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ABSTRACT

Gene regulation plays a fundamental role in shap-
ing tissue identity, function, and response to per-
turbation. Regulatory processes are controlled by
complex networks of interacting elements, includ-
ing transcription factors, miRNAs and their target
genes. The structure of these networks helps to de-
termine phenotypes and can ultimately influence the
development of disease or response to therapy. We
developed GRAND (https://grand.networkmedicine.
org) as a database for computationally-inferred,
context-specific gene regulatory network models
that can be compared between biological states, or
used to predict which drugs produce changes in reg-
ulatory network structure. The database includes 12
468 genome-scale networks covering 36 human tis-
sues, 28 cancers, 1378 unperturbed cell lines, as
well as 173 013 TF and gene targeting scores for
2858 small molecule-induced cell line perturbation
paired with phenotypic information. GRAND allows
the networks to be queried using phenotypic in-
formation and visualized using a variety of interac-
tive tools. In addition, it includes a web application
that matches disease states to potentially therapeu-
tic small molecule drugs using regulatory network
properties.

GRAPHICAL ABSTRACT

INTRODUCTION

Gene expression is controlled by complex networks of in-
teracting factors within the cell that help define cellular,
tissue and organismal phenotypes, and that allow cells to
respond to external and internal perturbations. Dysregu-
lation of these regulatory processes can lead to disease,
including cancer (1,2). Although multiple factors play a
role in gene regulation (3,4), the most common regulators
are transcription factors (TFs) and microRNAs (miRNAs).
miRNAs are small non-coding RNAs involved in mRNA
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post-transcriptional regulation. In most cases, miRNAs
bind to short complementary sequences within the 3′ un-
translated regions of mRNAs, causing mRNA degrada-
tion or translational repression, and thereby silencing their
target mRNA (2,5). TFs bind to TF-specific motif se-
quences in the promoter regions of their target genes
and modulate gene expression by interacting or inter-
fering with other key transcriptional proteins including
RNA polymerase (4,6). Several experimental techniques
such as ChIP-seq (7) and ChEC-seq (8) allow measure-
ment of the binding of TFs across the genome, provid-
ing evidence of regulatory associations. However, such ex-
periments typically only look at small numbers of tran-
scription factors and are not scalable to population level
studies.

Because large-scale experimental determination of
context-specific regulatory processes has proven chal-
lenging, there is a growing recognition of the need for
methods to infer gene regulatory networks (GRNs) and
for comparing regulatory network architectures between
phenotypes or experimental groups. The rapidly growing
volume of genomic and transcriptomic data in human
health (9) and disease (10) has greatly facilitated the
development of GRN inference methods using bulk
tissue data (11–16) and single-cell data (17–23) and has
provided the validation data necessary to refine and tune
these methods. Similarly, the availability of data sets that
include both transcriptional profiling and phenotypic
response to perturbagens, including small molecule drugs
(24–26), provide opportunities to study how expression
and regulatory network structures correlate with pheno-
type. Several web resources were developed recently to
provide users with online inference tools and databases
of computationally-predicted context-specific networks
(27–30). For example, iNetModels (31) has a catalog of
coexpression networks in normal and cancer tissues as well
as integrated multi-omic networks. ChEA (32) aggregates
several sources of evidence to infer upstream TF regulators
of a given gene list. Additional examples include Tar-
getScan (33) that predicts miRNA targets and GIANT (30)
that predicts tissue-specific networks for a gene of interest
using Bayesian integration over a large set of data sources
to generate hypotheses about functional associations.
Finally, GRNdb (27) provides a set of regulatory networks
predicted by SCENIC (17) using bulk and single-cell data,
however, the lack of interactive visualization as well as
the lack of availability of the source code of network
inference and analysis pipeline could challenge community
engagement and reproducibility. The above-mentioned
resources were built using approaches that require several
gene expression samples to infer context-specific, aggregate
GRNs across all samples. However, none of them consider
sample-specific GRNs to account for essential differences
in phenotypic variation between patients such as sex,
age, and ethnicity. In particular, there is a lack of GRN
modeling in the Cancer Cell Line Encyclopedia (CCLE)
database (34), which provides gene expression samples for
more than 1376 cell lines with a single gene expression
sample for each cell line. In this case, aggregate methods fail
to compute GRNs for individual CCLE cell lines because
they require several samples.

