can vary in carbon assimilation genes: both Chloroflexus and Roseiflexus
genomes contain genes for the autotrophic 3-hydroxypropionate bicycle (3-HPB) (20, 21),
but only Chloroflexus isolates have been grown in the absence of acetate (22, 23). Herein,
we refer to carbon-fixing Chloroflexi as photoautotrophs, but acknowledge that they can
live a photomixotrophic lifestyle or chemoautotrophic lifestyle, dependent on light condi-
tions, time of day, or presence of suitable electron donors (21, 23, 24). To tease apart carbon
assimilation by both taxa in situ, Klatt et al. (2013) assessed expression of key genes in the 3-
hydroxypropionate pathway (3-HPB) at 608C and 658C in Mushroom Spring. In that study,
transcripts of 3-HPB in Roseiflexus were observed at 658C and Chloroflexus at 608C, which
suggests taxon-specific temperature partitioning of these genera (8). Here, we expand this
work by surveying both anoxygenic photosynthesis reaction center genes and key carbon
fixation genes across high temperature gradients (628C to 718C) to determine if this pattern
occurs across a broader range of hot springs in YNP.

Alkaline hot springs in YNP are limited in nitrogen, which selects for nitrogen-fixing bac-
teria, diazotrophs (14, 25). Nitrogen fixation is catalyzed by the enzyme nitrogenase, which
is energetically and metabolically expensive (26). Nitrogenase is an iron-sulfur complex
containing one of three metals harbored in the active site: molybdenum (Mo), iron (Fe), or
vanadium (V). Mo-nitrogenase is the most common and is encoded by nif genes (27, 28).
Several studies have assessed potential nitrogenase activity in acidic hot springs of .558C
using the gene nifH, which encodes the iron protein (NifH) in nitrogenase (29–31). These
studies suggested diazotrophs in acidic hot springs are adapted to local conditions. In
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alkaline hot spring mats (53–638C), the abundance of Synechococcus nifH transcripts
increased in the evening once mats turn anoxic (8, 32). Roseiflexus genomes (including hot
spring isolates) contain nif genes, but they lack the full protein suite required to build a
functional nitrogenase and likely do not fix nitrogen. However, Roseiflexus nifH transcripts
have been observed at 578C and 688C in Mound Spring in YNP, suggesting a functional
purpose that remains unknown (e.g., reference 33).

Given the abundance of cyanobacteria and Chloroflexi in alkaline hot springs and
the crucial role they play in nitrogen and carbon cycling, we sought to determine the
role of temperature in constraining the distribution of key genes for photosynthesis
and nitrogen fixation in eight alkaline hot springs with temperatures ranging from 62–
718C. We examined genes and pathways associated with phototrophy, autotrophy,
and nitrogen fixation in metagenome assemblies, an approach that has been informa-
tive in other systems (e.g., reference 34). We found that (i) genes associated with pho-
tosynthetic machinery are abundant throughout our samples and richness is lower in
628C sites, (ii) operational taxonomic units (OTUs) of taxa commonly associated with
alkaline hot springs (Synechococcus, Roseiflexus, and Chloroflexus) as well as novel
Chloroflexi OTUs (Roseilinea and “unclassified” Chloroflexi) are present in our samples,
(iii) RuBisCO gene variant distribution suggests adaption to local conditions, and (iv)
3HPB genes are abundant throughout our samples. In addition, we recovered several
NifH protein sequences related to Roseiflexus, a taxon that could be important for dis-
cerning the evolutionary history of nitrogen fixation. In general, our OTU analysis sug-
gest taxa are largely influenced by local conditions. Temperatures of .688C select for
distinct groups of cyanobacteria, while geographic location selects for phototrophic
Chloroflexi and carbon fixation genes. These results add to the body of work on photo-
autotrophic bacteria in alkaline hot springs, which is critical to solving the evolutionary
history and ecophysiology of nitrogen fixation and photosynthesis in bacteria.

RESULTS AND DISCUSSION
Overview of site geochemistry and study design. 16S rRNA gene sequencing has

