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Catalytic transformation of low-cost glycerol to value-added lactic acid (LA) is

considered as one of the most promising technologies for the upgradation of

glycerol into renewable products. Currently, research studies reveal that

anaerobic transformation of glycerol to LA could also obtain green H2 with

the same yield of LA. However, the combined value-added utilization of

released H2 with high selectivity of LA during glycerol conversion under mild

conditions still remains a grand challenge. In this perspective, for the first time,

we conducted a comprehensive and critical discussion on current strategies for

combined one-pot/tandem dehydrogenation of glycerol to LA with catalytic

transfer hydrogenation of H2 acceptors (such as CO2) to other chemicals. The

aim of this overviewwas to provide a general guidance on the atomic economic

reaction pathway for upgrading low-cost glycerol and CO2 to LA as well as

other chemicals.
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Introduction

Background

Rapid consumption of fossil-based energy andmaterials has released major pollutants

such as carbon dioxide, nitrogen oxides, and sulfur oxides, leading to significant

environmental issues such as air pollution and global warming in our society. To

address this challenge, renewable fuels and chemicals from catalytic conversion of

biomass-derived feedstocks have gained increasing attention in the past decades.

Among various renewable energies, biodiesel is considered as a good candidate for
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petroleum diesel due to its biodegradability, higher cetane

number and engine lubricity, clean and environmental

friendly nature. Biodiesel composed of mono-alkyl esters of

long-chain fatty acids is derived from vegetable oils, animal

fat, microalgae, and even waste cooking oils by the

triglyceride-methanol or ethanolysis transesterification

reaction (Abidin et al., 2012; Aboelazayem et al., 2018;

Aboelazayem et al., 2019). In general, the production of

biodiesel also yields a large amount of glycerol, about 10 wt%

of the total biodiesel production. Rapid growth in the biodiesel

industry due to its cleanness, high efficiency, and sustainability

has resulted in excessive glycerol (about 4,000,000 tons per year,

Figure 1), leading to a sharp drop in glycerol price (Ayoub and

Abdullah, 2012; Nguyen et al., 2018). Furthermore, the current

cost of biodiesel is still not competitive with diesel fuel. Therefore,

economical optimization of biodiesel industry also motivated us

to upgrade glycerol to valuable chemicals. In general, as a

chemical building block, the glycerol can be converted to a

series of value-added chemicals, such as lactic acid (LA),

propanediol (PDO), ethylene glycol (EG), glyceric acid,

dihydroxyacetone, glycolic acid, and tartronic acid. (Zhang

et al., 2019; Meng et al., 2020; Liu et al., 2021; Sun et al.,

2021; Yan et al., 2021; Zhang et al., 2021; Md Rahim et al.,

2022). These products are widely used in food, medicine, organic

synthesis, chemical industry, and other fields.

Lactic acid, a α-hydroxyl carboxylic acid, is considered as an

important bio-based platform chemical with great application

prospects (nWim Groot et al., 2010). It has been widely used in

many fields, such as food, cosmetic, leather, pharmaceutical, and

textile industries. It is important to highlight that LA can be

applied as a monomer to synthesize biodegradable poly-(LA).

Due to its biocompatibility and biodegradability, poly-(LA) is

considered as a potential candidate for conventional petroleum-

based polymers, such as polyethylene terephthalate, polystyrene,

and polypropylene (Jamshidian et al., 2010; Djukić-Vuković

et al., 2019; Luo et al., 2020). Non-degradable plastic has

become a significant environmental issue on cultivated land

and marine organism. To address this challenge, poly-(LA), a

sustainable biodegradable polymer, has gained increasing

attention in recent years (Figure 2). The annual production of

poly-(LA) is estimated to be 830,000 tons in 2020 (Dreschke

et al., 2015), which means a high demand for lactic acid

monomers in the future. The demand for LA exceeds the

supply, which drives us to increase the production efficiency

of LA.

Production of LA

Up to date, conventional bio-fermentation of readily

available sugars with microorganisms is still the major LA

source, which displays advantages of utilization of renewable

substrates, low processing temperature, low energy consumption,

and production of optically pure D- or L-LA in the appropriate

bacteria (Budhavaram and Fan, 2009; Nguyen et al., 2012; Abdel-

Rahman et al., 2013; Tang et al., 2016; Djukić-Vuković et al.,

2019). However, several bottlenecks limited its development to

satisfy the fast-growing LA market (Figure 3) (Wang et al., 2015;

Zhang et al., 2019). One limiting factor is the high cost because

hydrolyzing renewable materials to remove their lignin is difficult

in pretreatment processes. In addition, the difficult purification

of complex fermentation productions also hampers downstream

FIGURE 1
Global biodiesel production change in 2016–2022 years (millions liters).
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processes. Another bottleneck is very low efficiency and

productivity of the fermentation method due to a long

fermentation time, low concentration of substrates, and

complex separation and purification. Therefore, the

fermentation method may not meet the increasing market

demand of LA in the future. In addition, another important

method is the chemical synthesis of LA using acetaldehyde and

HCN, showing a high productivity and efficiency. However, it is

of less interest currently because of safety and environmental

concerns (Shen et al., 2019). Hence, it is urgent to develop new

FIGURE 2
Diagram of nature circulation of poly-(LA).