Since 2013, our research group has developed and vali-
dated a collection of GRN inference tools designed to work
with various input data (35–39). This family of tools is
collectively referred to as the ‘Network Zoo’ (netzoo; net-
zoo.github.io). The baseline method in netzoo, PANDA
(35), is derived from the understanding that TFs can inter-
act with their target genes to activate or repress the expres-
sion of those genes. It also recognizes that some TFs ex-
ert their influence as part of multi-TF complexes and that
genes that are regulated by the same TFs are likely to ex-
hibit similar patterns of expression. Consequently, PANDA
takes as input (i) an initial regulatory network based on
mapping TFs to their potential target genes in the genome
based on TF binding motifs, as well as (ii) protein–protein
interaction (PPI) data and (iii) the gene co-expression re-
lationships across the samples being studied. PANDA then
uses message passing (35) to iteratively search for agreement
between these data sources until it arrives at an optimal net-
work structure. This conceptual framework is flexible in that
other sources of regulatory information and constraints can
be introduced. For example, PUMA (36) extends PANDA
by including miRNAs as regulators of expression, while LI-
ONESS (37) uses a linear interpolation approach to extract
single-sample networks for each research subject (or biolog-
ical sample) in a study population. OTTER (38) estimates a
gene regulatory network by optimizing graph matching be-
tween three networks derived from the three input datasets.
DRAGON (39) builds a multi-omic network using a varia-
tion of Gaussian Graphical Models (GGMs) by implement-
ing covariance shrinkage to estimate partial correlations.

We previously used the netzoo methods, particularly
PANDA and LIONESS, to infer tens of thousands of GRN
models. We analyzed these networks in a number of pub-
lished studies, including GRN comparison of 36 ‘normal’
tissues and two cell lines from the Genotype Tissue Expres-
sion (GTEx) project (36,40,41) and six cancers from The
Cancer Genome Atlas (TCGA) (38,42–44). Although each
study included detailed descriptions of the data and meth-
ods used to generate these networks, there was no appropri-
ate data repository for publishing, querying, and visualiz-
ing the GRN models themselves due to the large number of
genome-scale networks with millions of edges that required
more than 6TB of data storage. Given that the inference of
these networks took thousands of computational hours, we
recognized that the lack of an appropriate network reposi-
tory to host thousands of network models created substan-
tial obstacles to the reuse of our published network models
to investigate additional questions.

To address the need for such a resource and to facili-
tate the query and analysis of these networks, we created
the Gene Regulatory Network Database (GRAND; https:
//grand.networkmedicine.org). GRAND catalogs curated
networks created using netzoo tools together with sample-
specific phenotypic information. To supplement the exist-
ing collection of networks, and to allow comparison of
health and disease phenotypes with perturbations arising
from treatment with small molecule candidate therapeutic
compounds, we generated additional 173 013 TF and gene
targeting scores, corresponding to the weighted outdegree
for TFs and weighted indegree for genes (44). These scores
were derived from network models of cell lines treated with
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2858 small molecule compounds cataloged by the Connec-
tivity Map (24) project, 1376 cell line networks from the
CCLE database (34) accounting for TF and miRNA regu-
lation, and 22 cancer types from TCGA. In total, GRAND
contains 12 468 GRNs representing samples from 36 hu-
man tissues, 28 cancer types, 1378 cell lines, and 2,858 small
molecule screening assays. The majority of these networks
model cis-transcriptional regulation at the TF level, and a
subset of networks model post-transcriptional regulation
using miRNA information. Our goal is to continue to grow
both the number and diversity of network types in GRAND
as the field of GRN inference evolves and to add new ana-
lytical tools as more phenotypes and experimental samples
become publicly available.

