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Fungal secondary metabolites constitute a rich source of yet undiscovered bioactive
compounds. Their production is often silent under standard laboratory conditions, but
the production of some compounds can be triggered simply by altering the cultivation
conditions. The usage of an organic salt – ionic liquid – as growth medium supplement
can greatly impact the biosynthesis of secondary metabolites, leading to higher diversity
of compounds accumulating extracellularly. This study examines if such supplements,
specifically cholinium-based ionic liquids, can support the discovery of bioactive
secondary metabolites across three model species: Neurospora crassa, Aspergillus
nidulans, and Aspergillus fumigatus. Enriched organic extracts obtained from medium
supernatant revealed high diversity in metabolites. The supplementation led apparently
to increased levels of either 1-aminocyclopropane-1-carboxylate or α-aminoisobutyric
acid. The extracts where bioactive against two major foodborne bacterial strains:
Staphylococcus aureus and Escherichia coli. In particular, those retrieved from N. crassa
cultures showed greater bactericidal potential compared to control extracts derived from
non-supplemented cultures. An untargeted mass spectrometry analysis using the Global
Natural Product Social Molecular Networking tool enabled to capture the chemical
diversity driven by the ionic liquid stimuli. Diverse macrolides, among other compounds,
were putatively associated with A. fumigatus; whereas an unexpected richness of cyclic
(depsi)peptides with N. crassa. Further studies are required to understand if the identified
peptides are the major players of the bioactivity of N. crassa extracts, and to decode
their biosynthesis pathways as well.

Keywords: Neurospora crassa, Aspergillus nidulans, Aspergillus fumigatus, non-proteinogenic amino acids,
antimicrobial compounds, peptidome

INTRODUCTION

Microbial infections and antimicrobial resistance constitute globally a major threat to human
health. The last was recognized by the World Health Organization, in 2019, as one of the top 10
global public health threats facing humanity. It is estimated that ca. 700,000 people die every year
from drug-resistant infections (World Health Organization [WHO], 2021). To fight this threat, the
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development of new drugs that target microbial virulence
and/or pathogenicity is a priority (Meyer et al., 2016).
Microorganisms constitute a diverse and resourceful source for
bioactive natural products discovery, which can be used as
drug leads or therapeutics itself (Newman and Cragg, 2020). In
particular, filamentous fungi are considered gifted producers of
structurally diverse low-molecular weight secondary metabolites.
These compounds are synthesized by using precursors derived
from primary metabolism and, generally, are not essential
for the growth and development of the producer organism
(Fox and Howlett, 2008; Brakhage, 2012; Netzker et al.,
2015). Secondary metabolites are, however, often critical for
the survival and growth of the fungus in its ecological
niche (Fox and Howlett, 2008; Rodrigues, 2016), with roles
identified for example in nutrient acquisition, interaction
with other organisms and growth inhibition of competitors
(Calvo et al., 2002; Khaldi et al., 2010; Brakhage, 2012;
Macheleidt et al., 2016).

Fungal secondary metabolites classes comprise polyketides
(PKs), non-ribosomal peptides (NRPs), PK-NRPs hybrids, indole
alkaloids, and terpenes (Pusztahelyi et al., 2015; Bills and
Gloer, 2016). PKs, the most abundant class, use acetyl-CoA
and malonyl-CoA units, and biosynthesis is simply achieved
by the elongation of carboxylic acid building blocks. The
scaffold is further modified by oxygenases, glycosyltransferase
and other transferases leading to a high degree of structural
diversity (Hertweck, 2009; Brakhage, 2012). NRPs, the second
largest class, are synthesized by the modular assembly of
short carboxylic acids and/or amino acids (El Maddah et al.,
2017). They are constituted of both proteinogenic and non-
proteinogenic amino acids and show high diversity in terms
of length, variation in their functional domains and whether
they are cyclized or not (Keller et al., 2005). Other units
such as fatty acids, α-hydroxy acids, α-keto acids, heterocycles,
and others, can also be incorporated (McErlean et al., 2019).
Terpenes(oids) are made up of several C5 isoprene units,
which are synthesized from acetyl-CoA through the mevalonate
pathway. They are found to be linear or cyclic, saturated
or unsaturated. Their classification is based on the number
of isoprene units, among others, triterpenes (steroids) and
tetraterpenes (carotenoids) (Bhattarai et al., 2021). Compounds
of pharmacological interest are for example griseofulvin –
PKS (Cacho et al., 2013) and echinocandin B – NRP (Cacho
et al., 2012), both with antibiotic properties, and fumagillin –
terpenoid, with potential antifungal and antitumoral properties
(Lin et al., 2013).

The first biosynthesis step is catalyzed by a multidomain
(backbone) enzyme that defines the produced class: PKs
synthases, NRP synthases, hybrid NRP–PK synthases,
prenyltransferases (or dimethylallyl tryptophan synthases), or
terpene cyclases (Keller, 2019). Genes encoding for biosynthesis
of a secondary metabolite are often arranged in gene clusters
that are co-regulated under certain conditions; usually silent
under standard laboratory conditions (Brakhage, 2012). Many
backbone genes already identified have not yet been matched
to the produced compound, and vice versa (Bergmann et al.,
2007; Brakhage, 2012). To stimulate the production of a rich

diversity of secondary metabolites, several strategies have been
used, for example co-cultivation with other fungi/bacteria or
genome engineering (Netzker et al., 2015; Begani et al., 2018;
Liu et al., 2021). As illustrative examples, temperature modulates
the production of trypacidin and endocrocin in A. fumigatus
germinating spores, whereas white light represses the production
of aflatoxin and sterigmatocystin in A. fumigatus (Hagiwara
et al., 2017) and of the later metabolite in A. nidulans (Bayram
et al., 2008). The simplest is, however, the one strain-many
compounds (OSMAC) approach that explores modification of
the cultivation conditions to activate those metabolic pathways
(Bode et al., 2002). Ionic liquids, organic salts with a melting
point below 100◦C, represent a promising class of chemical
stimuli that can profoundly impact fungi metabolism (Petkovic
et al., 2009; Martins et al., 2013; Alves et al., 2016; Hartmann
et al., 2019). When used as growth media supplements,
many backbone genes underwent upregulation and a higher
diversity of secondary metabolites, including cryptic ones,
were biosynthesized (Martins et al., 2013; Alves et al., 2016).
The stimuli caused by the ionic liquid supplements differ
from that of a simple inorganic salt (Petkovic et al., 2010).
As an example, in A. nidulans, orselinic acid, which has been
identified in ionic liquid supplemented cultures (Alves et al.,
2016), is also produced during co-cultivation with Streptomyces
spp. that modulates the epigenetic machinery of the fungus
(Bayram et al., 2019).

This study examines if ionic liquids supplements can support
discovery of bioactive secondary metabolites in fungi. Three
model fungi – Neurospora crassa, Aspergillus nidulans, and
Aspergillus fumigatus, and two choline-based ionic liquids –
choline chloride (ChoCl) and choline decanoate (ChoDec), were
tested. Specifically, we focused on compounds accumulating
extracellularly. The antibacterial activity of the ensuing
crude extracts was evaluated against two major foodborne
bacterial strains, Staphylococcus aureus and Escherichia coli.
To characterize the chemical landscape of the extracts, their
amino acid composition and an untargeted mass spectrometry
analysis using the online platform Global Natural Product
Social Molecular Networking – GNPS – were applied. An
unexpected richness of peptide-based structures could be
putatively associated with N. crassa.

