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The facial expressions are a mirror of the elusive emotion hidden in the mind, and thus, capturing expressions is a crucial way of
merging the inward world and virtual world. However, typical facial expression recognition (FER) systems are restricted by
environments where faces must be clearly seen for computer vision, or rigid devices that are not suitable for the time-dynamic,
curvilinear faces. Here, we present a robust, highly wearable FER system that is based on deep-learning-assisted, soft epidermal
electronics. The epidermal electronics that can fully conform on faces enable high-fidelity biosignal acquisition without
hindering spontaneous facial expressions, releasing the constraint of movement, space, and light. The deep learning method can
significantly enhance the recognition accuracy of facial expression types and intensities based on a small sample. The proposed
wearable FER system is superior for wide applicability and high accuracy. The FER system is suitable for the individual and
shows essential robustness to different light, occlusion, and various face poses. It is totally different from but complementary to
the computer vision technology that is merely suitable for simultaneous FER of multiple individuals in a specific place. This
wearable FER system is successfully applied to human-avatar emotion interaction and verbal communication disambiguation in
a real-life environment, enabling promising human-computer interaction applications.

1. Introduction

Facial expression is one of the main ways to convey emo-
tional states and intentions, which contains rich emotional
and cognitive information and is of practical importance in
sociable robotics, medical treatment, driver fatigue surveil-
lance, and especially human-computer interaction [1–3].
With the rapid development of artificial intelligence, the
automatic facial expression recognition (FER) has attracted
notable research interests via computer vision technologies
[4, 5], which however fails to solve four main problems:
illumination changes, occlusions, pose variations, and con-
strained positions. Besides, with the increasing privacy pro-
tection, the computer-vision-based FER becomes a major
barrier in specific FER since it still depends on high-
resolution images; even if a few attempts have been made
[6, 7], the privacy security of computer vision remains con-

troversial. Besides, computer-vision-based method is con-
strained to a fixed environment with the need for visual
monitoring of the face which limited the applicability in a
daily life environment. A GAN-based model was proposed
to generate images with different expressions under arbitrary
poses for multiview FER [8]. A novel region attention net-
work was proposed to adaptively capture the importance of
facial regions for occlusion and pose variant FER [9]. How-
ever, the problem of identity bias is commonly ignored.
Moreover, generating diverse data accounts for additional
time consumption, and the combination of these multiple
data leads to high dimension which significantly decreases
the computational efficiency of the network. 3D FER that
uses 3D face shape models with depth information can cap-
ture subtle facial deformations, which are naturally robust
to pose and lighting variations [10, 11]. Although some stud-
ies have tried to solve the problems caused by illumination
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and occlusion [12], the computer-vision-based FER still faces
a huge performance challenge and constrained position
problem in dealing with those variations. Therefore, more
robust and position independent methods are needed so as
to adapt to fairly common unconstrained scenarios.

Another more practical and privacy-secure approach is
surface electromyography- (sEMG-) based FER. Facial
sEMGs widely distributing on the skin [13] directly reflect
the activation status of different facial action units (AUs),
which can be used for inner emotion decoding according to
the facial action coding system [14, 15]. Therefore, this
sEMG-based FER is sensitive to subtle muscle movements
and is less susceptible to environmental changes. Neverthe-
less, compared with the usual sEMG applications (such as
gesture recognition), the sEMGs for FER are weaker and
more complex with vast facial muscle involved, due to the
subtleness, complexity, and variation of facial expressions.
Some studies have yielded encouraging results in addressing
the application of sEMG in FER. In 1984, Fridlund et al.
[16] demonstrated sEMG helpful in automatic FER.
Recently, a headband is specially designed to reduce the
restriction of the rigid electrodes on facial expressions, but
the headband can only recognize eyebrow-related facial
expressions [17]. Additionally, a learning method of emotion
distribution is proposed to predict the facial expression dis-
tribution more accurately [18], but the electrodes’ irritation
on the subject still remained unsolved. Most of the current
progresses made on multichannel sEMGs [18–21] for FER
still use intrinsically rigid electrodes, which pose the follow-
ing challenges: firstly, the mismatch of rigid electrodes and
soft skin (the deformation up to 45% [22]) makes it difficult
to obtain high-fidelity sEMGs; secondly, wearing rigid elec-
trodes on the face may hinder spontaneous facial expressions
and irritates the subject. Hence, more robust sEMG acquisi-
tion methods are needed to achieve both high-fidelity signals
and high wearability. With excelling mechanical and biolog-
ical properties, flexible electronics have unparalleled advan-
tages in soft, curvilinear surfaces, showing promising
applications in the fields of robotic electronic skin [1, 23,
24], smart skin of aircraft [25], health care [26–28], and
human-computer interaction [29–31]. Currently, most stud-
ies use flexible strain sensors for FER [28, 32]. However,
when the facial muscle activity is intense but the external
deformation is not obvious (e.g., clenching of teeth in anger),
it will be challenging to detect valid responses by indirect
strain sensors. In contrast, flexible electrodes can accurately
detect the activities of facial muscles. A curve-based sensor
can run complicated facial expression recognition and may
contribute practical applications on auxiliary apparatus for
skin micromotion manipulation for paraplegics [28]. The
flexible electronics can detect the muscle activation associ-
ated with “enjoyment,” “social,” and “masked” smiles [20].
Therefore, a FER system combining soft, multichannel elec-
trodes and an intelligent algorithm for the acquisition of
facial sEMG deserves further study.