DATA COLLECTION AND DATABASE CONTENT

Overview of network models in GRAND

GRNs in GRAND are built on the conceptual framework
first presented in PANDA in which we model GRNs ex-
plicitly as the interaction between TFs and their target
genes (Figure 1A). GRAND includes additional network
inference tools to model the regulation between miRNAs
and their target genes (PUMA), to build single-sample
GRNs (LIONESS), to construct GRNs using relaxed graph
matching (OTTER), and to use Gaussian Graphical Mod-
els to build multi-omic networks (DRAGON). Our start-
ing point in assembling GRAND was the collection of
network models we had previously constructed using data
from GTEx, TCGA, and GEO (36,38,40,41,45) (Figure 1B
and C). To these, we added network models inferred using
data available from the Connectivity Map (CMAP) project
(24) and CCLE (34). The CMAP project measured gene
expression in human cell lines after exposure to a combi-
nation of 2858 approved and investigational drugs and ad-
ditional chemical compounds. The CCLE collected multi-
omic data––miRNA and gene expression, methylation, hi-
stone marks, and protein levels––for >1000 cell lines (Sup-
plementary Table S1). These networks can be selected using
phenotypic information (Supplementary Figure S1) and vi-
sualized on the browser using a dedicated module (Figure
2).

GENE REGULATORY NETWORKS

Small molecule resource

The Connectivity Map phase I (24) and phase II (26)
amassed gene expression profiles for human cell lines ex-
posed to various drugs and drug candidates; we selected
2858 that were cataloged in the Drug Repurposing Hub
(DRH) (46). The DRH has essential information on com-
pounds that includes drug indication, chemical structure,
and targets. This provided 173 013 gene expression profiles
(level 4) for drug exposure across normal and cancer cell
lines, doses, and sampling times that were used for GRNs
reconstruction (Supplementary Figure S2).

The Connectivity Map directly profiles the expression of
1000 genes (the L1000 genes) and uses these data to infer
the expression levels of the remaining genes. For network in-
ference, we used the complete set of 12 328 sequenced and

inferred genes (https://grand.networkmedicine.org/genes/),
also referred to as All Inferred Genes (AIG) set. For these
data, we used GPU-accelerated MATLAB implementa-
tions of PANDA and LIONESS in the netzoo package (net-
ZooM v 0.5.1) (47) to infer sample-specific GRNs for each
of the 173 013 profiles, and subsequently computed TF and
gene targeting scores for each network.

Cancer resource

The cancer resource in GRAND includes both aggregate
networks and patient-specific networks across 28 cancer
types. In total, 2811 patient-specific networks were gener-
ated for colon cancer, pancreatic cancer and glioblastoma.
The colon GRNs were derived using expression data from
445 samples in TCGA and 1193 samples found in GEO
as described previously (42) (Supplementary Figure S3).
Glioblastoma networks were generated from 953 samples
in TCGA and 70 samples from the German Glioma Net-
work (GGN) (43). Pancreatic cancer networks were gener-
ated from 150 samples from TCGA spanning both basal-
like and classical subtypes (44).

We used PANDA to generate aggregate networks for 22
cancer types in TCGA, and OTTER to generate networks
for three cancer types (breast, liver, and cervical cancer) in
TCGA (38) that were used to validate the accuracy of this
new inference tool (38). The validation of these specific net-
works using ChIP-seq data from ReMap (7) as described by
Weighill et al. (38) was added in the ‘Network Benchmark-
ing’ section.

Tissue resource

The tissue resource made use of GTEx data to construct TF
and miRNA GRNs for 36 ‘normal’ human tissues (Supple-
mentary Figure S3). We used PANDA to build the aggre-
gate TF networks (41), and PUMA to build the aggregate
miRNA networks (36). Using PANDA and LIONESS, we
also built 8279 sample-specific TF networks (37).