MATERIALS AND METHODS

Chemicals
Compounds used in preparation of minimal media
were purchased from Sigma-Aldrich, except for NaCl
and MgSO4·7H2O (Panreac), phosphoric acid (Fisher
Scientific) and NaNO3 (ACROS organics). The standard
chemicals [1-aminocyclopropane-1-carboxylate (ACC) and α-
aminoisobutyric acid (Aib)] and chromatographic solvents were
of highest analytical grade and purchased from Sigma Aldrich
and Fisher Scientific, respectively. Water was obtained from a
Milli-Q system (Millipore). Choline Chloride (>98%; ChoCl)
was purchased from Sigma Aldrich and Choline Decanoate
(>95%; ChoDec) from Iolitec.
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Fungal Strains
Aspergillus fumigatus AF293 (FGSC A1100), A. nidulans (FGSC
A4) and N. crassa (FGSC 2489) were obtained from the Fungal
Genetics Stock Center. All strains were cultivated on DG18
(Oxoid) agar plates. Cultures were incubated in the dark, for 6–
7 days, at 30◦C (A. nidulans andN. crassa) or 37◦C (A. fumigatus).
Asexual spores (conidia) were harvested using a NaCl (0.85%
w/v) and Tween-20 (0.1% w/v) sterile solution and collected after
passing through three layers of miracloth. The harvested spores
were washed twice with a sterile NaCl solution (0.85% w/v) and
finally resuspended in the NaCl solution (0.85% w/v), to be used
immediately, or in a cryoprotective saline solution containing
10% (v/v) glycerol, to be stored at −20◦C or −80◦C.

Growth Media
Aspergillus fumigatus and A. nidulans were cultivated in
liquid minimal medium containing glucose (10.0 g·L−1),
thiamine (0.01 g·L−1), 5% (v/v) nitrate salts solution [NaNO3
(120.0 g·L−1), KCl (10.4 g·L−1), MgSO4·7H2O (10.4 g·L−1) and
KH2PO4 (30.4 g·L−1)] and 0.1% (v/v) trace elements solution
[ZnSO4·7H2O (22.0 g·L−1), H3BO3 (11.0 g·L−1), MnCl2·4H2O
(5.0 g·L−1), FeSO4·7H2O (5.0 g·L−1), CoCl2·6H2O (1.7 g·L−1),
CuSO4·5H2O (1.6 g·L−1), Na2MoO4·2H2O (1.5 g·L−1) and
Na4EDTA (50.0 g·L−1)]. The pH was adjusted to 6.5 with NaOH
and the medium sterilized in an autoclave (15 min; 110◦C).

Neurospora crassa was cultivated in liquid minimal medium
containing K2PO4 (1 g·L−1) and glucose (10 g·L−1) dissolved in
distilled water. The pH was adjusted to 7 with 10% phosphoric
acid and the medium sterilized in an autoclave (10 min; 110◦C).
Filter sterilized salts solution [1% (v/v), per 100 mL: NaNO3
(30 g), MgSO4.7H2O (5 g), KCl (5 g), ZnSO4.H2O (100 mg),
CuSO4.5H2O (50 mg), HCl 37% (10 µL) and FeSO4.7H2O
(100 mg)] was added after autoclaving.

Minimal Inhibitory Concentrations (MICs)
of Ionic Liquids
The minimal inhibitory concentrations (MICs) were
determined as described previously (Petkovic et al., 2010).
Final concentrations of ionic liquids in growth media ranged
from 100 µM up to maximum solubility. Each liquid medium
(1 mL) was inoculated with 106 spores and divided into four
wells (0.2 mL each) of a 96 well microtiter plate. Cultures were
incubated in the dark, at 30◦C (A. nidulans and N. crassa) or
37◦C (A. fumigatus) for 7 days. Fungal growth (or lack thereof)
was determined at the end of incubation gauging by eye the
formation of mycelium (turbidity). The lowest concentration
that inhibited the formation of mycelium was defined as the
MIC. Values should not be interpreted as absolute ones, but
as an indication of the inhibitory and the fungicidal upper
concentration limits.

Metabolite Production
Fungal cultures (100 mL) were initiated from 106 spores per
mL in the respective minimal medium. Liquid cultures were
incubated in the dark at 30◦C (N. crassa, A. nidulans) or 37◦C
(A. fumigatus) with orbital agitation of 200 rpm. After 24 h,

the ionic liquid supplement was added at 50% (i.e., 1.7 mM
ChoDec for A. fumigatus) or 80% of the MIC (i.e., 0.96 M and
1.76 M ChoCl for N. crassa and A. nidulans, respectively, and
2.7 mM ChoDec for A. fumigatus). Negative conditions (without
ionic liquid supplement) were prepared in parallel. Cultures were
grown for 10 more days under agitation (100 rpm). At the
end of incubation, the media supernatants were separated from
mycelia using vacuum assisted filtration with miracloth (Merck
Millipore Calbiochem). Neurospora crassa filtrates required the
use of protease inhibitors (cOmplete Protease Inhibitor Cocktail,
Waters) as preliminary tests showed degradation of untreated
extracts (data not shown). The mycelia and filtrates were frozen
immediately in liquid nitrogen and lyophilized.

Metabolite Extraction
Lyophilized filtrates were homogenized in 10 mL Milli-Q
water, extracted three times with ethyl acetate (1:1) and the
combined ethyl acetate fractions dried under soft nitrogen
flow. Peptide enrichment was achieved using the Sep-Pak
plus C18 cartridge (Waters) as previously described (Krause
et al., 2006). The samples were re-dissolved in 10 mL of
MeOH/H2O (1/2, v/v) and loaded with a syringe into a
conditioned cartridge. The cartridge was washed with 10 mL
of Milli-Q water and 10 mL MeOH/H2O (1/2, v/v). The
retained compounds were eluted with 10 mL of MeOH
to a pre-weighed glass tube and dried under soft nitrogen
flow; crude extracts. Conditioning of the cartridge was done
successively with 10 mL of MeOH, Milli-Q water and
MeOH/H2O (1/2, v/v).

Chromatographic Analysis
The crude extracts in 10% (w/v) MeOH, were
chromatographically separated using a Waters Acquity
chromatographer with Photodiode Array detector, cooling
auto-sampler and column oven. A Symmetry C18 column
(250 × 4.6 mm), packed with end-capped particles (5 µm,
pore size 100 Å) (Waters Corporation), was used at 26◦C.
Data were acquired using Empower 2 software, 2006 (Waters
Corporation). Samples were injected using a 10 µL loop
operated in full loop mode. The mobile phase, at a flow rate
of 0.9 mL·min−1, consisted of a solution of 0.1% trifluoracetic
acid in water (v/v) (TFA, solvent A) and Acetonitrile (ACN,
solvent B), set to a linear gradient of 99.5 to 0% of solvent
A during 30 min, followed by 100% of solvent B for 10 min,
2 min to return to the initial conditions, and additional
10 min to re-equilibrate the column. The chromatographic
profiles of the samples were obtained at the wavelength
of 205 nm. Sample fractionation was performed with a
Fraction collector III (Waters) connected to the Acquity
chromatographer (Waters) using the same conditions described
above. The collected fractions were dried under nitrogen flow
and kept at 4◦C (short term) or −20◦C (long term) until
further analysis.