FER was originally based on machine learning for classi-
fication. In 2011, Murugappan et al. [33] presented sEMG-
based human emotion classification using K-nearest neigh-
bor and linear discriminant analysis. In 2018, Cai et al. [21]

designed a facial expression recognition system based on
sEMGs using Intel Edison boardwith advantages of high tem-
poral resolution and potential flexibility of testing devices.
Deep learning attempts to capture high-level abstractions
through hierarchical architectures of multiple nonlinear
transformations and representations and thus has made sig-
nificant breakthroughs when applied for FER [34, 35]. It has
also been used in expression recognition based on sEMGs.
An Elman neural network that works with a specially
designed headband was proposed to extract sEMG and built
an emotion recognition model for recognition of facial emo-
tional expression [17]. Recently, a novel approach based on
kurtogram analysis and convolutional neural network
(CNN) was proposed for the emotion classification from
facial sEMGs [36]. Sensors used to collect sEMGs in FER gen-
erally have a strong sense of invasion and uncomfortable. The
sensors with excellent flexibility and stretchability are becom-
ing crucial components that can provide health monitoring
systems with the capability of continuously tracking physio-
logical signals of human body without conspicuous uncom-
fortableness and invasiveness [37]. The combination of
flexible electrodes and intelligence algorithm provides a more
portable and accurate recognition method for expression
interaction in human-computer interaction.

Here, we present a robust, highly wearable FER system
that obtains high-fidelity sEMGs through novel epidermal
electronics that include flexible electrodes and artificial intel-
ligence algorithm. The artificial intelligence algorithm is uti-
lized to classify the sEMG collected by flexible electrodes.
Combining deep learning algorithm and data preprocessing,
7 expressions and their 5-level intensities are accurately clas-
sified. The FER system was tested under different scenarios to
meet the needs of daily use. Finally, we apply the FER system
in human-avatar emotion interaction and verbal communi-
cation disambiguation, demonstrating promising prospects
serving as human-computer emotional interfaces. Different
from the multi-individual, position-constrained computer-
vision-based FER, the proposed wearable FER system can
recognize spontaneous facial expressions without the con-
straint of movement, space, and light, which is more suitable
for the long-term mobile FER of the individual user.

2. Results

2.1. Architecture of the FER System via Epidermal Electronics.
There are seven basic emotions in the facial action coding
system, and each has its own unique and distinctive facial
expressions (contempt, surprise, sadness, happiness, anger,
disgust, and fear) [14]. Furthermore, the intensities of expres-
sions are divided into 5 levels by letters A-E (fromminimal to
maximal intensity), and thus, we can distinguish the subjects’
emotional states quantitatively, as shown in Figure 1(a). In
this FER system, ten flexible electrodes are attached to the
face, and the recognized expressions are transmitted to the
avatar in the computer. In this way, facial expressions are
taken into account in human-computer interaction, convert-
ing the cold and indifferent interaction paradigm into a warm
and emotional one; for example, the avatar could respond
happily when the subject is happy. The flexible electrodes
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are designed to be 1.2μm thick, including 150 nm thick gold
(Au), 10 nm thick chromium (Cr), and 1.1μm thick polyeth-
ylene terephthalate (PET), encapsulated by a 47μm thick 3M
Tegaderm medicine tape which can be applied conformally