Cell line resource

The cell line resource includes TF and miRNA aggregate
networks built using PANDA (32) and PUMA (36), respec-
tively, for LCLs and fibroblasts in the GTEx data. Using
DRAGON, we also generated an aggregate miRNA net-
work from the 938 CCLE cell lines that had both miRNA
and gene expression measurements. Finally, we generated
1376 single-sample TF networks with LIONESS using
CCLE gene expression data from the 1376 cell lines that had
gene expression data corresponding to 35 cancer types.

ANALYSIS TOOLS IN GRAND

Finding small molecule candidates through reverse gene tar-
geting

The hypothesis underlying our GRN analysis is that
changes in the targeting of genes by TFs represents regula-
tory differences that underlie phenotypic diversity, includ-
ing the potential to respond to particular stimuli. These
analyses generally search for differentially targeted genes

https://grand.networkmedicine.org/genes/
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Figure 1. GRAND database statistics and network reconstruction pipeline. (A) Regulators (TFs) bind in the promoter region of target genes and affect
their expression, which can be represented as a bipartite graph and its adjacency matrix. (B) Representation of the largest gene expression datasets in
each of the GRAND resources. X-axis indicates the number of cancer types, tissues types, cell line tissues of origin, and drugs in each dataset. Y-axis
indicates the number of samples used to build the networks. The bubble size is scaled by the number of genes in the networks. (C) GRNs were inferred from
experimental data priors such as protein–protein interaction, gene expression and regulatory prior build from TF motifs or miRNAs predicted targets.
The network inference methods that were used are available at https://netzoo.github.io/.

https://netzoo.github.io/
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Figure 2. Gene regulatory network visualization and analysis in GRAND. Any network in GRAND can be visualized; shown in this figure are a TF GRN
(A) and a miRNA GRN (B). Users can select a subset of the network using several parameters related to the edges or the nodes, such as regulators and gene
sets, GO terms, and GWAS traits. Nodes can be scaled by expression, targeting or betweenness. (C) The targeting analysis allows users to calculate and
visualize each network’s TF and gene targeting score, and contains links to GRAND’s downstream analysis tools such as functional enrichment analysis
and drug repurposing. (D) Database design and infrastructure.
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or differential targeting by TFs and use functional enrich-
ment analysis to explore functional differences between the
biological states that are compared. In GRAND, we im-
plemented a method, CLUEreg, to extend this framework
to the identification of drugs that can potentially reverse
disease phenotypes by allowing users to search for regu-
latory changes induced by small molecule compounds and
other drugs profiled in the Connectivity Map (Supplemen-
tary methods).

TF enrichment analysis tool

Comparative gene regulatory network analysis generally
identifies ‘differential targeting’ TFs that regulate different
sets of genes in the phenotypes being compared. To help
characterize sets of TFs, GRAND implements a hypergeo-
metric test to compare a user-supplied list of TFs to a va-
riety of resources, including a list of tissue-specific differen-
tial targeting and differentially expressed TFs (41), a library
of 170 GWAS traits in which a GWAS SNP maps to a TF’s
corresponding gene (6), and a collection of TFs identified by
the Human Phenotype Ontology (48) library that includes
2440 human conditions and phenotypes. The tool computes
the P-value and the multiple testing corrected q-value to as-
sess the significance of the enrichment of the term in the
input TF query in the background of 1639 TFs encoded in
the genome (Figure 3).