Total Amino Acid Hydrolysis and Analysis
Total hydrolysis of the crude extracts (approximately 100 µg)
was performed using 6 N HCl for 24 h at 110◦C under
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inert atmosphere (nitrogen flushed). The fractions were
also hydrolyzed for 1 h at 150◦C under inert atmosphere
(nitrogen/vacuum cycles) in a Workstation Pico-Tag (Waters).
Hydrolyzed samples were further analyzed using the AccQTag
Ultra Amino Acid Analysis Method (eluent concentrates,
derivatization kit and standard mixture of amino acid
hydrolyzates, Waters) (Penrose et al., 2001; Armenta et al.,
2010). Briefly, the hydrolyzed samples, the standards of
Aib and ACC, and the standard mixture of amino acid
hydrolyzates were derivatized following the manufacturer’s
instructions. The obtained derivatives were separated on an
AccQTag Ultra column (100 mm × 2.1 mm, 1.7 µm) by
reversed phase ultra-performance liquid chromatography
(UPLC), and detected by fluorescence (FLR), according
to the following details. The column heater was set at
55◦C, and the mobile phase flow rate was maintained at
0.7 mL·min−1. Eluent A was 5% AccQTag Ultra concentrate
solvent A and eluent B was 100% AccQTag Ultra solvent
B. The separation gradient was 0–0.54 min (99.9% A),
5.74 min (90.9% A), 7.74 min (78.8% A), 8.04 min (40.4%
A), 8.05–8.64 min (10.0% A) and 8.73–10.50 min (99.9%
A). Two microliters (2 µL) of sample were injected for
analysis using a 10 µL loop. The FLR detector was set at
266 and 473 nm of excitation and emission wavelengths,
respectively. Data were acquired using Empower 2 software,
2006 (Waters). Calibration curves of each standard were
used to quantify amino acids, the values are represented
as the relative % of total amount of amino acids. The
total area of peaks was used to determine the overall %
of identification.

Antibiotic Evaluation of Peptide-Based
Metabolites
The extracts were assessed for their antimicrobial activity against
gram-positive bacteria Staphylococcus aureus NCTC8325 and
gram-negative bacteria Escherichia coli TOP 10, following
the standard methodology implemented by the Clinical and
Laboratory Standards Institute (Clinical and Laboratory
Standards Institute [CLSI], 2018). First, bacteria were grown
until approximately 1 to 2 × 108 CFU·mL−1 in Mueller Hinton
Broth (MHB, Panreac). Then, two-fold serial dilutions were
performed to obtain final extracts concentrations between 1,000
and 62.5 µg·mL−1. Plates were incubated at 37◦C for 24 h in
a Bioscreen C analyzer (Oy Growth Curves Ab Ltd), taking
hourly absorbance measurements (600 nm). All tests were done
in triplicate; abiotic (medium alone) and biotic controls (each
bacterium without extract) were included for each replicate.

After incubation with the crude extracts, 100 µL of each
sample were mixed with 10 µL of 5 mg·mL−1 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT)
(Sigma Aldrich) in PBS (96-well microtiter plates) and incubated
(dark, 37◦C, 30 min). Then, 100 µL 10% SDS in 0.01
M HCl were added to each well and plates incubated for
2 h in the dark at room temperature. Absorbance was
measured at 560 and 700 nm using Tecan Infinite 200
Microplate (Männedorf, Switzerland). For quantification, values

at 560 nm were subtracted from the values at 700 nm.
A second aliquot of 50 µL was used to label the cells
with propidium iodide (20 µM PI, Biotium) and SYTO9
(3 µM; Alfagene) and further incubated for 15 min at
room temperature with agitation. Fluorescence intensity was
measured with a FLUOstar OPTIMA Microplate Reader
(BMG·Labtech) using a 488/20 nm excitation filter (for
both SYTO9 and PI), and a 528/20 nm (SYTO9 emission
wavelength) and 645/40 nm (PI emission wavelength) emission
filter. The signal from the staining solution (SYTO9/PI) was
subtracted from all data to minimize cross-signal background.
Microscopy assessment of the live/dead staining was done
on a Leica DM 6000B upright microscope equipped with
an Andor iXon 885 EMCCD camera and controlled with
the MetaMorph V5.8 software, using the 100 × 1.4 NA oil
immersion objective plus a 1.6× optovar, the fluorescence
filter sets FTIC + TX2 and Contrast Phase optics. Images
were analyzed by FIJI software (Fiji Is Just ImageJ). IC50
(half maximal inhibitory concentration of a compound) values
were calculated from dose response curves constructed by
plotting cell viability (MTT data) versus extract concentration
(µg·mL−1) using the Logit regression model (dose effect analysis
tool of XLSTAT).

LC-MS/MS Analysis
NanoLC-MS/MS analysis was performed using an Eksigent
Nano-LC 425 System (Eksigent, SCIEX) coupled TripleTOF
6600 + mass spectrometer (SCIEX). Samples (<1 µg·mL−1; 4 µL
each) were analyzed as follows. N. crassa samples were loaded on
a C18 PepMap trap column (5 µm, 300 µm × 5 mm) (Thermo
Scientific) at a flow rate of 2 µL min−1 for 10 min using 2% (v/v)
ACN + 0.05% (v/v) TFA as mobile phase (Ribeiro et al., 2020);
then peptides were separated at a flow rate of 300 nL·min−1

into a C18 PepMap 100 column (75 µm × 150 mm, 3 µm,
100 Å) (Thermo Scientific) using a linear binary gradient of
0.1% formic acid (v/v) in water (solvent A) and 0.1% formic
acid (v/v) in ACN (solvent B) for a total running time of
100 min. Gradient program was 3–60% B in 60 min, then
40% B from 60 to 70 min, increasing again to 80% B to wash
the column and finally re-equilibrating to the initial conditions
(3% B) for 20 min. For A. fumigatus samples, the initial step
of pre-concentration was the same as for N. crassa. Running
gradient was different and adapted from Marik et al. (2018).
Briefly, samples were separated at a flow rate of 300 nL·min−1