and securely to the face with an adhesion strength of ~60
Nm-1. The placement of the 10 flexible electrodes is designed
according to the distribution of facial muscles, where the
sEMG is sensitive to facial expressions. Specifically, different
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Figure 1: Overview of the wearable FER system. (a) Schematic illustration of human-computer expression interaction based on seven basic
expressions and five levels of intensity, including the subject and avatar, μm thick flexible electrodes, 10-channel sEMGs based on expression-
related muscles, and the deep learning algorithm. (b) Photograph of a single flexible electrode. (c) Photograph of a flexible electrode on the
fingerprint. (d, e) Confusion matrix of 7 expression types and 5 levels of expression intensities. (f) Ubiquitous applicability in various
scenarios.
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facial expressions involve different muscle groups. According
to the facial action coding system, 10 different action units
(AU 1, AU 2, AU 4, AU 9, AU 10, AU 26, AU 12, AU 23,
AU 17, and AU 15) are selected for sEMG acquisition [38],
as shown in Table S1. Electrodes include 10 working
electrodes, a reference electrode, and a ground electrode.
The 10-channel (CH) working electrodes are attached to
the corresponding AUs’ positions; the reference electrode
and the ground electrode are attached to the backside of the
subject’s two ears, respectively. Figure 1(a) shows the 10
CH sEMGs when the subject behaves happiness. As can be
seen, CH6, CH8, and CH10 located at the corners of the
mouth show the maximum sEMG intensity when the
subject shows happiness. Because during smiling, it is
mainly the AU 12 and its nearby AUs that produce
contraction and drive the corners of the mouth diagonally
upward. Thus, this sEMG acquisition method tailored to the
muscle distribution can improve the independence between
different channels. To identify the type and intensity of
expressions, the features of 10 CH sEMGs are inputted into
a deep learning network for training and testing. The avatar
is shared with the predicted facial expression results and
feedback with an appropriate emotion, such as responding
to the subject’s happiness by smiling, thus completing
human-avatar emotional interaction.

Figure 1(b) illustrates the shape of the flexible electrodes,
designed as fractal serpentine filaments to achieve the trade-
off between the stretchability and the actual coverage. The
flexible electrodes are soft enough to fit conformally and
tightly with the curvilinear skin and its texture, as shown in
Figure 1(c). The small thinness of the flexible electrodes
enables excellent conformability, facilitating the acquisition
of the high-fidelity facial sEMG. Thanks to the combination
of ultrathin flexible electrodes and intelligent algorithms,
the highest accuracy of classification in 7 expression types
(Figure 1(d)) and 5 expression intensities (Figure 1(e))
reaches up to 94.48% and 79.11%, respectively. It is worth
noting that most of the misidentification of intensity is due
to the confusion of adjacent intensity levels, since the expres-
sion intensity level is actually a continuous process rather
than a discrete one. The confusion of adjacent intensities
has few impacts on the practical applications, so it is reason-
able to consider the left and right cells of the diagonal of the
expression intensity confusion matrix to be correctly identi-
fied. As a result, the effective accuracy of expression intensity
recognition can reach 92.51%. Figure 1(f) shows some prac-
tical application scenarios, such as greeting happily, eating
food with surprise, arguing angrily, face palm with sadness,
and watching a night horror film in terror. Due to the masks,
bowing, side view, being blocked, darkness, or other factors,
the camera cannot capture a full and clear picture of the
human face, so the computer-vision-based FER is difficult
to apply in these complex daily situations. In contrast, our
FER method still has a high recognition rate in these scenar-
ios, as will be discussed in detail in Section 2.4.

2.2. Imperceptible Wearability of Epidermal Electronics. In
order to enable intrinsically rigid Au flexibility, fractal ser-
pentine filaments [39] and ultrathin film (1.2μm) are used