DATABASE CONSTRUCTION AND USER INTERFACE

Database structure, design and implementation

The GRAND frontend was developed in Bootstrap (v 5.0)
and jQuery (v 3.3.1). Network visualization was imple-
mented in Vis.js (v 8.5.2). Bar plots, scatter charts, and
bubble plots were implemented using Chart.js (v 2.9.4)
and Highcharts.js (v 8.2.2). The backend was developed in
Django (v 3.0.5) (49) and Python (v 3.8) (50) and deployed
on a Ubuntu (v 18.04) Amazon Web Services (AWS) EC2
instance using Nginx (51) web server and SQLite (v 3.31.1)
database tool which is integrated in Django (Figure 2D).
Using Django for constructing the website was motivated
by its versatility as it integrates a frontend tool, a database
management system, and a backend tool, which provides
great ease-of-use.

GRAND contains more than 6TB of network data which
is hosted on a public AWS S3 bucket (s3://granddb). Al-
though websites such as NDEx (28) allow users to host
and visualize networks for up to 10GB of data, the size
and complexity of data in GRAND required a tailored
design approach to efficiently process queries on genome-
scale networks with millions of edges. Finally, program-
matic access to the website through the API was imple-
mented using Django REST Framework (v 3.11). The web-
site repository is version-controlled at https://github.com/
QuackenbushLab/grand.

User interface: network browsing

GRAND’s interface was designed to allow users to browse,
download, visualize and analyze the collected set of net-
works. The networks are organized by source type and in-
clude links from the homepage to browsable sets of network

models from ‘Small molecules,’ ‘Cancer,’ ‘Tissues’ and ‘Cell
lines’; these pages can also be reached using the ‘Networks’
menu item in the upper right menu bar. Each page contains
multiple links to brief ‘help’ messages that explain various
fields. Clicking on one of these collections takes the user
to a subpage where the subsets of the main classes can be
selected. Drug targeting scores are classified by the drug
name, with an interactive bubble plot that provides infor-
mation about the differentially targeted TFs and genes as
well as the number of samples in each drug. The ‘Cancer’
page classifies cancer types by tissue of origin. Three bar
plots summarize the number of samples, TFs, and genes in
each network and allow users to access the cancer type of
interest by clicking on bars within the plots (Supplementary
Figure S1A). The ‘Tissues’ page lists all 36 tissues in a data
table. A bar plot summarizes the number of sample-specific
networks available in each category (Supplementary Figure
S1A). A second bar plot categorizes networks by regulation
modality (TF or miRNA). These plots are interactive and
clicking on individual bars filters the table below. The ‘Cell
lines’ page contains networks categorized into three sets:
cancer cell line networks from CCLE, normal cell line net-
works from GTEx, and a miRNA aggregate network. Can-
cer cell lines are grouped by cancer type and an interactive
bar plot lists the number of samples in each category (Sup-
plementary Figure S1A). A second, interactive bubble plot
shows the size (number of TFs, miRNA, genes, and sample)
in each of the three sets.

Clicking on a cell line/cancer/tissue link within these
summary pages leads to an individual network page that
lists available networks for the given category. In addition,
the page provides sortable metadata used for network infer-
ence as well as additional metadata, including basic statis-
tics on the type and number of regulators, genes, and sam-
ples used to reconstruct the network. In the ‘Cancer’ and
‘Tissues’ sections, the sample number links to the pheno-
typic variables associated with each sample (Supplemen-
tary Figure S1B). In the ‘Cell line’ and ‘Small molecules’
sections, information is provided on the cell line and drug
dosage as appropriate. In the ‘Small molecules’ page, click-
ing the ‘Genes’ column opens a table containing the gene
names and their attributes. In all pages, clicking on the entry
in the ‘Reference’ column either links to the relevant pub-
lished study, or, for the ‘Small molecules’ page, to the rele-
vant entry in PubChem. Each drug in the ‘Small molecules’
section includes a panel with information about the drug
indication, its chemical structure, and several relevant pa-
rameters compiled from the DRH (46) and the Connec-
tivity Map (24) (Supplementary Figure S2). In addition to
the network information page, relevant metadata about the
samples used in the analysis are available in the ‘Phenotypic
information’ table.