been conducted in several alkaline hot springs in YNP and has been useful in determin-
ing putative phototrophic taxa (reviewed in reference 4). Based on previous 16S rRNA
amplicon sequencing, we found that putative phototrophs, including Synechococcus,
Roseiflexus, and Chloroflexus, were abundant in eight different hot spring sites in YNP.
These sites ranged in temperature from 628C to 718C, pH between 7 and 9, and sample
morphology included mats, pinnacles, and filaments (Table S1 in the supplemental ma-
terial) (11). In general, the sites cluster by geothermal area while temperature, dis-
solved organic carbon, sulfide, and iron were also major drivers of dissimilarity (Fig. 1).
Here, we leveraged metagenome sequencing to determine ecological diversity and
metabolic potential of phototrophic bacteria in eight alkaline springs that have not
been the focus of historic work in YNP. While Mushroom and Octopus springs are alka-
line, they differ compared to our sites in terms of morphology, geochemistry, and geo-
graphic location. We generated metagenomes to determine the diversity, distribution,
and abundance of specific genes involved in phototrophy, autotrophy, and nitrogen
fixation. Because diversity at the 16S rRNA gene level decreases with increasing tem-
perature and geographic isolation plays a role in structuring hot spring communities
(6, 8, 35, 36), we hypothesized that these factors would also impact the distribution, di-
versity, and abundance of functional genes. To this end, we calculated Shannon diver-
sity for each target gene in our eight hot spring sites and examined gene abundance
by mapping metagenome reads to genes of interest in the assembled metagenomes.

Geographic isolation plays a role in the diversity and distribution of cyanobacterial
photosystem genes. Oxygenic photosynthesis is a remarkable metabolism that involves
two photosystems, Photosystem I (PSI) and Photosystem II (PSII), working in concert to har-
vest electrons from water to fuel carbon fixation and other cellular processes. PSII houses
the oxygen-evolving complex and antenna proteins where light energy is captured to lib-
erate electrons from water—a process that requires expression of several proteins that are
encoded by psb genes (37–39). We quantified the abundance of three key psb genes:
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psbA, psbB, and psbD (Fig. 2A). The psbA and psbD genes encode for the D1 and D2 pro-
teins, respectively, which both serve to ligate the redox-active components in PSII and are
highly transcriptionally regulated in cyanobacteria (37). The psbB gene encodes CP47, a
chlorophyll binding protein crucial to forming a stable PSII reaction center; taxa with multi-
ple copies of psbB are acclimated to far-red light (40). While we observed a range of
sequence abundances from rare (0.001) to 3 normalized reads mapped, we did not
observe statistically significant differences in photosystem gene abundance in our data
(Table S2) nor a decrease in abundance with increasing temperature (Fig. 2A).

We classified psbA genes into operational taxonomic units (OTUs, 99% nucleotide simi-
larity, reference database in supplemental material) resulting in 27 psbA OTUs (Fig. 3,
Figure S1). To examine diversity in taxonomy of the psbA OTUs, we translated psbA to
PsbA and ran both phylogenetic and BLASTP analyses (41) (Fig. S1). Based on the phyloge-
netic placement of PsbA and our BLASTP results, 14 of 24 OTUs were classified as
Synechococcus. Several OTUs were related to the high temperature strains JA-2-3B'a (2–13)
and 63AY4M2. Two PsbA OTUs, OTU15 and OTU17, were most closely related to strain
63AY4M2 and were present in our highest temperature sites, WCA1 (71.08C) and WCA2
(69.48C) (Fig. S1). Both reference strains were isolated from Mushroom and Octopus
Springs, where temperatures range from 60–658C (42), and our results may suggest a
range for strain 63AY4M2 beyond 658C. While strain-level distribution cannot be discerned
from these data alone, future work should be done to determine the genomic variation in
Synechococcus strains beyond Mushroom and Octopus Springs (see reference 43). While
the majority of the OTUs recovered here were Synechococcus, we also recovered OTUs that
were most closely related to Gloeomargarita lithophora, Thermosynechococcus sp., and

FIG 1 Principal component analysis of site meta-data. Principal components were calculated using the numeric data in Table S1A. Sites are labeled by site
ID in corresponding Table S1 and shaded by Yellowstone National Park area.
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Leptolyngbya sp. in 628C sites. These observations are consistent with previous work sug-
gesting cyanobacterial diversity increases with decreasing temperature in alkaline hot
springs (7, 9, 10).

While the abundance of photosynthesis reaction center genes did not correlate
with temperature, we did observe differences in photosystem gene copy number. For
example, in our highest temperature sites (68–718C), there were few highly abundant
psbA sequences while at lower temperatures there were more less abundant psbA
sequences. We expected that the . 688C samples would contain distinct psbA variants
compared to the lower temperature sites because temperature selects for ecotypes
that vary in photosynthetic properties in Mushroom and Octopus Springs (3, 5–7). We
found that psbA variants were largely site specific (Fig. 3) and alpha diversity across
sites did not correlate with temperature (Fig. S2A), highlighting that geographic isola-
tion could play a selective role in this environment.