to guide the design of the flexible electrodes: the former
transforms tensile strain into out-of-plane deformation
[40], while the latter enables the structure to be implemented
more easily. Figure S1 shows the fractal serpentine filaments
(0.6mm wide) used to guide the design of the flexible
electrodes. Specifically, the fractal serpentine structure is
derived from Peano-based fractal geometries [41], which
include 2 types of bricks: brick 1 for extending and brick 2
for making a right/left turn, respectively. The stacking of
different bricks composes the stretchable fractal serpentine
geometries. The coverage rate of the electrodes (the area of
filament divided by the nominal overall area) can reach up
to 56.18% while meeting the requirement of stretchability,
which is beneficial to increasing the actual area of the
working electrode on a limited overall size. Figure 2(a) tests
the tensile properties of the flexible electrodes. The
serpentine-like design increases the tensile capacities of the
electrodes in the X and Y directions to 62% (X direction)
and 53% (Y direction), ensuring that the flexible electrodes
keep working even when the tension of the human face
reaches up to 45% [22]. Figure S2 is the contour of the
maximum principal strain of the electrode at 45% stretch of
the skin. The strains on the vast majority of the flexible
electrode are less than 10% (satisfying the damage criterion
for AU), and the overall strain will decrease sharply once
parts of the electrode enter plasticity, which means that the
flexible electrode would not be damaged despite the plastic
deformation when a dramatic but transient deformation of
the facial skin occurred. These soft, stretchable flexible
electrodes have a more reliable contact interface with the
human skin than commercial gel electrodes (2228, 3M,
Germany). Figure 2(b) illustrates the changes of sEMGs
with respect to the facial deformations. The commercial gel
electrodes produce noticeable motion artifacts no matter
how the face is stretched, expanded, and compressed. In
contrast, the motion artifacts generated by flexible
electrodes are significantly reduced due to the firm contact
interface [42]. Especially, the motion artifacts are basically
suppressed during the expansion and compression. Due to
its novel structure design, the flexible electrodes allow the
acquisition of high-fidelity sEMGs for FER. In addition, we
also evaluated the effect of electrode attachment on
spontaneous expressions. Figure S3 is the optical photos of
different expressions taken in the natural state, after the gel
electrodes were attached and after the flexible electrodes
were attached. It is evident that the gel electrodes have an
obvious limitation on the deformation of the facial skin,
resulting in a more significant difference in expression with
the natural state. To further quantitatively characterize the
effect of electrode attachment, facial feature points are
extracted via computer vision. The restriction of
expressions by electrodes is measured by the mean relative
error (MRE) of the distance between facial feature points
before and after electrodes attachment; a smaller MRE
means less restriction of spontaneous expression.
Figure 2(c) shows the MRE after applying gel and flexible
electrodes. After flexible electrodes being attached, the
MRE of different facial expressions is approximately half of
the gel. Therefore, these flexible electrodes do not hinder
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spontaneous facial expressions, which contribute to the
imperceptible wearing experience.

In the long-term wearing of the flexible electrodes, it is
necessary to consider the influence of sweating, scraping,
and flushing. Therefore, we tested the effect of sweating on
electrodes’ performance during long-term wearing. Two
pairs of flexible electrodes and gel electrodes were closely
attached on the subject’s forearm, 7 cm apart between the
electrodes. The electrodes-skin impedance and background
noise were recorded in nearly ten hours of wearing. The sub-
ject was demanded to run for 30 minutes to sweat at seven
and a half hours. Figure 2(d) shows that the commercial gel
electrodes have lower impedance and noise during the whole
test. However, the impedance and standard deviation (SD) of
noise for the flexible electrodes were significantly reduced
after sweating. Figure S5 shows the sEMGs generated by
holding a 5 kg grip strength meter before and after running.
It is evident that the signal-to-noise ratio of sEMGs
acquired by the flexible electrodes is significantly improved
after sweating, which means that the accumulation of sweat
during long-term wearing is beneficial for the acquisition of
high-fidelity signals instead. This is because sweat results in
a high skin hydration level, and thus, the overall
conductivity and the dielectric constant of skin are both
increasing [43], which results in a reduction of the overall
impedance. Therefore, the noise of sEMG is also reduced
due to the lower interfacial impedance. Furthermore,
applying in daily life requires excellent durability of the
electrodes. Figure S6 shows the fatigue performance of the
flexible electrodes, and the flexible electrodes have not been
damaged after being axially extended with 18.7% applied
strain (sufficient for natural motions of the skin) 10000
times. In addition, the flexible electrodes were tested on a
longer time scale. The skin electrodes were attached in
three specific positions of the subject (forehead, cheeks, and
the corners of the mouth); the subject was demanded to
take a bath every two days. The resistance and morphology
were recorded every day, as shown in Figure 2(e) and
Figure S7. Only the resistance of the forehead flexible
electrodes was significantly increased at the sixth day
(damaged at the seventh day). However, on the cheek and
the corners of the mouth, there was still no significant
change in electrical resistance after a week, which
demonstrates that the flexible electrodes are suitable for
long-term wearing.