The networks and associated metadata can be down-
loaded, either in bulk or individually, from both the web
interface and the API. Users can specify whether to down-
load the networks as either TF-by-gene adjacency matrices
using the ‘Adj’ button or lists of TF-gene edges using the
‘Edge’ button. The ‘Vis’ button links to the integrated vi-
sualization module that allows users to produce interactive
graphs of regulatory networks (see the section on network
visualization below).

https://github.com/QuackenbushLab/grand
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Figure 3. Analysis tools and the web server functionalities in GRAND. A list of up-targeted and down-targeted genes or TFs computed from a weighted
bipartite network are given as an input to CLUEreg, which then computes similarity scores to the targeting scores of 19 791 small molecules to find the
single and combination candidates that reverse or exacerbate the input signature. A second feature allows users to perform an enrichment analysis of a
list of TFs against four TF sets: TFs linked to disease phenotypes through GWAS or the Human Phenotype Ontology and differentially expressed or
differentially targeting TFs in specific tissues.

Finally, reflecting our commitment to reproducible re-
search, clicking on the ‘Code’ button in each network links
to the code used to generate the networks along with in-
formation about the parameters used in the analysis. For
networks generated using MATLAB, the code is provided
as ‘.m’ files, while for Python and R, Jupyter notebooks are
provided that can be run through the webserver ‘netbooks’
(http://netbooks.networkmedicine.org).

User interface: network visualization

The network visualization tool can be accessed through the
‘Vis’ button in the network table and through the pheno-
typic variable plots. The network visualization page con-
tains a ‘network’ tab and a ‘targeting’ tab. The ‘network’ tab
has a selection panel that allows users to plot a TF (Figure
2A) or miRNA (Figure 2B) subnetwork using several pa-
rameters, such as the number of edges and edge weights fil-
tered by absolute or signed values. The ‘Prior’ edges option
plots network edges supported by the presence of a TF mo-
tif in the promoter region of target genes or miRNA target
predictions. Node sizes can be scaled by the targeting score
of each node, the average gene expression of the node, or
the betweenness centrality of each node in the subnetwork.
A regulator (TF or miRNA) and gene list submission form
allows users to enter a gene or TF list of interest in both
ENSEMBL gene ids and gene symbols to be selected in the
network view. An additional GWAS form allows selection
of genes by GWAS traits from the GWAS catalog (52). A

GO term form allows input of GO terms to select a subnet-
work of the term of interest.

The ‘targeting’ tab (Figure 2C) computes gene and TF
targeting scores in the network and allows selection based
on the same parameters as in the network tab. In addition,
after plotting targeting scores for the nodes of interest, an
analysis section redirects the user to downstream analysis
tools such as CLUEreg, for drug repurposing, or TF en-
richment analysis, with prefilled forms.

User interface: network analysis

The ‘Analysis’ section provides access to four web server
tools: CLUEreg, TF enrichment analysis, network com-
parison, and visualization and integrated analyses of
user-provided networks (Figure 3). While CLUE (CMap
and LINCS Unified Environment; https://clue.io) (24) uses
gene expression to match drug perturbations to input dis-
ease gene lists, CLUEreg uses the properties of inferred reg-
ulatory networks to identify drugs that may ‘correct’ aber-
rant regulatory patterns. The CLUEreg page provides two
panels allowing users to enter lists of ‘high-targeted’ and
‘low-targeted’ genes or TFs in the disease of interest. Users
can query by gene symbols, ENSEMBL gene ids or mixed
lists, by target genes or TFs, and by including or exclud-
ing investigatory drugs. An additional option computes op-
timal drug combinations. CLUEreg outputs the top small
molecules that either reverse or enhance the differential
targeting in disease, including summary statistics (cosine

http://netbooks.networkmedicine.org
https://clue.io
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similarity, overlap, P-value, q-value, and tau-value de-
scribed in Supplementary methods). Each row in the result
table has an ‘expand’ button that shows the chemical struc-
ture and basic information about the drug. The results are
also displayed as an interactive bar plot. Clicking on the
plot filters the result table for the compound of interest.

