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Abstract: Lab-on-paper technologies, also known as paper-based analytical devices (PADs), have
received increasing attention in the last years, and nowadays, their use has spread to virtually every
application area, i.e., medical diagnostic, food safety, environmental monitoring, etc. Advantages in-
herent to on-field detection, which include avoiding sampling, sample preparation and conventional
instrumentation in central labs, are undoubtedly driving many developments in this area. Heavy
metals represent an important group of environmental pollutants that require strict controls due to
the threat they pose to ecosystems and human health. In this overview, the development of PADs for
Hg monitoring, which is considered the most toxic metal in the environment, is addressed. The main
emphasis is placed on recognition elements (i.e., organic chromophores/fluorophores, plasmonic
nanoparticles, inorganic quantum dots, carbon quantum dots, metal nanoclusters, etc.) employed
to provide suitable selectivity and sensitivity. The performance of both microfluidic paper-based
analytical devices and paper-based sensors using signal readout by colorimetry and luminescence
will be discussed.

Keywords: paper-based analytical devices; mercury; chromogenic and fluorogenic reagents;
nanomaterials; water analysis

1. Introduction

Hg toxicity has been known from the age of Hippocrates (400 BC). Chronic poisoning
episodes occurred until the beginning of the twentieth century as a consequence of Hg
vapor absorption or due to inorganic salts. From the synthesis of organic Hg compounds in
1863 and their further application as fungicides and organomercury species have provoked
a large number of poisonings [1,2]. Well-known cases concerning Hg poisoning include
the consumption of seeds contaminated with this kind of fungicides (Iraq, 1971) [3] or
the Minamata accident (Japan, 1953) [4] due to the intake of fish contaminated with
methylmercury, which was formed by biomethylation of inorganic Hg released in the bay.

Hg can reach aquatic ecosystems through point-source discharges or atmospheric
deposition. Thus, volcanic eruptions and the solubilization of rocks, soils and sediments
are among the most relevant natural sources [5]. Anthropogenic sources such as small-
scale gold mining, the combustion of solid fuels (coal, lignite, wood), chlor-alkali, paper,
paint and pharmaceutical industries, dental implants, agriculture products (germicides,
pesticides, etc.); although mostly restricted in many countries, they still contribute to
increasing the Hg levels in the environment [6]. Therefore, stringent analytical controls are
needed to assess the contamination of environmental samples with Hg.

Hg can be found in different environmental compartments as a variety of species; each
one has different behavior, and hence, toxicological properties, bioavailability and envi-
ronmental impact depend on its physicochemical forms (i.e., speciation). Thus, in natural
waters, the main forms in which Hg can be present are elemental mercury (Hg0), inorganic
mercury (Hg2+) and organic mercury, i.e., CH3-Hg+ and (CH3)2Hg. Biomagnification of
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Hg through the food chain may occur as a result of the high hydrophobicity of organic Hg
species. In this way, Hg can accumulate in some fish by a factor of ca. 106 in respect to the
concentration levels in the aquatic environment [7].

Freshwater sources are essential for life and their scarcity can be aggravated by
overexploitation of water supply systems, overuse, poor management, decreased rainfall,
global warming and land use [8]. For drinking water, several regulations have established
the maximum contaminant levels for Hg(II). Thus, the World Health Organization (WHO)
recommends a guideline value of 6 ppb [9]. The United States Environmental Protection
Agency (USEPA) fixed a maximum contaminant level of 2 ppb [10], whereas the European
Directive pointed out a parametric value of 1 ppb [11].

For the determination of Hg at the (ultra)trace level, conventional instrumentation
is typically used in central labs on a routine basis, such as cold vapor-atomic absorption
spectrometry (CV-AAS) [12], cold vapor-atomic fluorescence spectrometry (CV-AFS) [13],
electrothermal atomic absorption spectrometry (ETAAS) [14], inductively coupled plasma-
mass spectrometry (ICP-MS) [15] and total reflection X-ray fluorescence (TXRF) [16]. While
these techniques provide adequate sensitivity and precision, they require suitable sam-
pling, preservation procedures, sample pretreatment and a fully controlled laboratory
environment, which makes it difficult to extend their application for on-field analysis [17].
In addition, problems may arise in the sampling and sample preparation procedures prior
to the determination of Hg at the (ultra)trace level by conventional analytical techniques,
which can lead to systematic errors and unacceptable analytical uncertainties [7].

In recent years, several trends have emerged concerning the analytical control of
environmental pollutants, such as a remarkable increase in the miniaturization, portability
and greenness of analytical approaches, thus facilitating on-site measurements [18]. The
latter possibility is particularly interesting, since it could allow real time measurements
without the need for preservation, transport and sample storing prior to analysis by a
conventional technique. Further appealing features include the possibility of performing
temporally and spatially discriminated analysis and the access to remote sites so that
the source of pollutants, their distribution and environmental impact can be more easily
assessed [19].

2. Development of Paper-Based Analytical Devices for the Detection of Mercury

Lab-on-chip (LOC) technologies have emerged as miniaturized, low cost and fast
analytical approaches allowing a decrease in sample, reagents and energy consumption
through the integration of typical stages of bench-scale laboratories within a single de-
vice [20]. From the standpoint of green chemistry, the use of cellulose instead of typical
substrates employed in LOC systems such as polymers, silicon or glass represent a signif-
icant step forward. Cellulose-based materials have been established in the last years as
efficient, versatile and universal biopolymers for the design of novel microscale analytical
systems [21] (Figure 1). As compared to other scaffolds used for building sensors and
microfluidic devices, cellulose is a biodegradable, biocompatible, hydrophilic and highly
porous material. In addition, it possesses high capillarity, and a large variety of recognition
elements can be immobilized for sensing. When used along the widespread colorimetric
transduction, white color is excellent to achieve good analytical performance [22].

The so-called paper-based analytical devices (PADs) have arisen as an efficient, afford-
able, user-friendly, rapid, and equipment-free technology that is available to citizens. The
development of PADs in areas such as clinical diagnostics, food safety and environmental
monitoring, etc., as well as fabrication methods, target analytes and analytical performance,
has been extensively reviewed during the last decade [23–37], with the scientific community
showing great interest toward these appealing analytical approaches.
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Figure 1. Conceptual scheme showing the application of cellulose for the detection of Hg.