2.3. sEMG-Based FER Algorithm with Deep Learning. Here,
the flexible electrodes are used to acquire facial expressions’
sEMGs to establish data set. The data set is based on 10
AUs (AU 1; AU 2; AU 4; AU 9; AU 10; AU 12; AU 23; AU
26; AU 15; AU 17), in which the 7 prototypical facial
expressions are included. The 5 different intensities of each
expression are collected. The sampling frequency of 10
channels is 1000Hz. Data distribution of contempt under
5 intensities is shown in Figure S8. As can be seen, the
signal values show a certain but not linear positive
correlation with expression intensities, which means that
the further algorithm is needed for accurate distinguishing.
The subjects need to train their own classification model

based on the first collected data. In this method,
expression and intensity classifications are carried out by
learning the relationship between sEMGs in 10 channels
of the face.

Figure 3(a) shows the schematic of our method. We pro-
pose a wearable facial expression recognition via epidermal
electronics (FER-EE) classifier, which inputs the sEMGs col-
lected by flexible electrodes into the convolutional neural
network for classification. There are three parts in the
method: sEMG acquisition, preprocessing, and classification.
This model is aimed at learning a mapping that translates Xn
into an output Pm with formal expression as M : ðXn, TnÞ
⟶ Pm. sEMGs Xn is defined as an input (n is the number
of signals collected in a period) which is collected by flexible
electrodes. The input is made up of signals from 10 channels
which are denoted as Xn = ðx1, ⋯ , x10Þ. Xn is scaled by the
preprocessing, and thus, we augmented the input data
with high intersubject variations that exist due to different
personal attributes. Xn is transferred to Fm : Xn ⟶ Fm,
Fm = ð f1, ⋯ , f20Þ, where each f i denotes a preprocessed
value. Fm is the input data into the convolutional neural
network, where the probabilities for each category can be
calculated: Pm = ðp1, ⋯ , pkÞ (where m is the frame number
with a frame frequency of 20 and k is the number of clas-
sification categories, k = 5 when the model is classified for
intensity or k = 7 when the model is classified for expres-
sion). The time domain features and spatial domain fea-
tures during the measurement period are combined to
train the model. Firstly, the sEMG is analyzed in the time
domain. Features in the time domain are usually extracted
quickly and easily because these features do not need any
transformation, which are calculated based on the time
series of raw sEMG. Root mean square (RMS) and inte-
grated electromyography (IEMG) are the target features
used in our method. When a specific category of facial
expression occurs, IEMG reflects the strength of different
muscle activities in 10 channels, and RMS reflects the average
level of muscle discharge in these channels at a particular
time. RMS and IEMG can be expressed as the formulas (1)
and (2) shown in Table S2, where Xi represents the sEMG
in a segment i and N = 200 denotes the length of the sEMG.
Because the signals are collected by 10 channels, there are
10 features from both RMS and IEMG. The feature matrix
Fm = ðRMS, IEMGÞ is composed of these 20 features.

As outliers in the sEMGs are inevitable, these abnormal
values are usually regarded as the maximum or minimum
values in a period, which will affect the statistical parameters
such as variance and mean value of the data segment, leading
to severe errors. The commonly used standardization and
normalization [44] are greatly influenced by outliers, so our
method takes advantage of the idea of robust scaler [45] to
process features, and the procedure of feature processing is
as formula (3) shown in Table S2. In formula (3), j ∈ ½1, 20�,
median represents the median of f j, and IQR is the quartile
distance of f j. Fm is obtained by removing the median and
scaling the data according to the quartile range.

Figure 3(b) shows the signals before and after preprocess-
ing for facial expression of contempt’s data collected from
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two batches. The first row is the raw data collected from two
batches, and the second row is the data after preprocessing. It
can be found that there are differences between the two
groups of data. Nevertheless, after preprocessing, the differ-
ences between the groups are significantly reduced. This indi-
cates that preprocessing makes our algorithm robust to the
differences between batches. Further, the effect of preprocess-

ing on the robustness is quantitatively demonstrated.
Figures 3(c) and 3(d), respectively, show the accuracy of the
expression intensities and types collected from four batches
before and after preprocessing by the same subject. It can
be seen that each batch’s accuracy has improved, the highest
increased by 11.3%, and the average increased by 4.77%. In
the preprocessing proposed by our method, IEMG and
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RMS are calculated from sEMG, and the robust scaler is used
to remove the same expression’s feature difference caused by
the batches.