In general, psbA richness was higher in 628C sites compared to others (Fig. 3). In the 628C
sites, only two OTUs were present in more than one site (OTU06 and OTU07 in site RCA4 and
site GCA3), and in the high temperature sites, all psbA OTUs were unique. Both OTUs were
associated with Synechococcus OH strains capable of growth up to 708C in pure culture (44).
We observed several abundant OTUs in Rabbit Creek sites (RCA, sites RCA3, RCA4, and RCA6),
where our previous 16S rRNA analysis revealed abundant Synechococcus 16S rRNA gene
sequences (11). The recovery of multiple psbA OTUs in each RCA site is consistent with the
presence of multiple Synechococcus strains or ecotypes with several distinct copies of psbA.
Fewer distinct OTUs in sites of .638C is consistent with strain (or ecotype) adaption at higher
temperatures, like what was observed in Octopus spring (7).

FIG 2 Distribution of photosynthetic genes with temperature. The overall abundance (normalized ln(1 1 reads mapped)) of genes that encode for
Cyanobacterial photosystem II (psb) and type II anoxygenic photosynthesis reaction centers (puf) are shown as box plots for each site. Triangles represent
the mean abundance for the gene set, and dots represent individual gene abundances, shaded and separated by the corresponding photosystem or
reaction center gene (KEGG Orthology IDs are shown with gene name). Boxes represent the inter quartile range (Q1–Q3) and whiskers (lines) represent the
maximum and minimum, with outliers removed (62.5 standard deviations from the mean). A gray line divides the sites into high temperature and low
temperature groups. Sites are ordered by increasing temperature.
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Chloroflexi photosystem genes have distinct distributions with temperature
and reveal novel taxa. Given that cyanobacteria photosystem genes did not follow a
distinct temperature pattern, but PsbA OTU analysis revealed gene variants are largely
site specific, we sought to determine if anoxygenic phototrophs followed a similar pat-
tern. Anoxygenic phototrophs commonly observed at temperatures of .608C have
type-II reaction centers that are encoded by puf genes (45), and the majority of anoxy-
genic phototrophs in hot springs of .608C are phototrophic Chloroflexi (7, 11, 20).
Here we surveyed puf genes to examine if the diversity of putative phototrophic
Chloroflexi (class Chloroflexales and Candidatus Thermofonsia) also decreases with
increasing temperature (Fig. 2B). pufL and pufM encode PufL and PufM, membrane-
spanning proteins that bind bacteriochlorophylls in type-II reaction centers, while pufC
gene encodes a cytochrome involved in photosynthetic electron transfer (19, 45, 46).
puf gene abundances ranged from rare (0.001 normalized reads mapped) to 1.5 nor-
malized reads mapped (Fig. 2B). We recovered more copies of pufLC genes in sites
of ,688C, which is consistent with a decrease in genetic (or taxonomic) diversity with
increasing temperature, as seen in Mushroom Spring, Octopus Spring, and Rabbit
Creek (3, 5, 10–12, 17). In contrast, several copies of pufM genes were abundant in all
sites. Together, these results suggest that taxa with type-II reaction centers could
encode multiple copies of pufM. Furthermore, our data suggest that diversity of anoxy-
genic phototrophs decreases with increasing temperature or taxa at temperatures
628C contain multiple copies of pufLC. The presence of multiple copies of puf genes
has not been confirmed in Chloroflexi isolate genomes, but in other phyla gene homo-
logs are necessary for adaption to changing environmental conditions (47) and should
be investigated further in phototrophic Chloroflexi.

To determine the diversity of puf genes in these sites, we assigned OTUs to our con-
catenated and translated pufLM genes (at 99% similarity) and assigned taxonomy using
BLASTP (41). We found that pufLM diversity did not correlate with temperature

FIG 3 Richness and distribution of psbA gene variants. Rank abundance plots for each site are displayed in increasing temperature order. Plots display
abundances as normalized ln(1 1 reads mapped) for each psbA OTU, and OTUs are ranked in order from most to least abundant. Bars are labeled with the
OTU number. Striped bars represent OTUs that are present in more than one site.
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(Fig. S2B). We recovered 42 pufLM OTUs across seven sites (Fig. 4, Fig, S3). Thirty-five of
the 42 OTUs were affiliated with Chloroflexi. Of the seven non-Chloroflexi OTUs, none
were in the top 20 most abundant OTUs; five were Proteobacteria and two were
Actinobacteria. Previous work has shown that phototrophic Proteobacteria are rare in
alkaline hot springs at .608C (4, 9, 10), and non-Chloroflexi pufLM OTUs were not
abundant in our metagenomes. We found that our most abundant and most common
OTUs were Roseiflexus (OTU05) and Chloroflexus (OTU03) genera (Fig. S3), which is
consistent with both our previous 16S rRNA gene analysis (10, 11), and 16S rRNA and
metatranscriptomic analyses in Mushroom and Octopus Springs (5, 7, 20, 48).