using a linear gradient of 0.05% (v/v) TFA in water (Solvent
A) and 0.05% (v/v) TFA in ACN/MeOH (1:1, v/v) (solvent B).
Gradient program for solvent B was 65% for 5 min, 65–80%
from 5 to 45 min, then 100% until 75 min and last 65% from
76 to 81 min. MS data was acquired in positive mode over a
mass range 300–1,250 m/z (for N. crassa) and 100–2,000 m/z
(for A. fumigatus), with 250 ms of accumulation time. The 30
most intense ions were selected to perform fragmentation with
high sensitivity mode using the automatically adjusted system
of rolling collision energy. MS/MS scans were acquired over
a mass range 100–1500 m/z with an accumulation time set at
50 ms; raw data files.
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Molecular Networking and Compound
Dereplication Using GNPS Platform
Raw data files (.wiff) were converted to open format mzXML
using ProteoWizard MSConvert version 3.0.10051 (Kessner et al.,
2008) to transform spectra from profile to centroid mode.1 Data
files were uploaded on GNPS through WinSCP (version 5.17.3)
to generate a molecular network according to guidelines (Aron
et al., 2020), which can be openly accessed.2 To create the
network, first all MS/MS spectra were aligned. Data were then
filtered by removing all MS/MS peaks within ± 17 Da of the
precursor m/z. MS/MS spectra were window filtered by choosing
only the top six peaks in the ± 50 Da window throughout the
spectrum. The precursor ion mass tolerance was set to 2.0 Da
and a MS/MS fragment ion tolerance of 0.5 Da. A network was
then created where edges were filtered to have a cosine score
>0.7 and more than 6 matched peaks. Cosine score ranges from
0 (different parent ions) to 1 (structurally similar compounds)
(Watrous et al., 2012). Edges between two nodes were kept in
the network only if each of the nodes appeared in each other’s
respective top 10 most similar nodes. The maximum size of a
molecular family was set to 100, and the lowest scoring edges were
removed until the size was below this threshold. Self-loop nodes
indicate that there is no structurally related molecule present
in the sample. The spectra in the network were then searched
against GNPS’ spectral libraries (e.g., MassBank, ReSpect, and
NIST) to assign a putative identification (Wang et al., 2016). The
library spectra were filtered in the same manner as the input data.
All matches kept between network spectra and library spectra
were again required to have a score >0.7 and at least 6 matched
peaks. The resulting molecular network was visualized using
Cytoscape software v3.7.2 (Shannon et al., 2003). The molecular
network is comprised by nodes (specific consensus spectrum)
connected with edges (significant pairwise alignment between
nodes). Nodes were labeled with putative identification and
colored according to the group where the precursor was detected;
edges thickness is proportional to cosine score. Complementary
to library matching, DEREPLICATOR + workflow allow to
predict fragmentation spectra in silico from known structures
and to search for candidate structures in chemical databases
(Mohimani et al., 2018). MS/MS data were used as input.
The output table with potential candidates was integrated into
the molecular network using Cytoscape. Manual validation of
putative identifications was done through removal of hits from
negative mode MS (not acquired herein) or after mirror plots
(library compounds vs. input spectra) inspection. According
to Sumner et al. (2007), putative annotations of compound
and molecular families based on GNPS correspond to level 2
(Sumner et al., 2007). Herein, no standards were used to validate
identifications. Complementary analysis of the MS spectra of
the fractions was done using the NRPro tool3 which includes
databases not represented in GNPS, namely NORINE and
NPAtlas (Ricart et al., 2020). Input data (MS/MS spectra in .mgf
format) were uploaded, and search parameters were set as follows:

1http://proteowizard.sourceforge.net
2http://gnps.ucsd.edu
3https://web.expasy.org/nrpro/

peptide tolerance of 0.02 Da and fragment mass tolerance of
0.01 Da with M + H ionization with a charge up to 2. Decoy was
activated; generates p-values associated with the identifications.
Hits were validated (p-value < 0.05) upon further inspection of
the number of scored peaks vs. annotated peaks.

Statistical Analysis
Data were analyzed using standard statistical software (Origin
v8.5 Software, San Diego, CA, United States, and GraphPad
Software Prism v7, San Diego, CA, United States). Three
biological replicates were executed. Results are expressed as
mean value ± standard deviation. The statistical significance
of values between conditions was evaluated by One-Way
ANOVA test. Differences were considered significant when the
p-value ≤ 0.05.

RESULTS AND DISCUSSION

Ionic Liquid Supplements Triggered a
Metabolic Shift in the Fungal Cultures
It has been observed that culture conditions greatly impact
secondary metabolism (Mathew Valayil, 2016). This explains
the rationale behind the OSMAC approach to alter secondary
metabolism in fungi (Chiang et al., 2009), and the usage of
ionic liquids supplements as well (Petkovic et al., 2009; Alves
et al., 2016). In the present study, two choline based ionic
liquids were chosen, namely ChoCl and ChoDec. The first one
has been previously reported to boost differential metabolic
responses in fungi (Martins et al., 2013; Alves et al., 2016).
ChoDec because longer alkyl chains in the anion have higher
toxicity toward fungi and accordingly, less amounts are needed
to induce stress (Petkovic et al., 2010; Hartmann et al., 2015).
The MIC values for each fungus – A. nidulans, A. fumigatus,
and N. crassa – are listed in Table 1. Choline based ionic liquids
have been shown to be biodegradable, specifically the choline
cation was observed to be partially degraded after 15 days of
incubation with either A. nidulans and N. crassa (Martins et al.,
2013). The decanoate anion was herein undetectable in the
medium supernatant (chromatographic analysis) after 5 days of
incubation (data not shown). Similar degradation yields have
been previously reported for other filamentous fungi (Boethling
et al., 2007; Petkovic et al., 2010).

Upon 10 days of incubation, fungal cultures were harvested,
and the cultivation media were extracted. Secondary metabolites
were enriched by liquid-liquid extraction with ethyl acetate,
followed by solid-phase extraction resulting in peptide enriched

TABLE 1 | Minimal inhibitory concentrations of the cholinium-based ionic liquids
(choline chloride, ChoCl and choline decanoate, ChoDec) used as media
supplements for each fungal strain.

ChoCl [M] ChoDec [mM]

A. fumigatus 1.7 3.4

A. nidulans 2.2 2.6

N. crassa 1.2 –
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fractions (Krause et al., 2006). The metabolic footprints (i.e., pool
of metabolites produced at a given point under certain culture
conditions) of the crude extracts were investigated by liquid
chromatography (Figure 1). A. nidulans and A. fumigatus, in
contrast to N. crassa, show high basal diversity of metabolites.
In general, the profiles are distinct in cultures grown in
the supplemented media compared to the negative control
(without supplementation). The observed metabolic footprints
depend on the ionic liquid supplement (Figure 1A) and of its
concentration as well (viz, 50 and 80% of the MIC of ChoDec)
(Figure 1B). This result corroborates preceding observations
that distinct ionic liquids induced distinct metabolic alterations
on the fungal metabolism, increasing, in general, the diversity
of synthesized low molecular-weight molecules (Petkovic et al.,
2009; Martins et al., 2013; Alves et al., 2016). Using a similar
approach, monodictyphenone and orsellinic acid, otherwise
cryptic metabolites, accumulated (in a pool of ca. 40 ion masses)
in cultures of A. nidulans grown in medium supplemented
with 1-ethyl-3-methylimidazolium chloride (Alves et al., 2016).
Orsellinic acid had been also identified in A. nidulans during
co-cultivation with Streptomyces spp. (Fischer et al., 2018).
Proteomic analyses of A. nidulans and N. crassa cultures, showed
that several biological processes and pathways were affected upon
supplementation with ChoCl, provoking also an accumulation of
stress-responsive proteins and osmolytes (Martins et al., 2013).