Under the general term ‘paper-based analytical devices’ (PADs), two systems can be
distinguished, i.e., microfluidic paper-based analytical devices’ (µ-PAD), where a fluidic
network is built in the paper substrate, and ‘paper-based assay devices’, also known as
‘paper-based sensors’ or ‘spot tests’, where the sample is directly deposited onto the paper
surface. First systems, introduced by Whitesides for the first time [38], include different
configurations, such as two-dimensional (2D), three-dimensional (3D) and distance-based
devices. In these microfluidic devices, the sample and reagents are transported to the
detection zone by capillarity. Second designs derive from the classical qualitative analysis
tests, where the detection of inorganic cations and anions could be performed on filter
paper using suitable colorimetric and fluorescent reagents [39]. In paper-based assay
devices, the sample comes directly into contact with the receptor, which remains stationary
on the cellulose scaffold.

A relevant group of environmental pollutants contributing to morbidity and mortality,
especially in regions that lack of suitable analytical controls, is integrated by toxic heavy
metals, which include some metals and metalloids possessing a relatively high density,
such as Cd, Cu, Cr, Hg, Pb, Ni, As, Sb, etc. Unlike other pollutants, heavy metals are not
biodegradable and can bioaccumulate in living beings, causing toxicity even when present
at ultratrace levels in the environment. According to WHO [40], Hg is considered as one
of the top 10 chemicals or groups of chemicals of major public health concern. Although
several review papers have appeared in the literature dealing with applications of PADs
for the detection of heavy metals [34,37], no specific one has been published related to
Hg, an element for which there has been a sharp increase in applications over the last five
years. Figure 2 shows the percentage of publications related to applications of µ-PADs and
paper-based sensors to the detection of Hg(II) in the environmental field using colorimetric
and luminescent signal readout.

In this review, we provide an overview on the state of the art of PADs for the detection
of Hg in environmental samples, their main shortcomings and future prospects.
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3. Paper-Based Sensors Integrated with Organic Chromogenic/Fluorogenic Receptors
for Hg Detection

Several chromogenic/fluorogenic reagents have been used as recognition elements for
the detection of Hg(II) in both paper-based sensors [41–47] and µ-PADs [48–51] (Table 1).
In a few cases, multiplexed systems for the detection of other metal ions have been re-
ported [50,51]. An array of paper strips has also been designed for the detection of sev-
eral metals, including Hg [52]. Environmental samples analyzed mostly include several
types of waters, yet applications to biological samples, soils and creams have also been
described [41,48,49]. With some exceptions where inorganic chromogenic species are in-
volved [41,49], the most reported applications use organic chromogenic reagents for analyte
recognition.

Original concentration units of limits of detection (LODs) provided by authors are kept
in the text, but these units have been converted into parts-per-billion (ppb) in Tables 1 and 2
so as to facilitate comparisons. Those PADs providing an LOD equal or below the max-
imum contaminant level regulated by US EPA (i.e., 2 ppb) are marked with an asterisk
in Tables 1 and 2.

While naked eye detection is carried out in many PADs, devices related to information
and communication technologies (ICTs) such as digital cameras, scanners, smartphones,
etc., have been mostly used for capturing images on PADs. Further image processing is
employed for measuring color intensity. LODs at the ppm level are generally reported for
many applications of PADs concerning Hg detection, with the exception of approaches
involving any kind of preconcentration (e.g., [43]). In a significant number of papers,
LODs corresponding to the use of receptors in a solution followed by detection with a
conventional instrument are provided (e.g., [45,46]).
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Table 1. Applications of chromogenic/fluorogenic reagents as receptors in PADs (µ-PADs and paper-based sensors) for the
detection of Hg(II).

Material Type of PAD Recognition
Element

Signal
Readout Sample/Matrix LOD (ppb) Ref.

3 MM
Whatman
chromatography
paper

Paper-based
sensor CuI Scanner Fish 7 (ng/g) [41]

Cellulose Paper-based
sensor

bis(ferrocenyl)
azine Naked eye Aqueous media 104 [42]

Porous silica
matrix
onto cellulose

Paper-based
sensor *

Rhodamine B
thiolactone

Flatbed scanner
and naked eye Water 0.24 (Scanner) [43]

Filter paper Paper-based
sensor

Rhodamine
appended
vinyl ether

Naked eye Drinking water
Tap water

27.2 (in solution)
104 (paper strip) [44]

Whatman
paper

Paper-based
sensor

Ir complex
(Phosphorescent) Naked eye --- 3.56 (fluorimetry) [45]

Cellulose paper
Paper-based
sensor
(Hg, I, Zn)

Calix[4]arene
(fluorescent)

Digital camera
(UV irradiation) Wastewater 0.58 (fluorimetry) [46]

Filter paper Paper-based
sensor

Tetrahydrophenazine-
based
Fluorophore

Digital camera --- 8 × 103 (neutral pH)
3 × 103 (pH 1.6–2.3)

[47]

Filter paper µ-PAD Dithizone Naked eye Whitening
cream 930 [48]

Whatman No. 4
filter paper µ-PAD HgI4

2− complex Digital camera
Contaminated
soil
and water

2 × 104 [49]

Whatman
grades
No. 1 and 4

µ-PAD
(Hg, Pb, Cr, Cu,
Fe)

Three indicators
(ligands) Digital camera Waters 20 [50]

Whatman No. 1
paper

µ-PAD
(Cu, Co, Ni, Mn,
Hg)

Dithizone (for Hg) Scanner
Drinking, pond
and
tap water

200 (scanner)
ca. 104 (naked eye) [51]

Whatman
grade
No. 1 filter
paper

Array paper strip
(for Hg, Ag, Cu)

5 indicators
(18 formulations) Flatbed scanner Pond water 38 (Hg) [52]

* PADs providing an LOD equal or below the maximum contaminant level fixed by US EPA.

Paciornik et al. [41] described the detection of Hg(II) in fish by means of cuprous
iodide (CuI), which caused a yellow-orange color. An LOD of 0.007 µg/g (wet weight) was
reported. Diez-Gil et al. [42] carried out the detection of Hg(II) on cellulose-based supports
with the naked eye based on the reaction with bis(ferrocenyl) azine in acetonitrile-water
solution (Figure 3A). An LOD about 10 mg/L was obtained.
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Figure 3. (A) (1) Normalized reflectance UV-Vis spectra of Hg(II) in acetonitrile upon dipping cellulose papers into solutions
containing increasing concentrations; a bis(ferrocenyl) azine was used as chromogenic reagent; (2) naked-eye detection of
Hg(II) using the paper-based sensor; (3) color of acetonitrile-water solutions of the chemosensor in the presence of Hg(II) at
different concentration [42]. (B) (1) Reaction between rhodamine B thiolactone and Hg(II) to yield a purple red product;
(2) paper-based sensors for Hg(II) showing the change from white to a purple-red color; a 10 nM Hg concentration can be
detected with the naked eye [43]. Reproduced with permission of Elsevier [43].