In this method, a convolution neural network is used to
classify the expression and intensity of sEMGs collected
based on flexible electrodes. The training model is for the
individual. The data collected from the same batch was
divided into two mutually exclusive sets by stratified sam-
pling, which were, respectively, used as training set and vali-
dation set. The sample number of training set accounted for
2/3 of the total. The testing set was collected in different time
periods, and thus, there was no repeated data in the data sets
for training, validation, and testing. The accuracy of the
model in training set, validation set, and test set is 97.22%,
92.38%, and 85.51%, respectively, as shown in Figure S9.
Among them, facial expressions are classified into 7
categories, and intensity is classified into 5 categories. In
FACS [14], the definitions of AU’s different intensities were
distinguished by words such as slightly, strong, and
maximum. And in the experimental results [46] of the AU
intensity estimation in computer vision method, it is found
that the accuracy of intensity estimation is very uneven.
Therefore, our system adopts fuzzy processing for the
intensity estimation, and the recognition of adjacent
intensity is also regarded as correct classification. In the test
set, the average accuracy is 80.17% in expression
classification and 88.58% in intensity classification. The
subjects collected a sequence of facial expressions and
marked the intensity of facial expressions by themselves. By
comparing the recognition results with the label, the
accuracy can reach 77.11%. The experimental results
proved that the recognition results after fuzzy processing
were in line with the subjective intensity assessment of the
subjects. 10 AU channels were selected in our method. In
order to better verify the robustness of the method, we
discussed the accuracy of different the number of channels.
The results are shown in Figure 3(e). When the number of
channels decreased, the accuracy gradually decreased.
However, when the number of channels was more than 8,
the accuracy gradually leveled off, which means that the
FER system is robust to the damage of one or two flexible
electrodes. In addition, in order to validate our 10 channels
for the most appropriate choice, we added two channels to
collect AU6 and AU20. It was found that when the number
of channels increases to 11 or 12, the accuracy does not
improve. The experimental results prove that our selection
of channels is efficient and streamlined. Training and
testing of the models were carried out on a 3.20GHz Core
i5 PC, and the running time on the four testing sets is
shown in Figure S10. Each test group had about 100 s of
data, and the average predicted time of the model was
0.03817 s.

Previous studies on physiological signal classification
have used SVM [47], RF [48], and other algorithms [49] for
classification, while in this paper convolutional neural net-
work is used to classify sEMGs. Figure 3(f) shows the accu-
racy of five classification algorithms in facial expression and
intensity classification, among which convolution neural net-
work is the algorithm with the highest accuracy. It can be

proved that convolution neural network has a better perfor-
mance in sEMG classification based on flexible electrodes.

Since the position of the flexible electronics cannot be
absolutely the same each time and the positions of the differ-
ent subject’s facial features are different, the data was col-
lected from multiple subjects for classification. sEMG
recording was performed on 4 healthy volunteers (age:
22:75 ± 1:09, 3 men). All procedures for the tests in the
healthy subjects were ethical, and the subjects gave informed
consent. Different subjects attached with flexible electrodes
are shown in Figure S11. Figure 3(g) shows the accuracy of
expression classification of four random subjects, which
proves that the accuracy of our method does not cause
excessive deviation when the electrode is attached in
different positions, all of which are above 82%. When the
training set contains data from multiple subjects, the
accuracy of predicting the one of them can reach 78.57%.
The confusion matrixes of 4 subjects’ expression type and
intensity are shown in Figure S12.

2.4. Comparison with Computer-Vision-Based FER in
Practical Scenarios. The majority of the traditional methods
for FER are based on video or image, which is practical in
multisubjects. These methods rely on cameras for image cap-
ture, and most of them are laboratory-controlled. The
computer-vision-based methods are fragile to variations that
are irrelevant to facial expressions, such as different back-
grounds, illuminations, and head poses, which are fairly
common in an unconstrained environment. Complementary
to the computer-vision-based FER, the wearable epidermal
electronics can capture subtle facial sEMGs, which is natu-
rally robust to pose, occlusion, and lighting variations in dif-
ferent experimental environments, as shown in Figure 4(a).
Therefore, our FER method is more suitable for individuals
in mobile, long-term facial expression monitoring. Experi-
ments conducted in this paper based on sEMGs are aimed
at comparing its robustness with the state-of-the-art
computer-vision-based methods. Four sets of comparative
experiments were designed in this paper with various illumi-
nation, nonfrontal view, and occlusion in unconstrained
environment. The sEMGs and the video were collected at
the same time during the process of FER. The video is used
as the test data of the computer-vision-based method, while
our method takes the sEMGs as the input data. Experimental
results show that epidermal electronics in this paper have
good recognition accuracy in different environments, which
proves that the system is highly wearable.