Total Amino Acid Hydrolysis Discloses
the Presence of Non-proteinogenic
Residues in Neurospora crassa and
Aspergillus fumigatus Extracts
Fungi are able to use both proteogenic and non-proteinogenic
amino acids (NPAAs) for incorporation in NRPs; NPAAs
may positively impact the stability, potency, permeability,
oral bioavailability, and immunogenicity of peptides as they
do not occur naturally in humans (Ding et al., 2020). In
fact, an important feature of many fungal antimicrobial
peptides is the presence of NPAAs or other α-hydroxy
and carboxylic acids (Mootz et al., 2002). A previous
study has shown that ChoCl supplementation of N. crassa
growth medium led to the increased expression of the 1-
aminocyclopropane-1-carboxylate (ACC) deaminase, which
mediates the formation of ACC (Martins et al., 2013). In some
fungi, the presence of ACC has been linked to the peptaibiotics
neofrapeptins and acretocins, isolated from Geotrichum
candidum SID 22780 and Acremonium crotocinigenum
cultures, respectively (Fredenhagen et al., 2006; Brückner
et al., 2019). Peptaibiotics show a unique structure varying
from 5 to 21 amino acid residues, including numerous NPAAs,
mainly α-aminoisobutyric acid (Aib), and/or lipoamino
acids (Degenkolb et al., 2003; Degenkolb and Brückner,
2008). Aib has been found to correlate to specific types of
secondary structures, namely helical structures, improving
peptide functioning and increasing enzymatic resistance
(Niu et al., 2020).

To verify if the ionic liquid-supplements have induced the
production of peptides containing NPAAs, specifically ACC and

Aib, the total amino acid content of extracts (upon hydrolysis)
were chromatographically analyzed. Both NPAAs could be
detected, most evident in N. crassa and A. fumigatus (Figure 2).
Specifically, in N. crassa ACC levels show increasing trend
upon ChoCl supplementation, consistent with the accumulated
levels of ACC deaminase described before (Martins et al.,
2013). A. fumigatus control extracts show low levels of Aib
with a slight, but not statistically significant, increase when
the culture is supplemented with ChoDec (at 80% of MIC).
In A. nidulans, an increasing trend in either NPAAs upon
ChoDec supplementation was observed, but the overall amounts
of Aib and ACC are substantially lower compared to the
other two fungi.

Ionic liquid-exposure altered the pattern of the overall
amino acid content, suggestive of an altered peptidome
profile (Supplementary Table 1). Nonetheless, no meaningful
alterations were found (pair-wise ANOVA) in the detected
amounts of each amino acid with or without media
supplementation, possibly consequence of high variability
between the biological replicates. For A. fumigatus around 30%
and for N. crassa 45–65% of the peaks could not be assigned
to any of the amino acid standards. For A. nidulans, the
values were lower: 4–7% (negative and ChoCl supplemented
extracts) and 27% (ChoDec supplemented extracts). Despite
these inherent technical fragilities, this analysis provides
an estimation of the amino acid profiles of each sample,
and excitingly point to the existence of peptides containing
ACC and/or Aib in either crude extract from ionic liquid
supplemented cultures. Based on these results, N. crassa
and A. fumigatus extracts were selected for subsequent
analyses focusing antibacterial efficacy and compositional
signature (LC-MS/MS).

Neurospora crassa and Aspergillus
fumigatus Crude Extracts Depict
Antibacterial Activity
The antibacterial activity of N. crassa and A. fumigatus
extracts against S. aureus and E. coli was assessed using
the broth dilution method. For each crude extract, two-fold
dilutions of an initial concentration of 1,000 µg·mL−1 were
performed. Bacterial growth, inferred by the medium turbidity
(600 nm), was measured for 24 h. After growth, bacterial
viability was evaluated via measurements of the metabolic
activity (MTT) and the live/dead cell ratio obtained from
fluorescent staining quantifications. After 24 h, cell viability
decreased significantly relative to the bacterial control, reflected
in the MTT and live/dead cell ratio quantifications (Figure 3
and Supplementary Table 2). Microscopic snapshots show
major cell lysis upon exposure to extracts derived from
ionic liquid-supplemented cultures compared to the bacterial
control (no extract) (Figure 4). Based on the estimated IC50
values (Table 2), the supplementation compared to control
conditions, increased greatly the bactericidal activity of the
derived N. crassa extracts, but not those of A. fumigatus.
At this stage, the observed activity cannot be linked to a
specific compound. To pinpoint potential candidates, untargeted
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FIGURE 1 | Ionic liquid supplements triggered a metabolic shift in the fungal cultures. Chromatographic analyses of the metabolic footprint of A. nidulans (A),
A. fumigatus (B), and N. crassa (C) crude extracts. Crude extracts are from cultures grown for 10 days in either choline chloride (ChoCl) or choline decanoate
(ChoDec) supplemented media, at 50 or 80% of the MIC, and from cultures without ionic liquid supplementation (i.e., negative controls). Truncated parts of the
chromatogram from N. crassa cultures (C) correspond to the elution of protease inhibitors. The y-axis scale represents the base peak intensity, where units are
arbitrary.
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FIGURE 2 | Total amino acid hydrolysis discloses the presence of two non-proteinogenic residues in N. crassa and A. fumigatus extracts. Scatter plot depicting
individual values of percentage (%) of total amount of 1-aminocyclopropane-1-carboxylate, ACC (•) and α-aminoisobutyric acid, Aib (�) obtained from total
hydrolysis of the crude extracts derived from cultures grown in media with or without (i.e., negative) supplementation. The y-axis scales are not normalized to allow
easier visualization of the amount of either non-proteinogenic amino acid in each condition.

MS analyses using the GNPS platform were applied. A total
of 52 and 18 compounds were identified in N. crassa and
A. fumigatus extracts derived from the ionic-liquid supplemented
cultures, respectively (Figure 5 and Supplementary Tables 3,
4). By eliminating compounds of low signal intensity, the most
promising candidates potentially produced by A. fumigatus are
macrolides and terpenes, whereas forN. crassa are cyclic peptides,
including five depsipeptides; structurally of high pharmacological
interest (Table 3). Fractionation of the later, added another cyclic
peptide to the pool of compounds annotated through the GNPS
tool; likely of low abundance in the crude extract. Analysis of
their whole chemical landscape highlighted, however, a weak
sample deconvolution with many compounds present in the three
fractions. Through their direct query in the NRPro database, five
additional hits of cyclic peptides (including one depsipeptide)
were found (Supplementary Table 5).

The results show the production of antimicrobial compounds
in N. crassa cultures under ionic liquid supplementation,
likely associated to production of metabolites otherwise cryptic.
The hypothesis that these antimicrobial compounds support
N. crassa competitiveness in specific niches deserves further
consideration. However, contrary to that observed for N. crassa,
the supplementation did not increase the antibacterial activity
of A. fumigatus derived extracts. Regardless of these contrasting
results, the chemical landscape of either extract was further
analyzed using an untargeted MS metabolomics approach.

LC-MS/MS Analyses of Aspergillus
fumigatus Extracts Derived From Ionic
Liquid Supplemented Cultures, Suggests
the Accumulation of Macrolides, Among
Other Metabolites
The MS spectra collected for the A. fumigatus extracts derived
from the ionic liquid supplemented cultures were subjected to a
molecular networking analysis on the web-based platform GNPS.
This platform relies on the principle that structurally similar
compounds will have similar MS/MS fragmentation patterns, and
hence allows deconvolution of large MS datasets, annotation, and
discovery of novel and/or analog compounds. This automated
annotation belongs to a class 2 classification (Sumner et al., 2007),
therefore all compounds identification discussed below remain
putative, requiring, for targeted compounds, further validation in
the near future.