The present metagenomic sequencing data set provides higher resolution than our
previous 16S rRNA gene analysis (11). Our metagenomic sequencing approach resulted
in the recovery of taxa that have not been identified in YNP hot springs at present.
Three of our top 20 most abundant OTUs were assigned “Candidatus Roseilinea sp.
NK_OTU-006” by BLASTP. The only described species from this class is “Candidatus
Roseilinea sp. strain NK_OTU-006,” recovered from sulfidic hot springs in Japan near
568C (18). Our Ca. Roseilinea-like pufLM OTUs (OTU23, 24, and 33) were found in two
alkaline sites low in sulfide (RCA4 and GCA3), both with temperatures of 628C, pushing
the geographic range and upper temperature limit of this novel class. Furthermore,
eight of our pufLM OTUs were assigned “Chloroflexi bacterium” by BLASTP (Table in
Fig. S3B), suggesting novel Chloroflexi are present in these hot spring sites.

In Mushroom Spring, Klatt et al. (2013), observed Roseiflexus in 608C and Chloroflexus
transcripts in 658C sites, indicating temperature partitioning of the two phototrophic
Chloroflexi genera (8). Our data are consistent with the Mushroom Spring study but sug-
gest temperature partitioning of the two genera at higher temperatures: we recovered pu-
tative Roseiflexus OTUs in sites up to 688C and putative Chloroflexus OTUs in sites up to
698C. We also observed more Chloroflexus than Roseiflexus OTUs in 688C–718C sites (Fig.
S3C). Recovery of cyanobacterial psb genes and Chloroflexi puf genes from the same sites

FIG 4 Richness and distribution of pufLM gene variants. Rank abundance plots for each site are displayed in increasing temperature order. Plots display
abundances as normalized ln(1 1 reads mapped) for each pufLM OTU, and OTUs are ranked in order from most to least abundant. Bars are labeled with
the OTU number. Striped bars represent OTUs that are present in more than one site.
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is consistent with several historical studies postulating the presence of “green non-sulfur
bacteria” co-occurring with cyanobacteria in Mushroom and Octopus spring mats (49–53).
Recent works have examined the distribution of phototrophic Chloroflexi using single
marker genes (9–14), and our data support the hypothesis that both phototrophic taxa
persist at temperatures of .688C with two different optimal temperatures: Roseiflexus up
to 688C and Chloroflexus up to 698C. Future work is needed to determine if this hypothesis
holds true with Roseiflexus and Chloroflexus metagenome assembled genomes or hot
spring isolates.

Calvin cycle genes have distinct distributions with temperature while 3HPB
genes are widespread and abundant. Photoautotrophic bacteria fix the majority of
carbon in alkaline geothermal springs using the Calvin-Benson-Bassham (Calvin) cycle
(cyanobacteria, some Chloroflexi), the reductive tricarboxylic acid (rTCA) cycle (class
Chlorobia), or the 3-hydroxypropionate bicycle (3HPB, most photoautotrophic
Chloroflexi) (reviewed in reference 54). Recent work has shed light on the flexibility of
carbon fixation in Chloroflexi in high temperature, alkaline hot springs: Roseiflexus and
Chloroflexus in Mushroom and Octopus springs contain genes for the 3HPB, but a
handful of studies have recovered Calvin cycle genes in phototrophic “Candidatus
Thermofonsia” (55) and “Candidatus Chlorohelix allophototropha” (56), and nonphoto-
trophic class Anaerolineaea (57). The carboxylation step in the Calvin cycle is carried
out by the enzyme ribulose 1,5 bisphosphate carboxylase/oxygenase: RuBisCO
(encoded by rbcL [large subunit] and rbcS [small subunit] genes). In hot springs specifi-
cally, Synechococcus species have evolved a thermotolerant form of RuBisCO that can
function up to 748C (58). Phosphoribulokinase (encoded by the prk gene), a second
essential step of the Calvin cycle, does not appear to have an upper temperature limit
beyond that of phototrophy, but is likely only present in organisms that use the Calvin
cycle (59).