Figure 4(b) shows the accuracy of the expression recogni-
tion with various illumination changes. As can be seen, when
the light changes gradually, the accuracy of the API provided
by Baidu artificial intelligence platform [50] fluctuates greatly.
The classification accuracy of computer vision and our
method under low light is shown in Table S3. The reason for
the misrecognition of expression in low light and dynamic
light is that the facial feature information is fuzzy or even
losing. Figure 4(c) shows the recognition accuracy of the
four methods under side view. Compared with the normal
constrained environment under side view conditions, the
API provided by Baidu’s artificial intelligence platform, the
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API provided by FACE++ [51], and the proposed network
model [52] can not recognize expressions. Figure 4(d) shows
the accuracy of the two methods of computer-vision-based
and our method with occlusion. The subject wears masks to
show 3 different areas of occlusion. As the occlusion’s area
increases, the accuracy of vision-based methods gradually
decreases. Through a series of comparison between the
computer-vision-based method and our method, the
robustness and highly wearable of our method is proved
under the conditions of occlusion, illumination changes, and
pose variations.

2.5. Human-Computer Interaction Applications. Figure 5(a)
demonstrates a typical application in human-avatar emotion
interaction. Five different scenarios were set to imitate differ-
ent situations that might be encountered in daily life, includ-
ing smiling goodbye with a mask, complaining to the avatar,
finding a book stolen and getting angry, the lights being
turned off suddenly, and waking up from a nightmare. In this
procedure, the subject’s sEMG was recorded continuously by
the flexible electrodes. The extracted features are shown in
Figure 5(a), which are input into the FER-EE classifier for
continuous expression recognition. Thus, the avatar is able
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to feedback with appropriate expressions to the subject by the
result of FER, for example, smiling together with the subject.
Movie S1 demonstrates that with our FER system, the avatar
can accurately capture the subject’s emotional state (such as
happiness, sadness, anger, surprise, and fear) throughout
the process and interact with smooth expressions; the total
accuracy of which is 83.33%. The feature waveform of con-
tinuous expression is shown in Figure S13. Because sEMGs
can capture the changes in muscles, the features also
change significantly when the expression changes, which
provides great reference for the recognition of continuous
expressions. Figure S13 shows that the feature will fluctuate
when the expression changes, leading to the fluctuation of
the recognition result. Continuous sEMGs have outliers
when the expression changes, but the recognition results are
stable when the expression is stable. Excessive fluctuating

data can be deleted by setting up outlier detection. This
experiment proves that this highly wearable FER system can
fulfill the requirements of different scenarios in daily life
and is beneficial for long-term, continuous expression
interaction for special users.

This FER system can not only enhance the emotional
information in human-computer interaction but also
enhance the understanding of natural language. When a per-
son hears a sentence without seeing the expression of the
speaker, he may misinterpret the meaning of the sentence.
Take “That’s what you did?” as an example. The emotion
expressed in this sentence may be contempt or surprise. But
when the hearing and sEMGs are combined, the emotion
conveyed by the speaker can be accurately obtained, as
shown in Figure 5(b). Movie S2 demonstrates the ability of
this FER system to discriminate between the emotions of four
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Figure 5: Human-computer interaction applications. (a) An example of the mobile FER system. (b) Demonstration of the auxiliary effect of
our method on language emotion understanding, taking “That’s what you did?” as an example which may be contempt or surprise.
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different conversations, which can recognize the subject’s
facial expressions by collected the sEMGs via flexible elec-
trodes. The total accuracy of eight examples in movie S2 is
85%. Our system can recognize the current expression and
the real emotion of the speaker which is hoped to enhance
the understanding of the interaction process. It is proved that
this system is expected to assist the speech recognition sys-
tem to monitor the emotion of the subjects from facial
expression and language.

3. Discussion

We proposed a novel FER strategy designing by highly wear-
able deep-learning-assisted, soft epidermal electronics, which
is robust for various scenarios. Based on epidermal electron-
ics with intelligent algorithm and flexible electrodes, the FER
system achieved accurate recognition on 7 expressions and 5
levels of intensity by capturing facial movements. The flexible
electrodes do not hinder spontaneous expressions and can be
worn for a week-long time. Since AUs are controlled by facial
muscles, the electrodes are designed to capture subtle muscle
movement corresponding to the specific AUs which are cru-
cial to emotion understanding. To our knowledge, it is the
first time to use epidermal electronics with AUs for FER.
The proposed system is based on ground-truth AU to obtain
AU measurement, and it avoids accurate AU annotation
which requires expertise and time. The novelty of capturing
AUs and intensity will enhance facial expression data for
database construction. The combination of data preprocess-
ing and deep learning suppresses differences of batches and
individuals. The validation sets in the subject-dependent
models due to the limited amount of data. Therefore, if the
amount of training data is expanded, the accuracy will be
improved. High-accuracy FER was accomplished in different
scenarios such as illumination changing, side view, and
occlusion.