FIGURE 3
Comparison of various LA production processes (Zhang et al., 2019).
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technical routes for environmental friendly, cost-effective, and

large-scale production of LA from abundant biomass with less

energy and capital intensity.

In the past few decades, both experimental and theoretical

studies have demonstrated that biomass and derived

carbohydrates, including cellulose, glucose, fructose, hexose,

and glycerol can be transformed into high-valued LA and

other chemicals (Dusselier et al., 2013; Maki-Arvela et al.,

2014; Razali and Abdullah, 2017; Lari et al., 2018; Li et al.,

2018; Nda-Umar et al., 2018; Zavrazhnov et al., 2018; Kim and

Moon, 2019; Li et al., 2019; Maki-Arvela et al., 2020). Among

these biomass feedstocks, glycerol, as a byproduct of biodiesel

production, has attracted most attention in the catalytic

transformation of biomass to LA. Catalytic conversion of

glycerol to LA is a promising candidate route to replace the

bio-fermentation technique due to the advantages of its green

nature, high efficiency, and productivity as well as cost-

effectiveness, which can both upgrade the cheap glycerol and

meet the growing demand for the LA market. Many reaction

systems including aerobic and anaerobic have been developed in

the past decades for the conversion of glycerol to LA. Both

experimental and theoretical studies have confirmed that three

main steps are involved in the catalytic conversion of glycerol

into LA (Scheme 1), including 1) the C–H and O–H bond

cleavage to glyceraldehyde or dihydroxyacetone and H2O or

H2, 2) the C–O bond cleavage to pyruvaldehyde, and 3)

intramolecular Cannizzaro rearrangement of pyruvaldehyde to

LA (Jin et al., 2013; Zhang et al., 2019). It is generally known that

the activation of C–H bond is regarded as the key reaction step in

these cascade reactions (Li et al., 2019; Zhang et al., 2019). To

improve the activity of C–H bond cleavage, many reaction

systems, including aerobic and anaerobic, and a series of

homogenous and heterogeneous catalysts have been developed

in the past decades (Razali and Abdullah, 2017; Zavrazhnov et al.,

2018; Li et al., 2019).

Recent reviews have detailed and summarized various

catalyst types, compositions, performances, stability, and

reaction parameters including the base promoter and gas

atmosphere, as well as their reaction networks. For example,

Razali and Abdullah (2017) provided an extensive overview on

the production of LA from glycerol by elucidating the roles of

metal particle sizes and distribution, base promoters, metal and

support as well as reaction atmosphere. In the last year, Wang

et al. summarized alkali-promoted and alkali-free catalytic

systems in detail, and discussed the effect of H2 (released

from dehydrogenation of glycerol) on product distribution (Li

et al., 2019). However, there is lack of systematic summary on the

atomic economic design of the reaction system with regard to H2

released from dehydrogenation of glycerol. To our best

knowledge, anaerobic transformation of glycerol to LA could

also obtain H2 with the same yield of LA at the same time, while

the released hydrogen finally generated worthless H2O under O2

pressure, which is an atomic uneconomic reaction pathway. The

released hydrogen in the hydrogenation reaction could

participate in converting glycerol to value-added propanediol

and ethylene glycol, because the metallic catalysts are active for

both dehydrogenation and hydrogenation, which is not desirable

due to the original intention of producing LA. Several research

studies have demonstrated that adding hydrogen acceptor to the

reaction system is feasible for preventing the hydrogenation

reaction of intermediate such as pyruvaldehyde with in situ

generated H2. Recent years have witnessed the development of

combined dehydrogenation and catalytic transfer hydrogenation

between glycerol and H2 acceptors. Therefore, in this review, we

SCHEME 1
Reaction pathways for the conversion of glycerol to LA.
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will focus on combined dehydrogenation of glycerol with

catalytic transfer hydrogenation of H2 acceptors to value-

added chemicals.

Catalytic conversion of glycerol to LA

Aerobic reaction and mechanism

Selective oxidation of glycerol has been demonstrated to be

thermodynamically more favorable for C–H bond activation

under mild reaction conditions (e.g., lower operating

temperature and alkali concentration), which greatly reduces

energy consumption (Shen et al., 2010; Lakshmanan et al., 2013;

Tao et al., 2017; Evans et al., 2020; Tao et al., 2020; Torres et al.,

2021). Furthermore, low reaction temperature can also

significantly inhibit C–C bond cleavage by alkalis, thus good

selectivity of C3 products. Selective oxidation of glycerol to LA is

generally carried out with the promotion of various noble metal

and some non-noble metal catalysts (e.g., Au, Pt, Pd, and

polyoxometalate ) (Shen et al., 2010; Lakshmanan et al., 2013;

Xu et al., 2013; Cho et al., 2014; Purushothaman et al., 2014;

Zhang et al., 2016a; Zhang et al., 2016b; Arcanjo et al., 2017; Tao

et al., 2017; Zhang et al., 2017; Douthwaite et al., 2020; Evans

et al., 2020; Tao et al., 2020; Torres et al., 2021; Wang et al., 2021).