Liu et al. [43] described the reaction between Rhodamine B thiolactone and Hg(II)
giving rise to a magenta color (Figure 3B). The receptor was entrapped on porous silica
matrix, and the silica layer was impregnated in a filter paper. The as-prepared membrane
serves the purpose of preconcentrator and chromogenic sensing, so that sensitivity is
significantly improved. The aqueous sample was passed through the filter using a vacuum
aspirator at ca. a 30 mL/min flow rate. The threshold for safe levels of Hg in drinking
water is around 10 nM (EPA guideline for the maximum allowable Hg level in drinking
water), which could be reached with the naked eye for 200 mL of sample. Colorimetric
measurements were performed with a flatbed scanner and an LOD of ca. 1.2 nM Hg
was obtained.

Patil and Das [44] described a selective colorimetric and fluorometric chemosensor
based on a rhodamine appended vinyl ether (RDV) probe for Hg(II) recognition. Paper
strips were employed by immersing filter paper into a RDV solution. Although an LOD of
136 nM was obtained using a solution assay, the paper strip was useful for Hg detection at
the ppm level (above ca. 10 ppm).

A phosphorescent iridium (III) complex-based chemosensor for Hg(II) was inkjet-
printed onto filter paper. After Hg(II) recognition, the color change was observed directly
with the naked eye and under UV irradiation [45]. A detection limit for the assay carried
out in solution of 1.78 × 10−8 M was achieved.

Fluorescent calix[4]arene (L) containing four pyrene groups as binding sites was
immobilized onto cellulose to build a paper-based sensor for the detection of Hg(II), Zn(II)
and iodide [46]. This chemosensor is integrated by an ionophore which is responsible for
ion binding and fluorophore for signal transduction. The chemosensor used in this work
displays an on-off-on chelation-enhanced fluorescence (CHEF)-photoinduced electron
transfer (PET) phenomena for selective recognition. In the presence of Hg(II) there is
fluorescence quenching, but on the contrary, in the presence of Zn(II) and iodide, there
was fluorescence enhancement. LODs in the solution were 6.4 nM (Zn), 2.9 nM (Hg) and
20.9 nM (I). Selective Hg detection required masking the interference by Zn and iodide.

A tetrahydrophenazine-based fluorophore showing a donor–acceptor–donor behavior
was used as a sensor for Hg(II) [47]. Besides fluorescence sensing, this sensor can also be
used as a chromogenic sensor (changes in color from yellow to blue in the presence of Hg)
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and a paper-based sensor. The LOD of the fluorescent sensor in solution was 8 ppm Hg at
neutral pH and 3 ppm Hg at a pH in the range of 1.6–2.3.

Idros et al. [50] described a µ-PAD using three indicators (ligands) for the detection of
Hg, Pb, Cr, Ni, Cu and Fe. Although the sensor has the detection capability for Cr, Fe, Cu
and Ni in drinking water, an LOD of 0.1 µM was obtained for Hg, which is 20 times higher
than the safe level established for this element.

Apart from paper-based sensors and µ-PADs, multi-ion analysis arrays have also been
investigated. A multi-ion analysis array test strip was designed for the detection of Hg(II),
Ag(I) and Cu(II) through the immobilization of five specifically responsive indicators in
order to achieve tunable sensitivities [52]. This sensing approach allows the simultaneous
detection of several metal ions, even when they are present as a mixture in both qualitative
and semiquantitative modes. A total of 18 indicator-containing formulations were printed
onto a Whatman grade no.1 paper. Images of the strip test array were taken using a flatbed
scanner and processed by Adobe Photoshop software. The LODs defined here as three
times the signal-to-noise ratio were 0.19, 1.69 and 1.4 µM, which were lower than their
Chinese wastewater discharge standard concentrations. The array test strip displays good
anti-interference capability and storage stability as well as good production reproducibility.

Besides typical cellulose substrates, the use of cellulose nanofibers has also been
reported for sensing Hg. Al-Shamsi et al. [53] reported the detection of Hg(II) using time-
resolved photoluminescent measurements based on 6-thienyl-lumazine (TLm) fluorophores
in cellulose acetate nanofibers. Hg(II) quenched the solid-state fluorescence of TLm through
different mechanisms, i.e., dynamic and static, allowing a detection at 50 pM level.

The immobilization of an infrared fluorescence protein (IFP) and its chromophore
biliverdin (BV) has been applied by Gu et al. [54] for Hg(II) detection. An LOD of less than
50 nM was achieved. The IFP/BV sensor can serve as a tool for the detection of Hg in
living organisms or tissues. A protein-hydrogel-based paper assay was also used for the
immobilization of IFP onto paper strips for detection of Hg(II). Enrichment by multiple
addition/drying steps onto the paper strip allows detection at the 20 nM level.

4. Paper-Based Analytical Devices Integrated with Nanomaterials as Receptors for
Hg Detection

A variety of nanomaterials have been applied to build novel sensing assays for Hg,
such as plasmonic nanoparticles (NPs), e.g., gold nanoparticles (AuNPs), silver nanopar-
ticles (AgNPs), gold nanorods (AuNRs), fluorescent nanoparticles, e.g., quantum dots
(QDs), carbon dots (CDs), graphene quantum dots (GQDs), metal nanoclusters (NCs),
etc. [55]. Signal readout has been mainly carried out using transduction techniques such as
colorimetry and luminescence, yet one application of surface-enhanced Raman scattering
(SERS) has also been published.

4.1. Plasmonic Nanoparticles

When the light of appropriate frequency interacts with some metal nanoparticles (e.g.,
Au, Ag, Cu), a collective oscillation of electrons at their conduction bands occurs, which is
the basis for the surface plasmon resonance (SPR) phenomenon [56]. When the dimensions
of metal nanoparticles are lesser than the radiation wavelength, the phenomenon is known
as ‘localized surface plasmon resonance’ (LSPR). Absorption of radiation takes place when
light has the same frequency as oscillations. The localized surface plasmon resonance
(LSPR) absorption bands are characteristics of the metal involved in the colloidal solution,
i.e., it depends on size, shape, interparticle distance, composition of the nanoparticles
and refractive index of the surrounding medium. Thus, the colors displayed by colloidal
solutions of AuNPs, AgNPs and CuNPs are pink, yellow and red, respectively. More
interestingly, these NPs possess much higher molar extinction coefficients as compared
to chromogenic agents. The molar extinction coefficients corresponding to the LSPR
absorption bands of AuNPs and AgNPs are 108 and 1010 M−1 cm−1, respectively. Typically,
the wavelength of the LSPR band is largely affected by the size and chemical environment
surrounding the nanoparticles, such as the presence of capping agents, formation of
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amalgams, species adsorbed, etc. Noble metal nanoparticles have been widely applied for
the detection of metal ions [57].