Given the wide distribution of the genes for the Calvin Cycle in nature (60), we sought
to constrain the distribution of rbcL, rbcS, and prk alkaline hot spring samples and relate
these data to our phototroph gene analysis. In contrast to the psb analyses, pairwise com-
parisons of the abundance of both prk and rbcL showed a statistically significant difference
in site RCA5 compared to all other sites, except for the highest temperature site (WCA1)
(Fig. 5A). Furthermore, we observed larger mean abundances of rbcS than rbcL, but more
copies of rbcL than rbcS, suggesting the taxa encoding Calvin cycle genes could encode
more copies of rbcL or multiple forms of RuBisCO are present in these high temperature,
alkaline hot springs. At present, four forms of RuBisCO exist in nature: form I RuBisCO (cya-
nobacteria, alpha-, beta-, gamma-proteobacteria, Chloroflexi, and autotrophic eukaryotes)
contains both the large and small subunits (encoded by rbcL and rbcS genes, respectively),
while forms II (alpha-, beta-, gamma- proteobacteria) and III (only in methanogenic arch-
aea) contain only the large subunit (59, 61, 62). To this end, we calculated the ratio of rbcL:
rbcS with temperature (Fig. S4). A ratio of 1:1 in rbcL:rbcS genes would be indicative of
form I RubisCO, while any larger ratio would suggest several form I RuBisCO taxa with extra
copies of rbcL or the presence of form II and form III taxa. In general, we found ratios of
.1:1 in all sites, with the largest differences in sites at ,638C. Because more rbcL copies
are present at lower temperatures, we infer that taxa encoding form II or III RuBisCO (rbcL
only, noncyanobacterial Calvin cycle) persist at lower temperatures while form I (cyanobac-
terial-Calvin cycle) are more prevalent at temperature .638C.

We recovered 77 rbcL OTUs (99% nucleotide similarity, reference database in supplemental
material) among our eight sites (Fig. S5). We observed fluctuating rbcL richness (Fig. S5) and
diversity (Fig. S2D) in both sites of .688C and 628C sites (Fig. S2D). The majority of our rbcL
OTUs were site-specific, consistent with adaptation to local conditions and/or geographic iso-
lation. Two exceptions were OTU01 (Armatimonadetes) and OTU02 (Synechococcus): OTU01
was present in both high temperature sites and in a 638C Rabbit Creek site (RCA4, 62.38C),
while OTU02 was present in our two highest temperature sites (WCA1, 718C; WCA2, 68.48C).
Given that rbcL is commonly associated with cyanobacteria and some Chloroflexi and psbA
and rbcL analyses suggest a combination of local conditions rather than temperature alone is
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FIG 5 Abundance and distribution of key genes in phototrophic carbon fixation pathways. The abundance (normalized ln(1 1 reads mapped)) of key
genes in the Calvin cycle (A) and the 3-hydroxypropionate bicycle (B) are shown as box plots for each site. Triangles represent the mean abundance for

(Continued on next page)
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selecting for taxa that encode these two genes, we postulate that these taxa are subject to ge-
ographic isolation in alkaline hot springs.

Genes involved in 3HPB, the carbon fixation pathway in most photoautotrophic
Chloroflexi, were widespread and abundant in our metagenomes (Fig. 5B). The 3HPB requires
two carboxylation steps (via acetyl-CoA carboxylase and propionyl-CoA carboxylase), followed
by steps that generate 3-hydroxypropionate and glyoxylate intermediates (54, 63). To this
end, we surveyed the abundance of three genes involved in three critical steps in the 3HPB:
malyl-CoA/citramyl-CoA lyase (mcl gene, glyoxylate generation), propionyl-CoA carboxylase
(pccA gene, CO2 carboxylation), and 3-hydroxypropionate dehydrogenase (mcr gene, 3-
hydroxypropionate generation). Only one gene (pccA) returned statistically significant differen-
ces in abundance across sites. pccA abundance was different in site RCA5 (62.58C) compared
to three high temperature sites (RCA3, BG1, WCA1) and one 628C site (RCA4). However, mcl
and mcr in the 3HPB pathway showed no significant difference in abundance across sites.
These results are likely because we recovered several low-abundance (,0.01 normalized reads
mapped) pccA reads in addition to the high abundance reads. This is not surprising given that
pccA is widely distributed in all domains of life and is not unique to the 3HPB (64). pccA con-
verts propionyl-CoA to acetyl-CoA, which can enter the Krebs cycle and generate succinate
and three equivalents of NADH, a key process that utilizes small carbon molecules for energy
generation for all organisms. Furthermore, several studies have shown that Synechococcus in
alkaline hot springs release simple carbon compounds as a by-product of photosynthesis (6,
8, 12). Therefore, presence of several high and low abundance pccA reads, particularly in high
temperature sites, is indicative of multiple organisms relying on the Krebs cycle to generate
energy from simple carbon compounds at high temperatures.