The TF enrichment analysis allows users to input a set
of TFs in gene symbol, ENSEMBL gene ids or mixed lists
and test the enrichment against four TF sets: TFs linked
to disease phenotypes through GWAS (6), TFs annotated
to disease through the Human Phenotype Ontology (48),
and TFs that have previously been identified as either dif-
ferentially expressed or differentially targeting in specific tis-
sues (41). The results are presented in interactive bar plots
and tables showing the enrichment statistics (P-value and
q-values).

The ‘Upload your own network’ tab allows users to up-
load an adjacency matrix as a file of 500 Mb maximum
and visualizes the network using an integrated module, per-
form differential targeting analyses, and export the results
to either CLUEreg or Enrichment analysis using pre-filled
forms.

In addition to using CLUEreg and TF enrichment tools
on user-provided gene lists, these tools can be used on any
network in GRAND. From the visualization page of a given
network, users can run these downstream analyses on a
subnetwork of interest. Finally, in the ‘Network compari-
son’ tab, differential network analyses can be performed on
a set of cancer and normal tissues to find regulatory dis-
ruptions involved in malignant processes. These networks
were generated using the same gene expression and network
inference pipeline to remove variability due to parameter
choice.

Additional information and API

GRAND includes a ‘Help’ page that contains extensive
information detailing the various sections of the website.
Programmatic access is enabled through an API imple-
mented using Django REST Framework to allow batch
downloads and integration into computational pipelines.
The API functions and documentation, as well as Python
and MATLAB tutorials are provided in the help page.

EXAMPLE ANALYSIS: COMPARING COLON CAN-
CER AND NORMAL COLON NETWORKS

To demonstrate the use of GRAND, we compared networks
from modeled colon cancer and normal colon tissues to
identify differentially targeted genes in cancer and to sug-
gest small molecules that can potentially reverse the disease-
specific network perturbation. We compared an aggregate
PANDA network for colon cancer (42) and the correspond-
ing normal tissue network (41) that had been published us-
ing data from TCGA (10) and GTEx (9), respectively. We
pruned each network to include only the 12 817 genes and
661 TFs appearing in both.

To compare these networks, we simply subtracted the
cancer network from the normal network (Figure 4A). We
calculated a targeting score for the genes and TFs as the sum

of the weighted in-degree or out-degree, respectively. The
genes and TFs were ranked by their respective weights. The
300 genes with the highest and 300 genes with the lowest
weights in the differential network were selected for analy-
sis in GRAND; similarly, the 100 highest and the 100 lowest
targeting TFs were selected (Figure 4B). We analyzed these
gene and TF sets using CLUEreg.

CLUEreg identified a number of drugs as candi-
dates likely to reverse the differentially targeted genes
scores in colon cancer. The known anti-cancer compound
CB7950998 was among the highest-ranked (rank 3 overall
with a cosine similarity of –0.054); in particular CB7950998
was predicted to reverse the targeting of DCXR and MPL20
(Figure 4C), two genes known to be dysregulated in colon
cancer. CB7950998 has been suggested to increase the
chemosensitivity through acting as AHR agonist, however
with limited activity in vivo (53).

In analyzing the TF targeting scores, CLUEreg identified
MK-5108 (rank 1 with a cosine similarity of –0.32) (Figure
4C) as the most likely drug to reverse regulatory targeting
in colon cancer and suggests that it works primarily by tar-
geting transcription factor FOXP4. MK-5108 is an investi-
gational drug that targets aurora A kinase, a proliferation
marker (54) that plays a central role in mitosis (55). Using
GRAND to search for the regulatory pattern of MK-5108,
we find that the drug is associated with 192 low-targeting
TFs and 41 high-targeting TFs (Figure 4D). We then used
these TFs as input to CLUEreg to search for compounds
with similar targeting patterns. This identified PF-543, a
sphingosine kinase inhibitor that alters lymphocyte traffick-
ing (Figure 4E) (56), and Trametinib, an inhibitor of MEK1
and MEK2 that has shown promise in clinical trials for col-
orectal cancer (57) and metastatic melanoma (58) carrying
the BRAF V600E mutation (58).