4.1.1. Gold Nanoparticles

Affinity of thymine bases toward Hg(II) has driven the development of selective
sensors for Hg using signal readout under different transduction principles, such as col-
orimetry, luminescence and electrochemistry [19]. When DNA-capped AuNPs are brought
into contact with Hg(II) ions, a shift of the SPR band occurs as a result of aggregation
caused by the binding between two thymine bases and Hg(II), so the colloidal solution of
AuNPs changes its color from red to blue.

He et al. [58] developed a lateral flow strip for visual detection of Hg(II) which is
based on AuNPs and thymine(T)-rich Hairpin DNA probes. The sensing approach relies
on hairpin DNA-conjugated AuNPs and thymine-Hg(II)-thymine coordination chemistry
and immune-capturing events. A red color in the test and control zones of the strips occur
due to aggregation of AuNPs in the presence of Hg(II). An LOD of 0.1 nM Hg(II) can be
reached in waters without interference due to other metal ions.

Based on the AuNPs thymine-Hg(II)-thymine coordination chemistry, Chen et al. [59]
reported the use of single-strand DNA (ssDNA) attached to AuNPs for detecting Hg(II).
After incubation for 30 min, the solution test was deposited onto a µ-PAD and the image
capture was performed by a smartphone camera. An LOD of 10 ppb Hg was achieved.
AuNPs aggregation causes the color to change from red to purple.

Zhu et al. [60] reported a novel signal-amplified lateral flow strip (SA-LFS) for Hg
detection where signal amplification and sensing are carried out in one step (Figure 4A).
The system is based on the specific recognition of thymine-Hg(II)-thymine using AuNPs as
labeling tags. T-rich ssDNA and ssDNA are used as recognition and enhancement probes,
respectively. The specificity of the T-Hg(II)-T interaction makes the test highly selective. An
LOD of 0.005 ppb and 0.0015 ppb Hg were obtained for visual observation and quantitative
analysis, respectively.

A signal-amplified paper-matrix-based array was developed by Yao et al. [61] for
the detection of Hg(II) ions. A signal reporting ssDNA probe labeled with AuNPs was
immobilized onto a nitrocellulose membrane. Color intensity due to aggregation of AuNPs
in the presence of Hg(II) was enhanced by the further reduction of Ag(I) onto the surface
of the AuNPs. An LOD of 0.0005 ppb Hg(II) can be achieved after signal amplification by
Ag staining operation, which was 500 times better than that obtained without amplifica-
tion. The paper-matrix-based array allows to perform multiple sets of duplicate assays
simultaneously.

Fu et al. [62] employed a transparent cellulose nanofiber matrix-supported luminescent
AuNPs as a solid-state sensing membrane for the detection of Hg(II) (Figure 4B). The
method is based on the high affinity metallophilic Hg(II)–Au(I) interaction mechanism.
The cellulose nanofibrillatted (CNF) matrix provided a large number of immobilizing spots
to the sensor unit of AuNPs. Quenching of the AuNPs@CNF membranes fluorescence
occurs as the Hg(II) concentration increases. The luminescence changes induced by Hg(II)
can be observed with the naked eye even at a Hg(II) concentration as low as 0.0010 µM,
much lower than the limit established by EPA (0.010 µM, 2 ppb).

A µ-PAD was developed by Shariati and Khayatian [63] using AuNPs functionalized
with N,N′-bis(2-hydroxyethyl)dithiooxamide as a receptor for Hg. An LOD as low as
3 ppb could be reached, and applications to food quality control and air quality monitoring
were performed.
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Until now, colorimetric detection had been applied in most PADs, along with plas-
monic nanoparticles. An application of SERS was reported by Yang et al. [64]. An inhibited
catalytic growth of surface-enhanced Raman scattering-active AuNPs onto a hydrophobi-
cally patterned paper substrate was caused by Hg(II). 4-mercaptobenzonic acid (4-MBA)
was chosen as an effective Raman reporter molecule. The Raman signal was enhanced
by surface plasmonic 2-[4-(2-hydroxyethel) piperazine-1-yl]ethanesulfonic acid-stabilized
gold nanostars (HEPES-AuNSs). Hg(II) caused the formation of an amalgam on the solid–
liquid interface of HEPES-AuNSs. Ultimately, this caused a weak signal of 4-MBA. An
LOD of 0.03 nM was achieved, and the method was applied to Hg detection in environ-
mental waters.

4.1.2. Silver Nanoparticles

Several mechanisms altering the plasmonic band (changing the color from yellow to
colorless) have been proposed for sensing Hg using AgNPs as receptors in PADs [65–73].
These mechanisms include changes in both shape and size of AgNPls [65], amalgama-
tion (Hg-Ag) after the reduction of Hg(II) to Hg(0), resulting in the disintegration of
AgNPs [66,67,69,70,73] and complexation with capping agent and redox etching due to
Hg(II) resulting in amalgamation [68,72].

A paper-based sensor was developed by Apilux et al. [65] for the detection of Hg(II)
in waters using AgNPs and silver nanoplates (AgNPls). The color change of AgNPls on
a paper test in the presence of Hg(II) can be monitored by the naked eye. A quantitative
assay can be accomplished following image capture by a digital camera along with an
image processing software to yield an LOD of 0.12 ppm. Upon the accumulation of Hg on
paper through multiple applications of 2 µL, an LOD of 2 ppb can be achieved. The color
change of AgNPs and AgNPls can be ascribed to changes in size and shape. A sensing
mechanism based on the redox reaction between Hg(II) and AgNPls was proposed.
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Meelapsom et al. [66] developed a colorimetric assay for Hg(II) based on the RGB
model using a double layer µ-PAD with unmodified AgNPs and a digital camera. An LOD
of 0.0001 mg/L and an RSD less than 4.1% were reached. Remarkably, three orders of
magnitude for the linear range were observed.

AgNPs were employed as receptors in a micro-PAD for the detection of Hg(II) with
an LOD of 3 ppb, but multiple sample depositions were needed to achieve a suitable
accumulation [67].

A paper-based sensing strip was developed for the detection of Hg using glucose-
capped silver nanoparticles (Glu–AgNPs) as selective receptors. A 1 µM concentration
could be detected with the naked eye with the µ-PAD. A mechanism based on electrostatic
interaction between anionic Glu-AgNPs and cationic Hg and also a redox etching and
further amalgam formation was proposed, leading to AgNPs aggregation [68].

Ismail et al. [69] proposed a PAD for the detection of Hg(II) and ammonia, using
AgNPs prepared by photosynthesis. For this purpose, the reduction of Ag(I) to Ag(0) was
achieved by means of an aqueous leaf extract of Convolvulus cneorum. In the presence of
Hg, a LSPR band shift to blue took place, providing an LOD of 5 ppb Hg.