Class Chlorobia contain type I reaction centers and are the only phototrophic group
that fixes carbon via the rTCA cycle (4, 54). We recovered fewer reads associated with
type I reaction centers (psc genes, Fig. S6A) compared to both type II reaction center
and photosystem genes (Fig. 2). We recovered very few reads associated with either
ATP citrate-lyase subunits, an irreversible and critical enzyme in the rTCA cycle.
Together, these results suggest that phototrophic taxa with type I reaction centers are
likely photoheterotrophs or photoautotrophs that use alternative carbon fixation
pathways.

(Putative) phototrophic Chloroflexi encode nifH. Alkaline hot springs in YNP are
nitrogen limited, and several studies in Mushroom and Octopus Springs have shown
that phototrophic bacteria are the primary diazotrophs in these environments (1, 4, 8,
29, 33). We examined the richness and diversity of nifH genes with respect to tempera-
ture (Fig. 6, Fig. S2C). Like our psbA and pufLM analysis above, we assigned OTUs (at
99% similarity) to the nifH sequences. We recovered 26 nifH OTUs, several of which
were present in more than one site (Fig. 6). In general, we recovered more nifH OTUs in
628C sites (Fig. 6), but our most abundant OTU (assigned to Synechococcus sp. by
BLASTP) was present in site RCA3 (688C). Sample GCA3 contained only unique OTUs,
suggesting taxa with these nifH genes could be adapted to the distinct conditions in
this site. Similarly, OTU05 was only present in the two high sulfide sites (RCA5 and
BG1), and OTU04 was the most abundant in sites with the highest temperatures
(WCA2 and WCA1). Our data suggest the potential for nitrogen fixation is not evenly
distributed with temperature.

Loiacono et al. (2012) recovered nifH transcripts identified as Synechococcus and
Roseiflexus in samples ranging from 53–738C, suggesting the potential for nitrogenase
activity near the upper temperature limit of photosynthesis (33). To determine the taxa

FIG 5 Legend (Continued)
the gene set, and dots represent individual gene abundances, shaded by the genes. Boxes represent the inter quartile range (Q1–Q3), and whiskers
(lines) represent the maximum and minimum, with outliers removed (62.5 standard deviations from the mean). Sites are ordered by increasing
temperature. A gray line divides the sites into high temperature and low temperature groups. Sites are ordered by increasing temperature. To
determine significant differences in gene abundance in all sites, a Kruskal-Wallis H test followed by Dunn’s Multiple Comparison post hoc test for
significant differences between sites. Only Bonferroni-adjusted P values , 0.05 are shown for brevity (all site comparison adjusted P values are shown in
Table S3).
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associated with our nifH sequences, we translated nifH sequences and built a phyloge-
netic tree and conducted a BLASTP search. Eleven of 26 nifH OTUs were classified as ei-
ther cyanobacteria or Chloroflexi (Fig. S7A). Six nifH sequences were closely related to
Synechococcus, a common constituent of alkaline hot springs of .608C and a known
diazotroph (Table in Fig. S7B) (30). Three of the 20 most abundant OTUs in our data set
were closely related to Roseiflexus species (OTU02, 06, and 22), present in sites ranging
from 628C to 688C in the Rabbit Creek area. Roseiflexus genomes only encode nifHBDK,
and neither of the two isolate species (R. castenholzii or Roseiflexus sp. RS-1) can grow in
the absence of a fixed nitrogen source (21, 65). Therefore, it is unlikely that Roseiflexus fixes
nitrogen. However, Roseiflexus nifH genes are abundant in our data, and Roseiflexus nifH
mRNA has been detected in similar hot springs (8, 15, 17, 30), suggesting NifH serves a
functional purpose but that function remains unknown. In cyanobacteria, NifH expression
is stimulated by iron (66). Our samples ranged in Fe21 concentration from below detection
limits to 2.3mM but given that Roseiflexus genomes don’t encode a full nitrogenase, future
studies are required to determine the function of NifH in this genus and the conditions
that result in transcription. Roseiflexus nifH could also be important to determining the evo-
lutionary history of nitrogenase as Roseiflexus nif genes are deeply branching (67).

The second most abundant nifH OTU in our data set (OTU09) formed a separate
clade near, but not within, the cyanobacteria clade (Fig. S7A). BLASTP assigned OTU09
(and four additional, low abundance OTUs; Table in Fig. S6B) as Hydrogenobacter ther-
mophilus, in phylum Aquificae, a deep-branching chemolithoautotrophic group with
diazotrophic representatives found in high temperature (.708C) hot springs (68).
Previous analysis of nifH genes across all domains of life suggested Aquificae are the
oldest extant diazotrophic bacteria (26). Thus, our data contain several nifH-containing
lineages that are of great importance for solving the evolutionary history of nitrogen
fixation.