Computer-vision-based FERs can recognize facial
expressions of multiple people using only one camera. How-
ever, it has high requirements on the posture of the subjects
and the surrounding environment and additionally shows
close restraint on movement of a person. By comparison,
the wearable FER system proposed can recognize continuous
facial expression of a specific person for a long time and is
robust to the surrounding environment and posture, which
is expected to be complementary to the computer vision in
the field of FER. Experiments on human-avatar emotion
interaction and language disambiguation were carried out,
demonstrating the application prospect of the FER system
in human-computer interaction and aiding verbal communi-
cation. Nevertheless, the development and integration of
wireless communication components are under further
study to address the problem of Bluetooth data transmis-
sion due to the large quantity of flexible electrodes. As a
result, this paper focuses on the proof-of-concept demon-
stration of the novel wearable FER system using a wired
method. Further research may focus on a system-level
integration, and sEMG can also be used as a complement
to visual or verbal signals, combining their respective fea-

tures and advantages with being of more excellent value in
multimodal human-computer interaction.

4. Method

4.1. Fabrication of the Flexible Electrodes. A 1.1μm thick PET
film (Nanyang technology, China) was laminated on the wet-
ted tattoo paper (Huizhou Yibite Technology, China). The
tattoo paper was dried at 65°C for 1 hour and further dried
at 105°C for 2 hours, followed by thermal evaporation of 10
nm Cr and 150nm Au. Then, the film was patterned by a
programmable mechanical cutter (CE6000-40, GRAPHTEC,
Japan). The patterned electrodes are transferred to the ther-
mally released tape (TRT) (REVALPHA, Nitto, Japan) by
spraying water on the back of the tattoo paper. The TRT is
deactivated at 130°C for ~3min. Finally, the flexible
electrodes are transferred from the deactivated TRT to 3M
Tegaderm by Rolling the TRT from one side to the other.
This transfer method can effectively prevent the TRT and
Tegaderm from sticking. More importantly, this pure rolling
transfer method also minimizes the strain [13], which bene-
fits the yield of flexible electrode manufacturing.

4.2. MRE Calculation of Facial Feature Points. As shown in
Figure S3, the picture of neutral state and seven basic facial
expressions was taken (5 independent pictures for each
expression). Then, the computer vision method was used to
extract the facial feature points (as shown in Figure S4, a
total of 38 points). The feature point of the nasal tip is set
as the base point. The distances li from the other 37 feature
points to the base point represent the geometric features of
the face. Δli is the corresponding difference of li in each
feature point after electrodes are attached. The mean
relative error (MRE) of Δli is used to quantify the
restriction of the electrodes to the facial expressions.

4.3. The Structure of FER-EE Classifier. In the process of clas-
sification, the model is trained by combining the features Fm
from 10 channels in the spatial domain. The FER-EE classi-
fier contains full connection layers, convolution layer, and
pooling layer. The preprocessed features Fm is the input data
of the network. This process maps 20 feature vectors v1,64
into a feature mapm8×8 for classification. The full connection
layer is responsible for getting a n × 64 matrix. The 1 × 64
vector is remapped to an 8 × 8 matrix and then taken into
the convolution layer using a 2 × 2 filter and becomes a
5 × 5 matrix. The maximum pooling layer takes a 4 × 4 fil-
ter for downsampling. The matrix is finally put into the
flatten layer and thus get a 1 × 64 vector. Finally, softmax
function is used by a full connection layer as the output
layer. Softmax function is often used as activation function
in the last layer of multiclassification algorithm. The last
layer computes the lost and outputs the probabilities of
all expressions in the current prediction. P = ðp1,⋯, pkÞ is
the output of the function, where pj is the probability value
of v representing the jth expression and v is the softmax func-
tion’s input. Each layer is trained by backpropagation. The
cross-entropy loss function is used to calculate the loss
between the predicting value and true value. Finally, we
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calculate the maximum value of P: MAXk
j=1ðPjÞ⟶ j, j can

be mapped to the corresponding expression.
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