Firdaus et al. [70] described a portable sensing approach for Hg(II) using AgNPs as
receptors. The yellowish brown color of AgNPs became colorless in the presence of Hg(II)
as result of the redox process (Figure 5A). Color processing in the PAD was carried out by
the application ‘mercury detector’, available on the Google Play store. An LOD of 0.86 ppb
Hg was achieved in the solution using digital image-based colorimetry.

Dey et al. [71] reported on a sensor for mercury based on a novel oxacalix[4]arene
derivative, i.e., diacetamido-oxacalix[4]arene (DAOC), used for the stabilization of AgNPs
(DAOC-AgNPs). The surface of the templated AgNPs was modified with rhodamine. These
sensors based on oxacalix[4]arene (without or with modification with rhodamine) were
seen to be selective toward MeHg+, providing an LOD of 1.7 nM (0.34 ppb), much lower
than the EPA standard limit. The color change is explained through a mercury-induced
oxidation of DAOC-AgNPs, which results in the formation of an Ag–Hg nanoalloy.
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An inkjet-printed paper-based colorimetric sensor with AgNPs, along with a smart-
phone and RGB color detection, was developed by Shrivas et al. [72] (Figure 5B). A color
change from yellow to colorless was observed in the presence of Hg(II). A reaction mecha-
nism responsible for the color change was proposed as a result of the interaction of Hg(II)
and a PVP stabilizing agent employed as a capping agent for AgNPs, and an oxidation of
Ag0 to Ag+. An LOD of 10 ppb was obtained.
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AgNPs synthesized through an eco-friendly procedure based on Achillea Wilhelmsii
extracts were used to design a colorimetric paper-based sensor for monitoring Hg. A
smartphone was employed for capturing images. A change in color from brown to colorless
was achieved upon the addition of Hg(II) to the sensor. An LOD of 28 × 10−9 M Hg in
aqueous solution and 0.3 × 10−6 M in the coated paper substrate were obtained [73].

4.2. Fluorescent Nanoparticles

A wide variety of luminescent nanomaterials have been employed as recognition ele-
ments and signaling agents in PADs. In most contributions, conventional instrumentation
for performing luminescent measurements has been applied in conjunction with nanos-
tructured materials, yet color measurements of the fluorescence emitted on PADs have
been accomplished by capturing images of the radiation reflected and further processing.
Among these nanomaterials, inorganic quantum dots (QDs) [74], carbon quantum dots
(CQDs), graphene quantum dots (GQDs) [75,76] and metal nanoclusters (NCs) [77] have
found applications for the detection of heavy metals, including Hg. The benefits of these
nanomaterials in comparison with their organic counterparts rely on their unique optical
properties, including much higher luminescent quantum yields and better photostability.
Selectivity is commonly conferred by suitable surface functionalization.

4.2.1. Quantum Dots

Quantum dots (QDs) are nanocrystals with a size of typically less than 10 nm that
are made of different semiconductor materials and possess excellent photoluminescent
characteristics [74].

Several PADs have been reported based on the fluorescent properties of QDs but
also on their catalytic activity for oxidation of some chromogenic reagents such as 3,3,5,5-
tetramethylbenzidine (TMB). Thus, CdSe/ZnS QDs exhibited enhanced catalytic activity
in the oxidation of 3,3,5,5-tetramethylbenzidine (TMB) under visible light in the presence
of Hg(II) [78]. The intensified blue color obtained as a result of this process can be detected
with the naked eye or by the image capture using a smartphone, along with an image-
processing software (Figure 6A). A paper-based sensor was built to perform the assay. An
LOD of 0.09 µM Hg was achieved. The method was quite selective and was applied to real
samples, such as tap water and cosmetics. The main drawback was the limited LOD (ca.
18 ppb) in comparison with well-established techniques such as cold vapor coupled with
AAS, AFS and ICP-MS.

A fluorescent sensor was described by Guo et al. [79], based on MoS2 QDs func-
tionalized with boronic acid for label-free detection of Hg(II) in environmental waters.
Fluorescence quenching caused by Hg(II) can be observed with the naked eye under
UV lamp irradiation. An LOD of 1.8 nM can be achieved. A mechanism of the Hg(II)
ion-promoted transmetalation reaction of aryl boronic acid was proposed.

The ion-imprinting technique displays great potential for increasing the selectivity of
recognition events in sensing template ions (Figure 6B) [80]. A novel three-dimensional (3D)
origami ion-imprinted polymers (IIPs) µ-PAD for the multiplexed detection of Cu(II) and
Hg(II) through the combination of microfluidic and imprinting technology was described.
For this, CdTe QDs were grafted on the surface of glass fiber paper. The complex formation
between Hg, Cu IIPs and CdTe QDs caused the fluorescence quenching of CdTe QDs. Three-
dimensional origami µ-PADs with a ‘Y’ type channel were built. Good and reproducible
results were obtained for the analysis of lake water and seawater. The LODs were 0.056
and 0.035 ppb for Hg and Cu, respectively. A main concern related to the use of inorganic
QDs as recognition elements in PADs is the presence of Cd (a very toxic metal) within their
composition.

4.2.2. Carbon Quantum Dots and Graphene Quantum Dots

Carbon quantum dots (CQDs), also known as carbon dots (CDs), are spherical nanopar-
ticles with a typical size of less than 10 nm, and similarly to QDs, they display strong
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luminescent properties. In order to improve their luminescent quantum yields, doping is
usually carried out, i.e., by introducing N and S in their composition. Unlike CDs, GQDs
are also strongly luminescent disks (nanosheets) of graphene with a size of 2–20 nm [74,75]

N,S-doped GQDs integrated in a paper strip have been used for the detection of Hg in
wastewater (Figure 6C). Fluorescence quenching occurs in the presence of Hg as a result
of its interaction with S atoms. Some sample pretreatment was required to avoid matrix
effects such as filtration and solid-phase extraction. The fluorescence color was captured
with a digital camera following UV irradiation [81].

A sponge cellulose fluorescence spherical (CS-CDs) was synthesized from carboxy-
lated cellulose spheres (CCS) and citric acid (CA) and polyethylenimine (PEI) as carbon
source and nitrogen doping reagents, respectively, to form CDs. Due to their porous
structure, these sensors can detect ions rapidly. The detection of Cu(II) and Hg(II) was
carried out under both natural light and UV light by recording color changes with a digital
and mobile cameras. Selective detection of Hg(II) with an LOD of 26 nM was achieved,
and its application to the analysis of tap and river water was performed. Unlike most of
the PADs reported for Hg(II) sensing, which are suitable for single use only, this approach
allows reusability and easy transport for on-site analysis [82]. Particularly, CS−CDs were
recyclable/reusable up to six cycles by EDTA treatment.