Conclusion. Phototrophic bacteria are widely distributed and abundant in alkaline
hot springs at .608C. By quantifying the distribution of genes involved in carbon fixa-
tion, nitrogen fixation, and phototrophy in eight alkaline hot spring metagenomes, we

FIG 6 Richness and distribution of nifH gene variants. Rank abundance plots for each site are displayed in increasing temperature order. Plots display
abundances as normalized ln(1 1 reads mapped) for each nifH OTU, and OTUs are ranked in order from most to least abundant. Bars are labeled with the
OTU number. Striped bars represent OTUs that are present in more than one site.
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add to the large body of work on the metabolic potential of both cyanobacteria and
anoxygenic phototrophs in situ. Additionally, we offer a glimpse into the diversity and
physiology of the underrepresented Chloroflexi phylum. While the abundance of pho-
tosynthetic genes did not vary with temperature, we observed higher richness in both
cyanobacterial psbA genes and pufLM genes affiliated with Chloroflexi in 628C sites.
Furthermore, we observed more cosmopolitan psbA OTUs in 628C sites and unique
OTUs in sites of . 688C. This suggests that cyanobacteria at higher temperatures
contain forms of psbA genes that could allow them to persist at higher tempera-
tures. Conversely, we observed several cosmopolitan pufLM OTUs in both high and
low temperature sites, specifically OTUs shared across the Rabbit Creek area, which
suggest Chloroflexi are adapted to local geothermal conditions rather than specific
temperatures.

Abundance of photosynthesis genes associated with both cyanobacteria and phototro-
phic Chloroflexi did not significantly differ with temperature. Carbon fixation gene abun-
dances were significantly different in site RCA5 compared to all others. However, in
general, we did not observe trends in abundance with temperature. Rather, ratios of rbcL
genes suggest temperature selects for specific types of RuBisCO: cyanobacterial-rbcL in
sites .638C and noncyanobacterial-rbcL in 628C sites. Furthermore, the majority of the
rbcL OTUs were unique to certain sites, suggesting geographic isolation or adaptation to
local conditions. Genes associated with autotrophic, anoxygenic phototrophs did not
have distinct distributions with temperature, but we recovered abundant reads associated
with the 3-hydroxypropionate bicycle (Chloroflexi, chemoautotrophs) and very few reads
associated with the complete reverse TCA cycle (Chlorobia). Together, abundance and di-
versity of carbon fixation genes suggest that organisms fixing CO2 via the rTCA cycle are
rare near the upper temperature limit of photosynthesis where photoautotrophic cyano-
bacteria and Chloroflexi are abundant.

Finally, we surveyed the distribution and abundance of genes associated with nitrogen
fixation (nifH). NifH genes were abundant across sites, regardless of site temperature, and
both Roseiflexus and Synechococcus-like nifH sequences were among the most abundant in
our data. Synechococcus are known to fix nitrogen in hot springs, but Roseiflexus do not
have the full suite of genes required to fix nitrogen; yet, nifH-containing Roseiflexus are
abundant in alkaline hot springs, and Chloroflexi are deep-branching taxa. Thus, nifH
sequences recovered here could be critical to solving the evolutionary puzzle of nitrogen
fixation in bacteria.

MATERIALS ANDMETHODS
Data collection, sample processing, and metadata statistics. Biomass from eight sites in YNP

(Table S1A) were collected and processed as previously described (11). Briefly, samples were collected in
2017 using sterilized forceps or pliers and stored on dry ice in transit. DNA (250 mg) was extracted using
the Qiagen Powersoil kit following the manufacturer’s protocol. Sulfide, Fe21, and dissolved silica were
measured onsite using a DR1900 portable spectrophotometer (Hach Company, Loveland, CO). Water
samples were filtered through 0.2-mm polyethersulfone syringe filters (VWR International, Radnor, PA,
USA) and analyzed for dissolved inorganic carbon (DIC) concentration, d 13C and d 15N as described previ-
ously (25). Field blanks composed of filtered 18.2 MX/cm deionized water, transported to the field in 1-L
Nalgene bottles, were processed on site using the equipment and techniques previously described (11).
To determine site dissimilarity, we generated a principal-component analysis using sample water geo-
chemistry, geographic location, and biofilm isotopic data (Table S1A) (11). We converted all raw data to
Z-scores (z = x – mean(x)/sd(x)), and principal components of transformed data were generated using
the rda function in vegan (69) and plotted using ggplot2.