In the first important advances, Shen et al. (2010) reported that

the bimetallic Au–Pt catalysts exhibit excellent performances

with a high yield of 86% in the presence of alkali and O2 at 90°C.

Much lower reaction temperature significantly limits the C–C

bond cleavage, leading to favorable lower selectivity of C2 and C1

products. However, some of the glyceric acid as the main

byproduct was formed due to the over-oxidation reaction.

Mechanism studies reveal that oxidative dehydrogenation of

glycerol to intermediates, including dihydroxyacetone and

glyceraldehyde, is the key step during selective oxidation of

glycerol to LA (Li et al., 2019; Zhang et al., 2019). Strong

interaction and synergism effect in Au and Pt play a great

role in promoting oxidative dehydrogenation of glycerol to

dihydroxyacetone and glyceraldehyde. After that, the resulting

intermediates undergo dehydration and subsequently benzylic

acid rearrangement (some research studies proposed an internal

Cannizzaro reaction) (Yin et al., 2016; Yin et al., 2017; Li et al.,

SCHEME 2
Mechanisms under alkaline conditions: (A) transformation of glycerol; (B) transformation of pyruvaldehyde.
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2019) to LA in the presence of NaOH. As the main by-product,

glyceric acid could be generated by further oxidation of

glyceraldehyde over bimetallic Au–Pt catalyst under high O2

pressure. In addition, the deep-oxidation products, including

tatronic acid, glycolic acid, oxalic acid, and formic acid (FA),

could also be inevitably formed in the presence of metal catalysts

and O2, which reduce the selectivity of LA (Wang et al., 2013;

Douthwaite et al., 2020; Yan et al., 2020).

Despite fast progress in this research field, the mechanism for

the formation of LA is still a subject of contention, especially the

competitive pathway in dehydration of glyceraldehyde and C–C

bond cleavage as well as the nature of rearrangement reaction.

Recently, Evans et al. (2020) thoroughly studied the formation

mechanism of LA from glycerol by conducting a series of isotopic

labeling experiments with 1.3–13C glycerol using a model AuPt/

TiO2 catalyst. The reaction conditions, including reaction

FIGURE 4
Dehydrogenation and catalytic transfer hydrogenation of glycerol and H2 acceptor.

SCHEME 3
Catalytic reaction routes from glycerol to lactic acid with various H2 acceptors: (A) cyclohexene, (B) high pressure ethylene, and (C)
acetophenone.
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temperature, pH, and O2 pressure, are highly influential on

both the conversion rate of glycerol and product distribution

(Scheme 2A). They found that catalyst, high reaction

temperature, and high O2 pressure are favorable for

oxidative dehydrogenation of glycerol to mixture

intermediate products of dihydroxyacetone and

glyceraldehyde, while pH is independent for this rate-

determining step. Then, the resulting dihydroxyacetone and

glyceraldehyde could undergo dehydration to 2-

hydroxypropenal and isomer of pyruvaldehyde. Meanwhile,

an additional competitive reaction pathway of sequential

oxidation of glyceraldehyde and C–C bond cleavage occurs

under O2 pressure. Notably, selectivity of LA can be

significantly enhanced with the increase of the base content

in the reaction system, indicating that the dehydration of

glyceraldehyde to pyruvaldehyde is favored over its

sequential oxidation and C–C bond cleavage reaction

(Purushothaman et al., 2014). Hence, high yield of LA over

glyceric acid was achieved during selective oxidation of

glycerol to LA. Furthermore, isotopic labeling experiments

SCHEME 4
Proposed pathway of the hydrogen-transfer reduction of NaHCO3 with glycerol (Shen et al., 2012).

SCHEME 5
Dehydrogenation and catalytic transfer hydrogenation of glycerol and CO2/HCO3

−.
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with 1.3–13C glycerol are conducted to elucidate the formation

mechanism of LA from the intermediate of pyruvaldehyde

(Scheme 2B). They found that 13C signals could be detected in

both the carboxylic acid and methyl groups in LA with similar

quantities, suggesting that the formation of LA from

pyruvaldehyde undergo a base-catalyzed 1,2-hydride shift

(intramolecular Cannizzaro reaction) rather than 2,1-

methide shift (benzylic acid rearrangement).

Anaerobic reaction and mechanism

Different from selective oxidation strategy, anaerobic

transformation of glycerol to LA can avoid the over-

oxidation reaction, and release H2 (in almost the same mole

yield as LA) rather than a worthless H2O molecule. Thus, it

could provide a higher LA yield and atomic economy, which is

consistent with (Razali and Abdullah, 2017) the evolution of

the modern chemical industry. It is known that H2 is an

important chemical raw material, widely used in the

ammonia synthesis, petrochemical, Fishcher–Tropsch

process, and clean energy industry. Hence, several strategies

have been developed to value-added utilization of hydrogen

produced from C–H and O–H bond cleavage of glycerol

(Cortright et al., 2002; Davda et al., 2005; Wen et al., 2008).