Patir et al. [83] developed an assay for the detection of Hg(II) and Cu(II) on cellulose
substrates following an on–off–on strategy. For this, N-doped CDs were synthesized from
urea EDTA. The LOD obtained with the PAD for Hg was 0.1 µM. Fluorescence quenching
occurs with both metal ions, but the quenched fluorescence is recovered (on) when ascorbic
acid (for Hg) and citrate (for Cu) are present, and hence, both metal ions can be quantified.

Dual-colored CDs were applied by Wang et al. [84] to build a ratiometric assay for
detecting Hg with the naked eye. The mechanism for this assay was based on quenching
caused by Hg due to the aggregation of blue CDs, whereas the unaffected red fluorescence
allowed its use as an internal reference.
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Figure 6. (A) Scheme of PAD based on the enhanced photocatalytic activity displayed by CdSe/ZnS QDs on TMB oxidation
under visible light in the presence of Hg(II) [78]; (B) preparation of an ion-imprinted polymer and grafting onto glass fiber
paper to build a 3D origami µ-PAD (Paper@QDs@IIP) [80]; (C) scheme showing the detection of Hg(II) based on turn-off
fluorescence of N,S-GQDs; the N atoms enhance the fluorescence quantum yield while S atoms serve as the active sites for
Hg(II) coordination [81]; (D) distance-based micro-PAD for the detection of Hg(II) using nitrogen-doped CDs as fluorescent
probes [85]. Figure 6A-D is reproduced with permission of Elsevier [78,80,81] and the Royal Society of Chemistry [85].
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A fluorescent distance-based paper device, coupled with an evaporating preconcentra-
tion system, was reported for detecting Hg(II) in water [85] (Figure 6D). For this purpose,
nitrogen-doped carbon dots (NCDs) were used as fluorescent probes following a turn-off
process. The heating preconcentration improved the LOD by a factor of 100 times. The
LOD, detected with the naked eye under UV light, was 5 ppb Hg(II), which was low
enough to establish the quality of drinking water according to the maximum contamination
level regulated by the WHO.

NCDs were employed on filter paper as probes to build a fluorescent assay for Hg(II).
The fluorescence of NCDs was effectively quenched by Hg(II). A smartphone was applied for
capturing images of the paper chip under UV LED irradiation [86]. An LOD of 1.07 × 10−8 M
was achieved. A non-radiative electron-transfer process from the excited states to the d orbital
of Hg and the combination between Hg and N on the surface of CDs to form a non-fluorescent
complex were proposed to explain the fluorescence quenching caused by Hg.

A µ-PAD was described using fluorescence labeled single-stranded DNA (ssDNA)
functionalized graphene oxide (GO) for the multiplexed detection of Hg(II), Ag(I) and
aminoglycoside antibiotics [87] (Figure 7A). An LOD of 121 nM was achieved for Hg.
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Figure 7. (A) Scheme showing a µ-PAD for multiplex detection of chemical contaminants using
ssDNA-functionalized GO sensors. (1) Design of the µ-PAD. (2) and (3) show the metal ions detec-
tion mechanism based on the interaction among GO, ssDNA and heavy metals; quenching of the
fluorescence occurred when Cy5-labeled ssDNA was adsorbed on the GO surface (2, fluorescence
OFF). In the presence of the metal ions, ssDNA spontaneously released from the GO surface yielding
fluorescence recovery (3, fluorescence ON); (4) and (5) show the principle of antibiotic detection
based on the interaction between GO, ssDNA and antibiotics; the fluorescence was partly quenched
when Cy5-labeled ssDNA was adsorbed with low GO concentration (4, fluorescence ON); in the pres-
ence of the aminoglycoside antibiotic, the antibiotic-probe duplex increased the bind effect between
the duplex and GO surface through amide coupling, yielding a decrease in fluorescence intensity
(5, fluorescence OFF) [87]. (B) (1) Schematic diagram showing the preparation of a paper-based
sensor with Py_BSA-AuNCs as receptors; (2) fluorescence color changes observed on test paper
strips with Py_BSA-AuNCs following interaction with Hg(II) at different concentration (1 mM–1 nM)
under UV light at 365 nm; (3) XPS spectrum of Py_BSA-AuNCs before and after addition of Hg(II)
(Inset showing the XPS spectrum of the Au 4f band and Hg 4f band) [88]. Figure 7A,B is reproduced
with permission of Elsevier [87,88].
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4.2.3. Metal Nanoclusters

Metal nanoclusters (NCs) made of Au, Ag, Cu, etc., with a size of less than 2 nm, does
do not undergo the SPR effect, unlike metal nanoparticles (NPs), but they possess strong
luminescence [77].

Bothra et al. [88] developed a nanosensor based on pyridoxal conjugated red fluores-
cent bovine serum albumin (BSA)-Au nanoclusters for the nanomolar detection of Hg(II)
(Figure 7B). For on-site detection, a paper-based sensor was built via covalent anchoring of
the nanosensor on cellulose paper. In the presence of Hg(II), the fluorescence of AuNCs
was selectively quenched and the red fluorescent color observed under UV light changed
to blue. An LOD of 31.9 nM Hg(II) was achieved. On-site monitoring of Hg(II) using
cost-effective paper strips is feasible.

A ratiometric fluorescence probe based on Tb(III)/BSA-gold nanoclusters (AuNCs)
conjugates was developed for the detection of Hg(II) [89]. In this probe, BSA-AuNCs
served the purpose of signaling, whereas Tb(III) was used as the build-in reference. The
probe is highly selective toward Hg(II) when present along other common environmentally
and biologically relevant metal ions. An LOD of 1 nM can be achieved. A paper-based
visual sensor was prepared by dripping the probe onto filter paper and underwent UV
illumination with a hand-held UV lamp, which allowed for the observation with the naked
eye of a Hg concentration as low as 0.1 µM.

4.3. Other Nanoreceptors

Curcumin nanoparticles (CURNPs) were shown to selectively respond to Hg(II). A
change in color from yellow to light yellow occurred on a PAD as a result of complexation
between Hg(II) and CURNPs. Although a relatively high LOD was observed (0.17 ppm),
sensitivity was increased by multiple additions on the PAD to reach an LOD of 0.003 ppm
Hg [90].

The oxidation of the 3,3,5,5-tetramethylbenzidine (TMB) by H2O2 can be catalyzed
in the presence of PtNPs, giving rise to a blue color. However, when Hg(II) is present in
the medium, this process is inhibited. The detection can be made with the naked eye, yet
lower Hg concentrations can be detected after capturing images with a digital camera or
smartphone to reach an LOD of 0.01 µM [91].