Metagenome sequencing, assembly, and analysis of functional genes. Total DNA for eight sam-
ples was submitted to the University of Minnesota Genomics Center (St. Paul, MN, UMGC) for metagenomic
sequencing with an Illumina HiSeq 2500. The UMGC prepared dual indexed Nextera XT DNA libraries follow-
ing the manufacturer’s instructions for each sample. The samples were sequenced on two lanes, generating
.220M 1 � 125 bp reads. The mean quality scores were .Q30 for all libraries. Reads were trimmed using
Sickle (v. 1.33) with a PHRED SCOREof .20 and a minimum length threshold of 50 (70), assembled using
SPades (v. 3.11.0) (71) using the meta option and default parameters, and assessed for quality using the
BBTools script stats.sh (72).

Metagenome assemblies for eight sites (Table S1) were submitted to the Joint Genome Institute for
structural and functional annotation via the DOE-JGI Microbial Genome Annotation Pipeline (https://img
.jgi.doe.gov/). Briefly, open reading frames (ORFs) were predicted using Prodigal (73) and the resulting
amino acid sequences were assigned functional annotations. Select genes (see supplemental material)
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involved in three carbon fixation pathways (the Calvin Cycle, 3-Hydroxypriopionate Bicycle, and the
reverse Tricarboxylic Acid cycle), nitrogen fixation, and photosynthesis were queried in the annotated
assemblies. Genes of interest were retrieved using known functional KEGG Orthologies. Metagenome
reads were mapped to each JGI ORF using Bowtie2 (74). Reads that mapped to .90% of the query
length sequence at 100% sequence identity were considered mapped. The average number of reads in
the eight metagenomes was 830,473, with a standard deviation of 267,811 reads (Table S1B). In our
metagenome assemblies, the maximum number of reads was from site WCA1 (1,187,870 reads), while
the lowest number of reads was from site RCA5 (375,420 reads) (Table S1B). Site RCA4 contained the
highest number genes, 332,336, while site RCA5 had the lowest number of genes, 150,190 (Table S1B).

To determine abundance of select genes involved in photosynthesis, carbon fixation, and nitrogen
fixation, number of reads mapped to genes of interest was calculated using the pileup.sh script in
BBTools (72). In order to directly compare genes of interest, genes were normalized by gene length and
metagenome size using the following equation:

readsmapped to gene
genelength

� 1

R readsmapped to each gene
length of each gene

 !
� 106

If multiple ORFs were assigned to a functional annotation, the normalized read abundance for that
functional annotation was averaged. All analysis of functional genes, plotting, and statistical analysis
was conducted in R (v. 3.6.1) (75) using the following packages: tidyverse (76), ggplot2 (64), vegan (63),
and lawstat (77). To determine significant differences of normalized gene abundances across sites, a
Kruskal-Wallis H test followed by Dunn’s Multiple Comparison post hoc test for significant differences
between sites was conducted. P values were Bonferroni adjusted and are displayed in the supplemental
information.

Gene operational taxonomic unit (OTU) assignment and gene tree construction. To determine
the distribution of gene variants in our metagenomes, DNA reference sequences for psbA (see supplemental
material), rbcL (see supplemental material), nifH (78), and concatenated pufLM (44) were downloaded, aligned
using MUSCLE v. 3.8.31(default parameters), (79) and aligned with sample DNA sequences using align.seqs()
in mothur (v.1.37.6) (80). Operational taxonomic units (OTUs, defined at 99% sequence identity, 28) were
assigned using pre.cluster(), dist.seqs(), and cluster() in mothur. To generate protein sequences for phyloge-
netic tree construction, OTUs were translated using the transeq function in emboss (v. 6.5.7.0) (81), sequences
of less than 200 amino acids were removed, sequences were aligned with MUSCLE v. 3.8.31(default parame-
ters) (79), and alignments were trimmed using Gblocks (default parameters with the exception of -b5-h) (82).
Phylogenetic analysis with bootstrap support (n = 1000) of trimmed, aligned protein sequences was con-
ducted using RAxML (v. 8.2.11) using the PROTGAMMAJTTF substitution model, following the RAxML SOP
(83). The subsequent newick file was edited using FigTree (v. 1.4.4) (84) to generate trees. Because of low
bootstrap support due to closely related species in all three of our phylogenetic trees, we conducted a
BLASTP search (nonredundant protein sequences) (47) to determine closest relatives of our OTUs. For the
nifH OTUs, specifically, we aligned the metal binding subunit retrieved from Uniprot (85) to show functional-
ity using the program MUSCLE (73).

Data availability. Access to the metagenomes is provided by the DOE Joint Genome Institute (JGI)
at the Integrated Microbial Genome (IMG-M) site: https://img.jgi.doe.gov/cgi-bin/m/main.cgi. JGI
Genome IDs are provided in Table S1. Quality-controlled, unassembled, metagenomic data are available
in the NCBI Sequence Read Archive under the project ID PRJNA513338.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 1.8 MB.
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