Currently, various homogeneous or solid metal catalysts have

been developed to catalyze glycerol dehydrogenation to LA,

and release H2 at the same time (Tang et al., 2019a; Zhang

et al., 2019; Ainembabazi et al., 2020; Bharath et al., 2020; Feng

et al., 2020; Heltzel et al., 2020; Valekar et al., 2021; Zhang

et al., 2021). For example, in alkali-catalyzed hydrothermal

conversion systems, the C–H and O–H groups of glycerol can

undergo a nucleophilic attack by OH− to form intermediates of

glyceraldehyde or dihydroxyacetone. The intermediates

subsequently undergo C–O bond cleavage and

rearrangement affording lactate (Hisanori et al., 2005; Shen

et al., 2009; Xu et al., 20112011). Alkali-catalyzed conversion

of glycerol to LA can be carried out in several hours,

addressing the low efficiency and low productivity of bio-

fermentation method. A typical example, Hisanori et al. (2005)

reported that hydrothermal transformation of glycerol

catalyzed by NaOH showed a LA yield of 90% in 1.5 h at

300°C. However, harsh reaction conditions, such as high

reaction temperature (e.g., 300°C) and high concentration

of alkali (e.g., 4 mol/L), are generally needed, because the

C–H bond activation is an energy-demanding process. In

addition, under the harsh reaction conditions, C–C bond

cleavage is favorable, leading to the formation of side

products reducing selectivity of LA.

Currently, a series of homogeneous or solid metal catalysts,

including Ir- (Sharninghausen et al., 2014; Lu et al., 2016; Finn

et al., 2018), Pt- (Jin et al., 2013; Ftouni et al., 2015; Oberhauser

et al., 2016; Tang et al., 2019b; Zhang et al., 2019), Pd- (Marques

et al., 2015; Shen et al., 2019), Ru (Deng et al., 2021), Au- (Shen

et al., 2017a; Palacio et al., 2019), Cu- (Roy et al., 2011; Moreira

et al., 2016; Yang et al., 2016; Yin et al., 2016; Shen et al., 2017b; Li

et al., 2017; Yin et al., 2017; Palacio et al., 2018a), Ni- (Qiu et al.,

2018; Yin et al., 2018; Abdullah et al., 2020; Tang et al., 2020; Xiu

et al., 2020), and Co-based (Palacio et al., 2018b) systems, have

been developed to promote the rate-determining step under

relatively mild reaction conditions (lower reaction temperature

and alkali concentration). For example, our previous report

(Zhang et al., 2019) indicates that Pt–Co bimetallic catalysts

significantly enhance the rate of C–H and O–H bond cleavage,

showing a good dehydrogenation activation for glycerol

transformation at 200°C (glycerol conversion: 85%, LA

selectivity: 88%). Same as aerobic transformation of glycerol,

the alkalis or other solid acid/base sites exhibit a strong

promotion effect for sequential dehydration and

intramolecular Cannizzaro reaction. However, at such high

reaction temperature, the base could catalyze retro-

aldolization reaction of glyceraldehyde, leading to C–C bond

cleavage, which reduces the final yield of LA. Based on the

detailed studies of reaction pathways in previous works (Jin

et al., 2013; Yfanti and Lemonidou, 2018), it is clear that the

released hydrogen in the hydrogenation reaction forms value-

added propanediol and ethylene glycol, because the metallic

catalysts are active for both dehydrogenation and

hydrogenation, thus showing good atomic efficiency. However,

in previous works, the formation of by-products, including

propanediol, ethylene glycol, and deep reduction products

such as various alkanes, significantly reduces the LA

selectivity, which is not desirable due to the original intention

of producing LA.

TABLE 1 Calculated free energies of reaction (ΔGo
aq) for the CO2 direct

hydrogenation and catalytic transfer hydrogenation (Gaussian16,
G3B3, PCM water) (Heltzel et al., 2018).

Entry ΔGo
aq

(kcal/mol)

13.4

12.3

−9.2

4.4

−83.9
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One-pot dehydrogenation and
catalytic transfer hydrogenation
between glycerol and H2 acceptor

To improve the LA yield, the hydrogen produced by C–H

and O–H cleavage need to be consumed in time. Several research

studies have demonstrated that adding hydrogen acceptor to the

reaction system is feasible for preventing the hydrogenation

reaction between intermediate such as pyruvaldehyde with

released H2 from glycerol dehydrogenation (Figure 4)

(Sharninghausen et al., 2015; Oberhauser et al., 2016; Tang

et al., 2019b; Ainembabazi et al., 2020; Heltzel et al., 2020;

Tang et al., 2020; Deng et al., 2021; Valekar et al., 2021). We

will give a detailed overview about one-pot dehydrogenation and

catalytic transfer hydrogenation between glycerol and H2

acceptors.