The metabolic footprints of A. fumigatus extracts grown
in media supplemented with 50% (G1) or 80% (G2) of the
ChoDec MIC concentration were analyzed. In this case, of
1471 nodes, 684 nodes were clustered into 135 molecular
families and the remaining 787 did not share any connection
(full dataset hyperlink in Supplementary Table 3). In total,
18 metabolites were putatively identified, 9 by spectral match
in GNPS databases (black border nodes) and 9 by in silico
DEREPLICATOR + tool (red border nodes) (Figure 5A, full
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FIGURE 3 | N. crassa and A. fumigatus crude extracts depict antibacterial activity against S. aureus and E. coli. Cell viability measured by MTT assay of extracts
derived from cultures grown in media with or without (i.e., negative) supplementation (A). Quantification of bacterial viability through the normalized green/red ratio
(i.e., SYTO9 (green, live cells)/PI (red, dead cells) staining) (B). Statistically significant differences are depicted; *p ≤ 0.05, **p ≤ 0.01, ****p ≤ 0.0001.

list in Supplementary Table 4). Most of the nodes correspond
to metabolites produced in both conditions. Only compounds
with signal intensity >1.5·107 in the total ion chromatogram
(with a clear separation from baseline values) will be discussed
in greater detail (Table 3, bottom panel in Figure 5A). Half of
these compounds belong to the class of polyketides, some of
which were found only in G2 (80% MIC). In either sample,
G1 and G2, the most frequently found polyketide compounds

are macrolides; class of antibiotics composed of a large lactone
ring with a sugar attached. The macrolides putatively identified
were dolabelide C, efomycin G, roflamycoin, and antibiotic A
59770A. The first has been reported in a sea hare (Suenaga et al.,
1997), while the last three are known as bacterial metabolites
(Schlegel et al., 1981; Hoehn et al., 1990; Klassen et al., 2019).
Macrolides production in fungi has been, however, reported
before; e.g., phaeospelide A in Aspergillus oryzae (Morishita et al.,
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FIGURE 4 | N. crassa and A. fumigatus crude extracts led to significant lysis of S. aureus and E. coli cells, which is denoted by the red labeling. Microscopic
snapshots of E. coli and S. aureus grown in the absence of extract (A) and in the presence of crude extracts derived from cultures grown in media with or without
(i.e., negative) supplementation: N. crassa (B) and A. fumigatus (C). Images of bacteria at concentrations near the measured IC50 for each crude extract are shown.
Cells were stained with SYTO9 (green) and PI (red) denoting live and dead cells, respectively. Scale bar, 10 µm.

2019). These extracts showed a more pronounced effect over
S. aureus (Figure 3), consistent with the putative identification
of macrolides. This class of compounds is usually bacteriostatic,

most efficient against Gram-positive bacteria but can also be
active against several Gram-negative bacteria (Arslan, 2022). In
particular, efomycin is active against a number of drug-resistant
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pathogens (e.g., methicillin-resistant S. aureus) (Wu et al., 2013),
and roflamycoin exerts activity against a broad spectrum of
organisms (Han et al., 2021).

Apart from macrolides, in either sample, 7α,27-
dihydroxycholesterol was identified, which belongs to the
terpen(oid) class. It derives from cholesterol, and has been
reported before in A. fumigatus metabolome (Gil-De-la-fuente
et al., 2021). It is functionally relevant, helping the fungus to
bypass the effects of ergosterol inhibitor class of antifungals
(Xiong et al., 2005); a potential new drug target. Finally,
PKs-terpenes hybrids (Keller, 2019), namely two pregnane
glycosides were identified in either extract. They show broad
spectrum activity (e.g., anticancer, analgesic, anti-inflammatory
and antimicrobial) and to date only few have been reported in
fungi, for example in Aspergillus versicolor cultures grown in rich
medium for 15 days (Ding et al., 2019) and Cladosporium sp.
grown in rice-based medium for 45 days (Yu et al., 2018). A single
peptide was putatively identified, namely the cyclohexapeptide
aerucyclamide D, a ribosomal metabolite that has been previous
described in a cyanobacterium as a new antiparasitic compound
(Portmann et al., 2008).

LC-MS/MS Analyses of Neurospora
crassa Extracts Derived From Ionic
Liquid Supplemented Cultures, Suggests
the Accumulation of Several Cyclic
(Depsi)peptides, Among Other
Metabolites
Neurospora crassa extracts derived from ChoCl supplemented
cultures were chromatographically fractionated at the retention
times of 15.6, 17.3, 19.6 min, corresponding to G1, G2,
and G3, respectively. The peptidome of each fraction was
analyzed as previously described (including the NPAAs ACC
and Aib) (Supplementary Figure 1). G1 contains ACC; G2
contains Aib and ACC, and G3 contains none. Accordingly,
G2 might comprise peptaibiotics. To determine the complete
amino acid sequence of these fractions, Edman sequencing was
attempted but failed, possibly due to a blocked N-terminal
(Mootz et al., 2002). Overall, these observations further support
the hypothesis that growth medium supplementation with
ChoCl triggered production of peptaibiotics in N. crassa,
otherwise cryptic.

The chemical landscape of these three samples and of the
corresponding crude extract (G4) were analyzed, similarly
to that done for A. fumigatus. A total of 5,249 nodes
were obtained, 1,514 nodes clustered into 247 molecular
families, and the remaining are self-loop nodes (full dataset
hyperlink in Supplementary Table 3). To simplify, only
clusters with putative hits are shown. In total, 10 compounds
were putatively identified by comparison against GNPS
databases (black border nodes) and 42 compounds by
using the DEREPLICATOR + tool (red border nodes)
(Figure 5B, full list in Supplementary Table 4). To focus
the discussion, for G4 only the compounds presenting
signal intensity >3.0·107 in the total ion chromatogram

TABLE 2 | IC50 values determined for A. fumigatus and N. crassa crude extracts
from media supplemented or not (negative control) with choline chloride (ChoCl) or
choline decanoate (ChoDec), at 50 or 80% of the MICs.

Fungal strain Bacterial strain Extract tested IC50 (µg·mL−1)

N. crassa E. coli Negative 1,280

ChoCl 80% 103

S. aureus Negative 310

ChoCl 80% 70

A. fumigatus E. coli Negative 120

ChoDec 50% 310

ChoDec 80% 350

S. aureus Negative 310

ChoDec 50% 260

ChoDec 80% 470

IC50 represents the crude extract concentration that inhibits bacterial activity by
50% and were calculated from curves constructed by plotting cell viability (MTT
data) vs. extract concentration (µg·mL−1).

are further considered, whereas for G1–G3 the two highest
intensity signals are detailed if absent in G4 (Table 3,
bottom panel in Figure 5B). G4 shows, as expected, the
highest diversity of compounds. Similar to that found in
A. fumigatus extracts, macrolides were the only polyketide
compounds identified, specifically aldgamycin K and levorin
A3. A single terpene, corticosterone, and one lipid-based
metabolite, leukotriene E4 methyl ester, were putatively
identified as well. Leukotrienes are eicosanoids produced
by pathogenic fungi, suggested to act as virulence factors
(Noverr et al., 2002). They are a subset of oxylipins, a class of
metabolites that act mainly as lipid mediators, signaling spore
development, metabolites production and virulence in fungi
(Tsitsigiannis and Keller, 2007).