Upconversion (UC) luminescence allows emission in the visible region after excitation
by near-infrared radiation. This strategy shows some advantages, such as decreased pho-
tobleaching and autofluorescence interference. Rare-earth-doped b-NaYF4 nanoparticles
(NPs) have proven to be highly efficient systems for UC luminescence. An upconver-
sion luminescence resonance energy transfer (UC-LRET) sensor was developed by Li and
Wang [92] for the detection of Hg(II) in the range of 5 nM to 10 µM in water samples. An
LOD of 3.7 nM was obtained. For this, NaYF4:15%Yb3+,5%Er3+ NPs were functionalized
with rhodamine B thiolactone (RBT). A hydrogel of this nanocomposite was dropped onto
a filter paper. After irradiation with diode laser (980 nm), the green upconversion emission
was captured with a digital camera. The sensor showed a great sensitivity and selectivity
for Hg in a broad range of pH.

Table 2.: The main applications of PADs for the detection of Hg based on nanomaterials.
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Table 2. Applications of nanomaterials as receptors in paper-based analytical devices (µ-PADs and paper-based sensors) for
the detection of Hg(II).

Material Type of PAD Recognition Element Signal Readout Sample/Matrix LOD (ppb) Ref.

Nitrocellulose
membrane Lateral flow strip * DNA-conjugated

AuNPs Visual detection River water
Tap water 0.02 [58]

Filter paper Paper-based sensor ssDNA-AuNPs Smartphone Pond water
River water 10 [59]

Nitrocellulose
membrane Lateral flow strip *

Thiol-modified
ssDNA-
AuNPs

Visual detection
and digital
camera

Waters 0.005 (naked eye)
0.0015 (quantitative) [60]

Nitrocellulose Paper-matrix array *
ssDNA-AuNPs;
Signal-enhanced
by Ag(I) reduction

Scanner Tap water
Lake water

0.0005
(500 times better
after signal
amplification)

[61]

Cellulose
nanofiber

AuNPs@CNF *
membrane AuNPs Naked eye Water 0.2 [62]

Filter paper
(salinization) µ-PAD

N,N0-bis(2-
hydroxyethyl)
Dithiooxamide-
AuNPs

Naked eye and
digital camera

Salmon fish
and dust storm
days

3 [63]

Filter paper Paper-based sensor AgNPs, AgNPls Naked eye and
Digital camera

Drinking water
Tap water

120
(2 after
preconcentration)

[65]

Cellulose µ-PAD * AgNPs Digital camera Waters 1 [66]

Whatman paper
No. 1 µ-PAD * AgNPs Smartphone Waters

(tap, pond, etc.)

3
(1 after
preconcentration)

[67]

Whatman paper
No. 1 Paper-based sensor Glucose-AgNPs Digital camera --- 20 (colorimetry)

200 (naked eye) [68]

Whatman paper
No. 1 Paper-based sensor AgNPs

(photosynthesis)
Naked eye and
photometry

Aqueous
solutions

5 (photometry)
5 × 103 (naked eye) [69]

Whatman filter Paper-based sensor * AgNPs Smartphone River water 0.86 [70]

Whatman paper
No. 1

Paper-based sensor
(CH3Hg+)

Oxalicalix[4]arene-
AgNPs

Colorimetry,
fluorimetry,
Naked eye

Waters
0.34 CH3Hg+

(colorimetry)
14 (paper strip)

[71]

Whatman
(Different papers) Paper-based sensor AgNPs Smartphone Waters

(River, pond, etc.) 10 [72]

Filter paper Paper-based sensor AgNPs Smartphone Waters 5.6 (in solution)
60 (PAD) [73]

Filter paper Paper-based sensor CdSe/ZnS and
TMB

Smartphone
and naked eye

Cosmetic cream
Tap water ca. 18 [78]

Filter paper Paper-based sensor MS2 QDs Naked eye under
UV lamp Waters 0.36 (fluorimetry)

2 (naked eye) [79]

Filter paper 3D Origami m-PAD Grafted CdTe QDs
(Paper@QDs@IIPs) Fluorescence Lake water,

Seawater 0.056 [80]

Filter paper Paper strip N,S-codoped GQDs Digital camera Wastewater 0.028 (fluorimetry) [81]

Carboxylated
Cellulose spheres

Fluorescent spherical
sponge cellulose
(Cu, Hg, Al)

CDs

Digital and
mobile
cameras after
UV irradiation

Tap water
River water 5.2 (Hg) [82]

Filter paper µ-PAD
(Hg, Cu) N-doped CDs Digital camera

(UV irradiation) Tap water 1.24 Hg (fluorimetry)
20 Hg (m-PAD) [83]

Filter paper Paper-based sensor CDs Naked eye
(UV irradiation)

Tap water
Lake water 0.028 (fluorimetry) [84]

Filter paper
(Different types)

Distance-based
µ-PAD N-doped CDs Naked eye

(UV irradiation)

Drinking water
tap water, pond
water

5 (after preconc.) [85]
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Table 2. Cont.

Material Type of PAD Recognition Element Signal Readout Sample/Matrix LOD (ppb) Ref.

Filter paper Paper-based sensor
(UV LED irradiation) N-doped CDs Smartphone --- 2.14 [86]

Whatman No. 1
paper

µ-PAD
(Hg, Ag, antibiotics)

Fluorescent ssDNA-
functionalized
graphene
oxide

Scanner Spiked water 24.2 (Hg) [87]

Filter paper Paper-based sensor *
BSA-AuNCs
(conjugated with
Pyridoxal)

Naked eye Fish, tap water,
River water

6.38 (fluorimetry)
0.2 (naked eye) [88]

Filter paper Paper-based sensor BSA-AuNCs and
Tb(III) (reference)

Naked eye
(UV irradiation)

Biological
samples

0.2 (fluorimetry)
20 (naked eye) [89]

Whatman paper
No. 1 Paper-based sensor Curcumin NPs Digital camera Waters

(several types)
170 (direct)
3 (Prec.) [90]

Filter paper Paper-based sensor * PtNPs and TMB
Digital camera
and
Smartphone

Pond water
Tap water 2 [91]

Filter paper Paper-based sensor

NaYF4:Yb3+/Er3+

NPs
Functionalized
With RBT

Digital camera
after
diode laser
irradiation
(980 nm)

0.74 (in solution) [92]

Filter paper Paper-based sensor
fluorescent
nanoaggregates
(FNAs)

Naked eye
(UV irradiation)

Tap water, pond
water
seawater

4 (Hg2+)
18 (CH3Hg+)
(fluorimetry)

[93]

* PADs providing an LOD equal or below the maximum contaminant level fixed by US EPA.