Unsaturated hydrocarbon and carbonyl
chemicals as H2 acceptors

In the first important advances, Tang et al. (2019b) reported

that adding an organic phase of cyclohexene to glycerol aqueous

solution can consume the released H2 from glycerol

dehydrogenation, preventing undesired hydrogenation reaction

(Scheme 3A). They synthesized a series of highly dispersed Pt-

based catalysts (atomically dispersed Pt species, sub-nanometer Pt

clusters, and extra-fine Pt nanoparticles) supported by nanosized

ZrO2 via optimization of the loading of Pt and calcination as well as

reduction temperature. The high dispersed 2Pt/ZrO2-550-

R250 catalysts with a narrow size distribution centered at 1.4 nm

and a relatively large loading (2 wt%) of Pt nanoparticles showed an

unsurpassed 95% yield of LA at 96% conversion of glycerol at 160°C

in 4.5 h under 20 bar N2 pressure. This is the highest LA selectivity

(~99%) in the previous works. The novel catalytic system also leads

to a selectivity of 36% in catalytic transfer hydrogenation from

glycerol to cyclohexene. Apart from cyclohexene, 1-decene was also

used as anH2 acceptor achieving similarly remarkable LA selectivity

of 99% at glycerol conversion of 97%, while giving a significantly

higher selectivity in catalytic transfer hydrogenation (92%).

However, a partial deactivation of the Pt-based catalyst occurs

following the aggregation of high dispersed Pt nanoparticles into

larger ones (ca. 5 nm).

In order to find a significantly cheaper alternative to precious

Pt-based catalysts, they investigated a series of Ni-based bimetallic

catalysts for conversion of glycerol to LA, which have both good

dehydrogenation and hydrogenation capacities (Tang et al., 2020).

The bimetallic NiCo catalyst supported on CeO2 gave a much

higher catalytic activity than the monometallic Ni/CeO2 or Co/

CeO2 catalysts, during the conversion of glycerol to LA with

concomitant transfer hydrogenation of various H2 acceptors

(including cyclohexene, 1-decene, levulinic acid, nitrobenzene,

and benzene). Combining characterization and reaction data

proved that the Ni species are major active sites, but the

incorporation of Co could promote dispersion and stability of

Ni species on CeO2, thus leading to a remarkable LA yield of 93%

at glycerol conversion of 97% at 160°C and 6.5 h under 20 bar N2

pressure. Furthermore, compared with other cheap metal catalysts,

the bimetallic NiCo/CeO2 catalyst showed a remarkable catalytic

performance in dehydrogenation of glycerol to LA under relatively

milder reaction conditions. In addition, the recycle study revealed

that the NiCo/CeO2 catalyst showed a good reusability, no loss of

the original activity after three runs.

To enhance the formation of LA, supplying ethylene gas rather

than liquid phase H2 acceptor to the one-pot dehydrogenation and

catalytic transfer hydrogenation systems has also been demonstrated

to be feasible during conversion of glycerol (Scheme 3B). Recently,

Oberhauser et al. (2016) synthesized a series of Pt-based nanoparticle

catalysts supported on Ketjenblack (CK) with a high surface area

(~1,400 m2/g), via the metal vapor synthesis method, used in

FIGURE 5
(A) Conversion of glycerol to LA under N2 flow. (B) Carbon cycles with biochemical as reductants via M0/MOx redox cycles (Jin et al., 2011).
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conversion of glycerol to LA. The Pt@CK with small-sized Pt

nanoparticles (mean size of 1.5 nm) showed a high LA selectivity

of 95% at a glycerol conversion of near 100% at 140°C and 6 h under

875 psi ethylene pressure. Adding ethylene gas to the reaction system

not only consumes the released H2 from glycerol dehydrogenation,

preventing the undesired hydrogenation reaction, but also improves

the conversion of glycerol. In the absence of ethylene, the Pt@CK

catalyst showed poor catalytic performances with a low glycerol

conversion (44%) and LA selectivity (64%), but high 1,2-PDO

selectivity (36%) at 140°C and 3 h. However, with ethylene gas as

an H2 acceptor (875 psi), the Pt@CK catalyst showed a significantly

enhanced LA selectivity (95%) and 1,2-PDO was not observed at an

increased glycerol conversion of 59%. Combining characterization

and reaction data proved that the ethylene gas can stabilize together

with high dispersed Pt nanoparticles (~1.5 nm) through reversible

metal atom coordination, inhibiting sintering of Pt nanoparticles. In

addition, the recycle study revealed that the Pt@CK catalyst showed a

good reusability, no loss of the original activity after three runs.