Remarkably, N. crassa seems to be an abundant producer of
NRP, including peptides (linear and cyclic, 7 distinct compounds)
and depsipeptides (5 distinct compounds) when grown in
medium supplemented with ChoCl. Specially, two cyclic peptides
were identified: pseudostellarin C and mollamide B, and five
linear peptides: pepsin S 735A, halo-toxin, two tripeptides (Fru-
Leu-Ile and Ile-Pro-Ile) and one hexapeptide (Val-Val-Pro-Val-
Pro-Asn). Pepsin is the only linear peptide identified in all
samples, possibly an artifact of the protease inhibitors herein
used. The tri/hexapeptides identified here have never been
reported before, questioning if these compounds are hydrolyzed
products or are precursors of larger peptides. Besides, four cyclic
depsipeptides were also putatively identified: discokiolide A,
dideoxy-sandramycin, chlorodestruxin and chaiyaphumine D, all
of which, expect the last, have been reported before and related
to either antitumor or anti-insecticidal activities. Syringostatin
A, a lipodepsinonapeptide, reported antifungal activity (Sorensen
et al., 1996). In cyclic depsipeptides at least one amino acid is
replaced by a hydroxylated carboxylic acid (α-hydroxy acid),
resulting in a mix of amide and ester bonds in the core ring,
conferring high stability (Taevernier et al., 2017; Wang et al.,
2018). α-Hydroxy acids structural similarity to α-amino acids,
ensures that depsipeptides can interact with numerous proteins
yet showing higher resistance against hydrolyzing enzymes due
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FIGURE 5 | The molecular network generated by the GNPS tool using the MS data acquired for A. fumigatus (A) and N. crassa (B) extracts derived from ionic liquid
supplemented cultures, considering the putatively identified compounds the accumulation, among other metabolites of macrolides and peptides, respectively.
Putative identifications retrieved by using molecular networking analysis and compound dereplication in GNPS, from spectral match (*) and in silico tool
DEREPLICATOR + . For N. crassa, isolated fractions (G1, G2, and G3) as well as crude (G4) extracts were analyzed; whereas for A. fumigatus, extracts from cultures
supplemented with choline decanoate at 50% (G1) and 80% (G2) of the MIC. Only peaks with signal intensity >1.5·107 (for A. fumigatus: G1 and G2) and >3·107

(for N. crassa: G4) in the total ion chromatogram are depicted (Full list in Supplementary Table 3). For N. crassa fractions, G1 to G3, the two most intense peaks in
the total ion chromatogram are depicted.

to cyclization (Gentilucci et al., 2010; Stone and Deber, 2017).
The higher resistance is expected to result in enhanced oral
bioavailability (Sivanathan and Scherkenbeck, 2014). Several
known depsipeptides contain NPAAs, for example 2-hydroxy-3-
methyl-pentanoic acid, tiglic acid, α-aminobutyric acid, picolinic
acid; constituents of compounds putatively identified in the
extracts yet below the defined threshold of peak intensity, e.g.,
SCH-378199 and virginiamycin S5 (Supplementary Table 4).
This observation is consistent with the presence of many
non-identified amino acids in the N. crassa extracts (nearly
half of the chromatographic peak area could not be assigned,
Supplementary Table 1). The presence of Aib in this class
of compounds remains to be seen. On the contrary, ACC is
known to be a building block of depsipeptides, for example
of BZR-cotoxin II, a metabolite of Bipolaris zeicola, and of
CBS 154-94A, a metabolite of Streptomyces sp. (Fredenhagen
et al., 2006). The last has antibiotic activity, acting as protein

farnesyl transferase inhibitor. Finally, the cyclic lipodepsipeptide
SF-1902-A4 was also identified (present also in G2); previous
reported as antibacterial (Omoto et al., 1981). As above
mentioned, most compounds were only found in the crude
extract, except in the denoted cases. Looking to the two most
intense peaks of G1–G3 fractions revealed the presence of
wewakazole (G1, also in G4 but below the defined intensity
threshold), orizabin XIV (G3), and sublanceoside K1 (in all
fractions). The first compound, a cyclic dodecapeptide, has
been reported to exhibit cytotoxicity against H460 human
lung cancer cell line (Gogineni and Hamann, 2018). The
second, is a glycolipid that inhibits the activity of 1,3-β-glucan
synthase, required for cell wall synthesis in fungi (Castelli
et al., 2002); a target of clinically approved antifungal drugs
(Lima et al., 2019). The last, a terpene glucoside, has no
reported bioactivity to date. Apart from these compounds, the
remaining hits correspond to clusters containing spectra from
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all samples (G1 to G3), and include compounds belonging
to resin glycosides, fatty acids, terpenoids and cyclic peptides.
The chromatographic elution of the fractions (with close
retention times) did not result in a clean separation, explaining
why these clustered together in the molecular network. Since
that NRPro tool (see text footnote 3) that is specific for
NRPs is not included in the GNPS platform, the MS/MS
spectra of the fractions were also queried in this database.
Putative identifications were found only for G1 and G2
(Supplementary Figure 2 and Supplementary Table 5) revealing
five additional cyclic peptides candidates. Specifically, G1 showed
matches to guangomide A (depsipeptide), arbumelin and a
cyclohexapeptide. The first two compounds have been previously
identified in fungal strains, namely in Trichothecium sympodiale
(Sy-Cordero et al., 2011) and Calcarisporium arbuscular (upon
target inactivation of H3 deacetylase) (Mao et al., 2015),
respectively. In G2, cyclotheonamide E3 and nostophycin
were found, compounds identified before in a marine sponge
(Nakao et al., 1998) and in a cyanobacterium (Fujii et al.,
1999), respectively. In addition, the fractions were analyzed
by NMR but their chemical complexity and low abundance
of each constituent of the mixture hindered stringent spectral
assignments (data not shown).

CONCLUSION AND FUTURE
PERSPECTIVES

The aim of this study was to examine if ionic liquids supplements,
specifically choline-based ones, can support discovery of
bioactive secondary metabolites in three distinct fungi –
N. crassa, A. nidulans, and A. fumigatus. The usage of ionic
liquid-based supplements has been shown before to greatly
impact fungal metabolism, leading to upregulation of the
expression of genes coding in secondary metabolism, including
some backbone genes, and altering the ensuing extracellular
metabolic footprint. Building on this past evidence, choline-
based ionic liquids were used as growth media supplements
(at concentrations below their MIC, Table 1), testing different
anions and concentrations as well. In either fungus, the
media supplementation altered the diversity of compounds
accumulating extracellularly (Figure 1). The peptidome
composition of the obtained crude extracts (inferred by the
abundance/diversity of amino acids in the corresponding
hydrolyzates) was also impacted by the supplementation
(Supplementary Table 1). Specifically, ACC and Aib levels
showed increasing trend in N. crassa and A. fumigatus,
respectively (Figure 2). Moreover, these metabolite extracts
reduced the metabolic activity of bacterial cells, in some cases
leading to cell lysis (Figures 3, 4). Based on the estimated IC50
values (Table 2), the supplementation compared to control
conditions, increased greatly the bactericidal activity of the
derived N. crassa extracts, but not those of A. fumigatus. At
this stage, the observed activity cannot be linked to a specific
compound. To pinpoint potential candidates, untargeted MS
analyses using the GNPS platform were applied. A total of 52
and 18 compounds were identified in N. crassa and A. fumigatus

extracts derived from the ionic-liquid supplemented cultures,
respectively (Figure 5 and Supplementary Table 4). By
eliminating compounds of low signal intensity, the most
promising candidates potentially produced by A. fumigatus
are macrolides and terpenes, whereas for N. crassa are cyclic
peptides, including five depsipeptides; structurally of high
pharmacological interest (Table 3). Fractionation of the later,
added another cyclic peptide to the pool of compounds
annotated through the GNPS tool; likely of low abundance in
the crude extract. Analysis of their whole chemical landscape
highlighted, however, a weak sample deconvolution with
many compounds present in the three fractions. Through
their direct query in the NRPro database, five additional hits
of cyclic peptides (including one depsipeptide) were found
(Supplementary Table 4).