To further investigate the potential activity of MK-5108,
we analyzed the functional roles of the TFs using the TF
enrichment tool in GRAND. Searching the list of 233 TFs
against the GWAS hits library, type 2 diabetes, breast can-
cer, and colorectal cancer were identified as the first, sec-
ond, and seventh most significant GWAS traits (Figure 4F).
The search against the Human Phenotype Ontology identi-
fied diabetes and seizures as the top traits associated with
MK-5108, which may indicate that these could be possible
adverse reactions associated with MK-5108. The search of
the MK-5108 against the ‘normal’ tissue expression and tis-
sue targeting identified an association with transverse colon
tissue as well as the lymphoblast and fibroblast cell lines.
The former is logical as MK-5108 is predicted to be effec-
tive against colon cancer, the latter cell lines also make sense
because MK-5108 targets the mitotic process and these cell
lines are known to have altered cell cycle processes relative
to their tissues of origin.

While only suggestive and requiring validation experi-
ments, the lines of evidence from multiple sources suggest
that MK-5108 may be an agent with efficacy in treating
colon cancer by altering regulatory patterns in the disease.
More importantly, this example demonstrates the potential
value of the GRAND database and its associated search
tools and underscores the value of methods for gene reg-
ulatory network inference.
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Figure 4. Integrative analysis of colon cancer network using GRAND combined tools. (A) A differential network between the colon cancer network and
the normal transverse colon network allows the selection of the top differential targeted genes and the top differential targeting TFs (B). (C) CLUEreg
analysis suggested two compounds MK-5108 and CB7950998 to reverse the colon cancer network targeting score. (D) The TF targeting scores of MK-
5108, an investigational kinase inhibitor, is similar to the scores of two other known kinase inhibitors. (E) Both kinases have different physiological roles
which could set the basis for a combination therapy. (F) TF enrichment analysis of MK-5108 TF targeting scores suggested a possible specificity for colon
tissue. * P-value < 10–5.



Nucleic Acids Research, 2022, Vol. 50, Database issue D619

Conclusions and future development

An increasing number of studies involves the inference of
GRNs and their subsequent analysis. This increase is driven
in part by the recognition that GRNs allow identification
of biologically significant processes associated with a wide
range of phenotypes that can be missed when looking at
gene expression alone. Despite the utility of GRNs, pub-
lished studies have generally failed to provide access to the
GRNs themselves because the size of the inferred networks
can exceed size limits for supplementary data allowed by
journals and websites and because there have been no pub-
lic repositories for these genome-scale models. Although
readers of these studies could recreate the networks used
in the analyses, the time and cost of inferring hundreds or
thousands of large-scale networks at the sample level can be
prohibitive. These difficulties with recreating the networks
limit both assessment of the reproducibility of published
studies and the use of the inferred GRNs for additional
analyses.

GRAND represents a curated large-scale repository for
genome-scale GRNs paired with extensive phenotypic in-
formation. In its current release, GRAND is populated with
12 468 GRNs and 173 013 targeting scores linking TFs and
miRNAs to their target genes using a collection of GRN
inference methods available in netzoo. Future releases of
GRAND will include additional gene regulatory network
models from an increasing number of biological contexts,
as well as networks inferred using newly developed infer-
ence methods designed to take advantage of the ever more
complex multi-omics data that we can now generate. In ad-
dition, we will include models inferred from additional pub-
lic data sets, including a larger number of cancer regulatory
models and GRNs inferred from single-cell expression data.
We also plan to include additional analytical tools and fea-
tures requested by users of the resource.
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