As mentioned earlier, various H2 acceptors, especially ethylene

and cyclohexene, significantly enhance the formation of LA during

one-pot tandem dehydrogenation and catalytic transfer

hydrogenation of glycerol, which is greatly consistent with our

original intention for producing LA from dehydrogenation of

glycerol. However, the ethylene and cyclohexene were

transformed into the cheaper alkane, which is undesirable. To

obtain the more valuable hydrogenation products, several other

unsaturated compounds have been selected as H2 acceptors

replacing undesirable olefin (Scheme 3C). In the first important

advances, Sharninghausen et al. (2015) synthesized a series of iron

complexes of PNP pincer ligands for homogeneous conversion of

glycerol at 140 °C and 6 h, leading to LA selectivity of 88% at glycerol

conversion of 39%. Meanwhile, several studies have demonstrated

that the Fe-PNP complex catalysts showed good activity for the

hydrogenation of alcohols, esters, and N-heterocycles (Chakraborty

et al., 2014a; Chakraborty et al., 2014b; Qu et al., 2014). Given the

hydrogenation capacity of the Fe-PNP complexes for several

unsaturated compounds, they studied combined dehydrogenation

and catalytic transfer hydrogenation between glycerol and

acetophenone. Surprisingly, the acetophenone was hydrogenated

to 1-phenylethanol with a high yield of 95% at 120°C for 22 h.

Notably, the hydrogenation product of 1-phenylethanol is an

upgraded chemical than acetophenone, which is favorable in the

economic area. However, the reaction performances of glycerol in

this system are not analyzed in more detail.

CO2 and its derivatives as H2 acceptors

One-pot dehydrogenation and catalytic transfer

hydrogenation of glycerol and CO2/carbonate/bicarbonate to

afford LA and formic acid (FA) is another attractive path to

upgrading both low-value feedstocks, given the abundance of

glycerol and CO2 as renewable materials (Kovács et al., 2006;

Shen et al., 2012; Shen et al., 2014; Su et al., 2014;Wang et al., 2016;

Heltzel et al., 2018). In the first important advances, Jin et al. (Shen

et al., 2012; Shen et al., 2014; Wang et al., 2016) reported a non-

catalyzed transfer hydrogenation of CO2/NaHCO3 with glycerol

under alkaline hydrothermal conditions to co-production of LA

and FA. In this process, the glycerol was used as a reducing agent

and converted to LA with a high yield of about 90%, while the

NaHCO3 was converted to FA with a same excellent yield such as

LA at 300°C in 1.5 h. The effects of various parameters, for

example, CO2, D2O solvent effect, reactor materials effect, and

H2O molecule catalysis were investigated in detail to disclose the

possible reaction mechanism. Based on the experimental data and

theoretical analysis, they proposed a plausible reaction pathway as

shown in Scheme 4. They claimed that the glycerol is first

converted to hydroxyacetone via a dehydration and keto-enol

tautomerization reaction. Subsequently, the resulting

hydroxyacetone, H2O and CO2 could form an eight-membered

cyclic transition state via two hydrogen bonds. Following, an

intramolecular hydride shift occurs in the cyclic transition state

to form pyruvaldehyde and FA, accompanied by the release of a

water molecule. Finally, the resulting pyruvaldehyde undergoes a

benzylic acid rearrangement to form the LA. In the proposed

pathway, the water molecules are connected with the substrate

molecules via the hydrogen bond for the formation of the eight-

membered ring network, which is the key step of the reaction for

co-production of LA and FA from glycerol and CO2. In their

works, one-pot hydrogen transfer of glycerol to CO2 for affording

LA and FA has been demonstrated to be feasible. However, it is

necessary to further optimize the reaction system to avoid the

harsh reaction conditions (300°C).

Recently, Heltzel et al. (2018) compared the ΔGo
aq of catalytic

transfer hydrogenation and direct hydrogenation of CO2 in an

aqueous solution (Table 1). When LA is the ultimate product

from glycerol dehydrogenation, CO2 catalytic transfer

hydrogenation shows a lower ΔGo
aq of–9.21 kcal/mol, which is

more favorable than direct hydrogenation from H2 (ΔGo
aq:

13.4 kcal/mol). In addition, they found that Ru

N-heterocyclic carbine (NHC) complexes with sulfonate-

functionalized wingtips are highly active for acceptor-less

dehydrogenation of glycerol to LA (Heltzel et al., 2018).

Hence, they tried to combine the dehydrogenation of glycerol

and catalytic transfer hydrogenation of CO2 and bicarbonate to

co-produce value-added LA and FA. Experimental data showed

that this one-pot tandem hydrogen transfer reaction is a

temperature-, base concentration-, and CO2 pressure-sensitive

system. Equimolar amounts of LA and FA are formed

SCHEME 6
Possible mechanism for hydrogen generation with Fe0 (Jin
et al., 2011).
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(~600 TON) at 150°C, while an increasing amount of LA than FA is

formed at reaction temperature over 150°C. In addition, in the

absence of KOH, no LA and FA are formed from a reaction at

150 °C. However, equivalent LA and FA (~50 mM) are produced

with a 330 TON at also 150°C, while the base concentration

increased to 1 and 2M. Notably, the reaction still affords

~50 mM LA but greatly decreased FA, while the base

concentration decreased to 0.25M. Therefore, higher LA yield

can be achieved with higher reaction temperature and lower base

concentration. At 180°C, the Ru/NHC complexes show 1,685 and

1,065 TON of LA and FA in 24 h, respectively. The carbonate salts

show a greatly enhanced TON for LA and FA of 42,610 and 3,588,

respectively, because of good solubility than CO2 in the reaction

system. Furthermore, they proposed a plausible reaction pathway.