5. Hg Speciation Using PADs

So far, strategies for the speciation of Hg2+ and CH3Hg+ using PADs have been very
scarce [71,92]. Oxacalix[4]arene-templated silver nanoparticles modified with rhodamine
B to induce fluorescence as a sensor for the detection of CH3Hg+ was attempted [71].
Three platforms were employed for the immobilization of the receptor, i.e., cellulose strip,
zeolite imidazole framework and alginate beads. For discrimination between Hg2+ and
CH3Hg+, an addition of EDTA was needed, which acts as a masking agent toward Hg2+.

Fluorescent nanoaggregates (FNAs) on phenanthroline-based amphiphiles, which are
sensitive to Hg2+ and CH3Hg+ [93]. A paper-based sensor was built for on-site detection.
Fluorescence quenching was caused by both species, but it was higher for Hg(II) and,
moreover, CH3Hg+ required more time (ca. 10 min) to provide a response. Thiolated
aminoacids were seen to bind the metal ion center to form a tertiary complex. This
facilitates the charge transfer interaction and destabilizes the nanoaggregates. The LODs
for both Hg(II) and CH3Hg+ were 4 and 18 ppb, respectively.

6. Conclusions and Outlook

In this overview, state-of-the-art PADs for Hg monitoring in environmental waters
have been outlined. With some exceptions, most PADs do not reach the sensitivity required
to cope with the Hg levels imposed by the main regulations on drinking water monitoring.
For many µ-PADs, the LODs reported are mostly in the ppm region, while a detection
ability at the ppb level at least should be required for suitable monitoring of Hg(II) in
waters. This drawback can be alleviated when nanomaterials are implemented as receptors
in PADs instead of conventional chromogenic/fluorogenic reagents, yet LODs at the
ppb level are reported in many cases when nanomaterial-based assays are carried out
in a solution format in combination with benchtop analytical instruments (e.g., UV-vis
spectrophotometer, fluorimeter).

So far, most PADs developed for Hg(II) detection have been tested directly with
synthetic solutions or spiked water samples. However, other, more complex samples
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typically require some sample pretreatment (e.g., extraction, digestion, masking, etc.) to
yield Hg(II) ions in solutions.

Other shortcomings may also arise when PADs based on nanoparticle receptors are
applied to real samples due to matrix effects. Thus, capping agents and recognition
elements attached to the NP surface can be greatly affected by the high ionic strength and
extreme pH values present in many samples. Thus, the main weakness of nanomaterial-
based sensors is their limited stability to tackle Hg detection in complex real samples,
e.g., seawater, wastewater, biological matrices, etc. As an example, those PADs based
on aggregation phenomena of plasmonic NPs are prone to instability, which makes their
application troublesome.

In addition, PADs reported for Hg(II) detection are intended for single use and very
few publications include studies to evaluate their potential reversibility. The time to reach
readout with PADs is highly variable. Thus, the analytical response is commonly achieved
almost immediately with PADs, even though non-negligible pretreatment or incubation
times can be required for optimal response, thus leading to longer analysis times [51,59,64].
In addition, analysis times can be substantially increased (e.g., 2–12.5 h [65,68,90]) when
enrichment steps are required to achieve adequate sensitivity. Among others, headspace
sampling, filtration, solid-phase extraction and dropwise addition and evaporation have
been reported for the determination of Hg species. In any case, realistic analysis times
considering not only the time required for obtaining a noticeable response but also to
perform the measurement (e.g., with flatbed scanners after an undefined drying time)
should be clearly provided in future works.

Particular attention should also be paid to selectivity studies. In fact, nonrealistic
concentration levels of potential interferences are considered in several studies (e.g., 1- to
10-fold interferent-to-Hg species ratio). The tolerance of PADs to potential interferences
should be studied in sufficient detail to clearly identify the applicability of developed PADs
for the analysis of real samples.

New advances are also needed so as to tackle the main challenges posed by Hg
monitoring in the different environmental compartments. The detection of methyl-mercury
in environmental samples is of paramount importance, given the enhanced accumulation
ability and toxicity displayed by this Hg species, so more attention should be paid to the
design of PADs for Hg speciation. Improvements can be expected in next years in the
design of more stable, selective and sensitive recognition elements anchored onto cellulose
scaffolds as well as more efficient strategies for the preconcentration of Hg integrated
with PADs.
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Abbreviations

AgNPs silver nanoparticles
AgNPls silver nanoplates
AFM atomic force microscopy
AuNCs gold nanoclusters
AuNPs gold nanoparticles
AuNRs gold nanorods
BSA bovine serum albumin
BV biliverdin
CA citric acid
CCS carboxylated cellulose spheres
CDs carbon dots
CHEF chelation-enhanced fluorescence
CNF cellulose nanofibrilatted
CQDs carbon quantum dots
CS-CDs sponge cellulose fluorescence spherical
CuNPs copper nanoparticles
CURNPs curcumin nanoparticles
CV-AAS cold vapor-atomic absorption spectrometry
CV-AFS cold vapor-atomic fluorescence spectrometry
DAOC di-acetamido-oxacalix[4]arene (DAOC)
DNA deoxyribonucleic acid
EDTA Ethylenediaminetetraacetic acid
ETAAS electrothermal atomic absorption spectrometry
FNAs Fluorescent nanoaggregates
GLU glucose
GO graphene oxide
GQD graphene quantum dots
HEPES 2-[4-(2-hydroxyethel) piperazine-1-yl]ethanesulfonic acid
ICP-MS inductively coupled plasma-mass spectrometry
ICTs information and communication technologies
IFP infrared fluorescence protein
LED Light emitting diode
LOC Lab-on-chip
LOD limit of detection
LRET luminescence resonance energy transfer
LSPR localized surface plasmon resonance
MBA mercaptobenzonic acid
NCs nanoclusters
NCDs nitrogen-doped carbon dots
NPs nanoparticles
PADs Paper-based analytical devices
µPADs microfluidic paper-based analytical devices
PET photoinduced electron transfer
PEI polyethylenimine
ppb parts-per-billion
ppm parts-per-million
PtNPs platinum nanoparticles
Py pyridoxal
QDs quantum dots
RDV rhodamine appended vinyl ether
RGB red green blue
SA-LFS signal-amplified lateral flow strip
SERS surface-enhanced Raman scattering
SA-LFS signal-amplified lateral flow strip
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SPR surface plasmon resonance
ssDNA single-strand DNA
TLm 6-thienyl-lumazine
TMB 3,3,5,5-tetramethylbenzidine
TXRF total reflection X-ray fluorescence
USEPA United States Environmental Protection Agency
UC upconversion
UV ultraviolet
WHO World Health Organization
XPS X-ray photoelectron spectroscopy
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