The usage of GNPS as a dereplication strategy clearly showed
that a rich diversity of structures can be generated under
an ionic liquid stimulus. It allowed for a rapid comparison
of the collected MS data, to obtain a “holistic” view of
the chemical space of the fungal extracts, getting one step
closer to the identification of novel bioactive metabolites. Its
effectiveness can be illustrated by two related examples: diversity
of secondary metabolites in Botryosphaeria mamani upon
medium supplementation with histone deacetylase inhibitors
(Triastuti et al., 2019), and in Penicillium nordicum, which
completed with isotope labeling analyses, led to identification
of 69 unknown metabolites (Hautbergue et al., 2019). The
tool is subjected to the availability of similar structures in the
GNPS databases (as highlighted by additional identifications
in the fractions when using NRPro); all the identifications
proposed herein remain putative and further confirmation is
therefore required. Database search tools, e.g., Mascot, usually
used for the MS/MS identification of linear peptides are
not directly applicable to cyclopeptides or depsipeptides that
generate very complex fragmentation patterns. In addition,
>300 NPAAs can be incorporated into fungal NRPs, further
enlarging the associated chemical space. None of the compounds
putatively identified (Supplementary Tables 4, 5) contains
either ACC or Aib, irrespectively of their detection in the
hydrolyzates of the crude extracts/fractions. This is likely
due to the lack of similar structures in the GNPS and
NRPro databases. Besides, it reveals that the chemical space
of either extract remains to be fully disclosed. Despite these
limitations, specifically the GNPS tool exposed the most
promising candidates – cyclic (depsi)peptides of N. crassa,
setting foundations for their isolation and identification in
the near future.

The data attained highlight the capacity of N. crassa to
generate a rich portfolio of cyclic peptide-based metabolites, with
high pharmacological interest. In the genome of N. crassa, only
four putative NRPS genes have been assigned, none, however,
has been linked to the produced metabolite to date. Preliminary
tests suggest that three of these genes suffered upregulation in the
supplemented medium compared to control (data not shown).
Due to the scarcity of NRPS genes in N. crassa genome, ionic-
liquid supplementation shows matchless potential to link each
NRPS to its peptide-product(s), deserving focused analysis soon.
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TABLE 3 | Untargeted LC-MS/MS analyses of A. fumigatus and N. crassa extracts derived from ionic liquid supplemented cultures suggests the accumulation, among other metabolites of macrolides and
peptides, respectively.

Putative identification Exact mass Condition Class Reported activity References

Aspergillus fumigatus

Dolabelide C 796.497 G2 Macrolide Antitumor Suenaga et al., 1997

Roflamycoin 738.455 G2 Macrolide Antifungal; antiprotozoalc Schlegel and Thrum, 1971; Han et al., 2021

Efomycin G 1010.58 G2 Macrolide Antibacterial; antitumor Wu et al., 2013; Supong et al., 2016; Gui et al., 2019

Antibiotic A 59770A 1000.63 G1, G2 Macrolide Pesticidal agents Hoehn et al., 1990

Aerucyclamide D* 603.06 G1, G2 Cyclic peptide Antiparasitic Portmann et al., 2008

7α,27-Dihydroxycholesterol* 401.342 G1, G2 Steroid Not reported Brown and Jessup, 1999

Auriculoside B 1214.64 G1, G2 Pregnane glycoside Antitumor Zhang et al.

CID 102041441 810.477 G1, G2 Pregnane glycoside Not reported Deng et al., 2010

Neurospora crassa

Levorin A3 1092.58 G4 Macrolide Antifungal Pawlak et al., 2005; Szczeblewski et al., 2017

Dideoxy-Sandramycin 1188.56 G4 Cyclic depsipeptide Antitumor Boger and Chen, 1997

Discokiolide A 1026.51 Cyclic depsipeptide Antitumor Tada et al., 1992

Chaiyaphumine D 644.296 G4 Cyclic depsipeptide Not reported Grundmann et al., 2014

Chlorodestruxin 629.319 G4 Cyclic depsipeptide Anti-insecticidal Gupta et al., 1989

SF-1902-A4 667.452 G2, G4 Cyclic lipodepsipeptide Antibacterial

Syringostatin A 1178.59 G4 Cyclic lipodepsipeptide Antifungal Sorensen et al., 1996

Val-Val-Pro-Val-Pro-Asn* 651.396 G4 Peptide Not reported In-house library from GNPS

Pepsin S 735A 685.463 All samples Peptide Protease inhibitor Morishima et al., 1970; OMURA et al., 1986

Halo-toxin 626.343 G4 Peptide Not reported Kajimoto et al., 1989

Fru-Leu-Ile* 407.239 Peptide Not reported In-house library from GNPS

Ile-Pro-Ile* 342.239 G4 Peptide Not reported In-house library from GNPS

Mollamide B 696.367 G4 Cyclic peptide Antimalarial, antivirus, antitumor Donia et al., 2008

Pseudostellarin C 812.443 G4 Cyclic peptide Tyrosinase inhibitor; antitumor Morita et al., 1994

Wewakazole 1140.54 G1, G4 Cyclic peptide Antitumor Nogle et al., 2003; Gogineni and Hamann, 2018

Corticosterone* 347.222 G2, G4 Terpene Not reported Steiger and Reichstein, 1938

Leukotriene E4 methyl ester* 459.22 All samples Lipid Immunomodulation Cohen et al., 2002

Orizabin XIV 1120.6 G3 Glycolipid Antitumor; β-1-3-glucan synthase inhibitor; antibacterial Pereda-Miranda and Hernández-Carlos, 2002

Sublanceoside K1 1082.57 G1, G2, G3 Terpene glycoside Not reported Warashina and Noro, 2006

Putative identifications retrieved by using molecular networking analysis and compound dereplication in GNPS, from spectral match (*) and in silico tool DEREPLICATOR+. For N. crassa, isolated fractions (G1, G2, and
G3) as well as crude (G4) extracts were analyzed; whereas for A. fumigatus, extracts from cultures supplemented with choline decanoate at 50% (G1) and 80% (G2) of the MIC. Only peaks with signal intensity >1.5·107

(for A. fumigatus: G1 and G2) and >3·107 (for N. crassa: G4) in the total ion chromatogram are depicted (Full list in Supplementary Table 3). For N. crassa fractions, G1 to G3, the two most intense peaks in the total
ion chromatogram are depicted.
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