First, glycerol is adsorbed on Ru species, followed by deprotonation

promoted by the base. Then, β-hydride elimination at the secondary

position of glycerol occurs, forming Ru–H species and

dihydroxyacetone (DHA). The intermediate of DHA is

transformed to LA via tandem isomerization, dehydration, and

the intramolecular rearrangement Cannizzaro reaction. The HCO3
−

next binds to the Ru–H species and undergoes a hydroxide

elimination (Kovács et al., 2006). The resulting H–Ru–CO2

transition state undergoes the insertion reaction to generate Ru-

formate species, which further dissociates to formate.

Su et al. (2014) reported solid Pd/AC (AC: activated carbon)

catalyzed one-pot tandem dehydrogenation and catalytic transfer

hydrogenation of glycerol and carbonate/bicarbonate to value-added

carboxylic acids (Scheme 5). High yield of LA (55%) and FA (29%)

were achieved in 12 h at 240°C under 400 psi N2 pressure. A general

controversy about the one-pot hydrogen transfer reaction is the

pathway for the formation of FA. They carried out a series of control

reactions in the absence of glycerol or HCO3
−. No FA was observed

in reaction products, indicating that FA is formed by the

hydrogenation of HCO3
− instead of the degradation of glycerol.

Notably, in their work, both CO3
2- and HCO3

− were much easier to

be hydrogenated than CO2 gas, which is different from

electrochemical reduction of CO2. The highest FA yield reached

42%, while using CO3
2- as an H2 acceptor. However, only few FA

(yield of 1.2%) and 22 turnovers were actually obtained in 12 h at

240°C, while directly using CO2 as anH2 acceptor. They also studied

the possible hydrogen transfer routes in detail. Combined XRD and

XPS analysis with experimental data, they proposed the plausible

direct hydrogen transfer mechanism for the one-pot tandem

dehydrogenation and catalytic transfer hydrogenation between

glycerol and CO2 to LA as well as FA. The aforementioned

tandem reaction would be strongly limited by the active sites of

the Pd nanoparticles, because the co-adsorption of glycerol and

HCO3
− could be rate limiting. Their work proved that the one-pot

catalytic transfer hydrogenation is feasible combined with the

dehydrogenation of glycerol and hydrogenation of carbonate/

bicarbonate. High yield of LA (~85%) and FA (~40%) as a

value-added hydrogenation product was finally obtained under

certain reaction conditions.

Tandem dehydrogenation and
catalytic transfer hydrogenation
reaction of glycerol

One-pot dehydrogenation and catalytic transfer

hydrogenation of glycerol with H2 acceptor is a greatly complex

parallel reaction, needing a good balance in dehydrogenation and

hydrogenation reaction in a synchronized time. Thus, it is difficult

to obtain a high yield of LA and FA at the same time (Heltzel et al.,

2018). Two-pot reaction, separating dehydrogenation and

hydrogenation processes, maybe a good strategy for efficient

recovery of valuable hydrogen while achieving a high yield of

LA. Recently, Siddiki et al. (2017) reported that the LA yield would

be significantly enhanced via rapid removal of the releasedH2 from

dehydrogenation of glycerol (Figure 5A). They compared the

conversion of glycerol with O2 flow and static O2 pressure as

well as N2 flow and static N2 pressure under the same reaction

conditions (0.03 mol% Pt/AC for glycerol, 1.1 equiv. KOH, 160°C,

18 h). Under O2 or N2 flow conditions, the Pt/AC catalyzed

reaction gave a significantly enhanced yield of LA (75% and

93%, respectively), but greatly reduced the hydrogenation yield

(6% and less than 2%, respectively). However, under static O2 or

N2 pressure in a closed reactor, the LA yield was only 56% and

59%, respectively, while the yield of hydrogenation products

including 1,2-PDO, EG, and other alcohols reached up to 20%.

These results indicate that the rapid removal of the released H2

from dehydrogenation of glycerol could obviously suppress the

undesirable hydrogenation reaction for conversion of glycerol to

LA. Compared with oxidation of H2 by O2, it is clear that purging

theH2 by flowingN2 before it goes into the hydrogenation reaction

is more effective for producing LA. Furthermore, the released H2

can be collected and used in many fields, including the ammonia

synthesis, petrochemical, Fishcher–Tropsch process, and clean

energy industry. Even more, we can design the two-pot

catalytic transfer hydrogenation system by connecting partial

dehydrogenation of glycerol and hydrodeoxygenation reaction

with various biomass-derived substrates.

In a typical case, glycerol can be converted into value-added

chemicals via aqueous-phase hydrodeoxygenation (APH)

reaction (Jin et al., 2019). Hence, we can design a two-pot

tandem dehydrogenation and APH reaction for converting

glycerol to achieve both good activity and selectivity for LA

and 1,2-PDO. Nevertheless, a recycling system is still needed to

separate released H2 from dehydrogenation of glycerol, which

demands further consideration for industrial applications.

Furthermore, APH of glycerol requires relatively high H2

pressure and temperature to increase the hydrogenation rate,

leading to undesirable methanation reaction (Roy et al., 2010).

From a molecular point of view, the difficult dissolution of

molecular H2 would also reduce the intrinsic kinetics of

hydrogenation reactions (Jin et al., 2019). Therefore, it is clear

that there is a strong impetus to improve overall atomic and

energy efficiency of tandem dehydrogenation and catalytic
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transfer hydrogenation technologies for achieving both high LA

yield and valuable utilization of H2 released from

dehydrogenation of glycerol.

Jin et al. (2011) (Yao et al., 2017) disclosed a strategy for achieving

both dehydrogenation of glycerol to LA and reduction of CO2 to FA

via a two-pot tandem redox reaction catalyzed by the transition metal

(Figure 5B). A cycle can be achieved using the oxidative potential of

zero-valent metals to reduce CO2 to FA in the presence of water and

the reductive potential of glycerol to reduce the metal oxides to their

zero-valent state. As an oxidation product, LA is produced in

reduction of MOx to M0. Furthermore, the H2 for hydrogenation

of CO2 is formed from water. For example, Fe metal first reacts with

CO2 and H2O to release H2, following the resulting FeCO3 which

undergoes hydrolysis to form Fe2O3 and another molecule of H2

(Scheme 6).Metals includingZn,Al, andMnhave beendemonstrated

to be feasible for producing H2 under similar mechanism, where they

reported that a maximum H2 yield of 99% was achieved. The MOx

could be reduced by glycerol to M0, and LA with a high selectivity of

95% was produced at the same time. The principle of the tandem

redox reaction in CO2, glycerol and metal/metal oxide is schemed in

Figure 5B. In their work, the dehydrogenation of glycerol to LA and

the hydrogenation of CO2 to FA are connected by the redox reaction

of a series ofmetal/metal oxide. The valuable utilization of H2 released

from glycerol dehydrogenation is also achieved by a medium of

metal–metal oxide pairs.

Conclusion and outlook

Due to the intense interest in the reaction pathways of atomic

economy during process development, experimental, and theoretical

studies on combined dehydrogenation of glycerol to LA and

catalytic transfer hydrogenation of H2 acceptors to chemicals are

receiving increased interest. In this review, plausible reaction

pathways and mechanisms for catalytic upgradation of glycerol

into LA under both aerobic and anaerobic conditions, one-pot/

tandem dehydrogenation and catalytic transfer hydrogenation

between glycerol and H2 acceptors have been critically reviewed

with the aim to provide insights into future development of the

reaction pathways of atomic economy during process development

in catalytic upgradation of unconventional resources to value-added

fuels and chemicals. A variety of different H2 acceptors have been

proposed with remarkable performance for transfer hydrogenation

with released H2 from dehydrogenation of glycerol. Plausible

reaction pathways and mechanisms have been well documented

in the current work.

However, two challenges still need to be resolved for catalytic

conversion of glycerol to LA with atomic economic reaction

pathways:

1) Matching the reaction rates of H2 release and consumption

during dehydrogenation of glycerol to LA and catalytic transfer

hydrogenation of H2 acceptors. One-pot dehydrogenation and

catalytic transfer hydrogenation of glycerol with H2 acceptor is

a greatly complex parallel reaction, needing a good balance in

dehydrogenation and hydrogenation reactions in a

synchronized time. However, there is still demand for a

dual-function catalyst with more activity of catalytic transfer

hydrogenation of H2 acceptors to match the reaction rates of

H2 release and consumption. It is expected that the novel

catalyst can simultaneously improve the yield of LA and

hydrogenation products.

2) Main stream research efforts have still been focused on

enhancement of the yield of catalytic conversion of glycerol

to LA, rather than the yield of hydrogenation products. So far,

various H2 acceptors, especially cyclohexene, 1-decene,

levulinic acid, nitrobenzene, benzene, and ethylene gas,

significantly enhance the formation of LA during catalytic

conversion of glycerol. However, these H2 acceptors are

transformed into undesirable cheaper chemicals. Using CO2

and its derivatives as H2 acceptors is a good solution, because

the hydrogenation products of these H2 acceptors are general

value-added chemicals. In addition, catalytic transformation of

CO2 to value-added chemicals or fuels provides the possibility

for the carbon neutrality and sustainable development of

human society. To improve hydrogenation activity and

yield, it is necessary to understand H species generation

from glycerol, transfer and hydrogenation with H2

acceptors. Moreover, the rational design of dual-functional

(dehydrogenation and hydrogenation) catalysts still demands

further experimental efforts in future studies.
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