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Abstract: Mammography plays an important role in screening breast cancer among females,
and artificial intelligence has enabled the automated detection of diseases on medical images.
This study aimed to develop a deep learning model detecting breast cancer in digital mammograms
of various densities and to evaluate the model performance compared to previous studies.
From 1501 subjects who underwent digital mammography between February 2007 and May 2015,
craniocaudal and mediolateral view mammograms were included and concatenated for each breast,
ultimately producing 3002 merged images. Two convolutional neural networks were trained to
detect any malignant lesion on the merged images. The performances were tested using 301 merged
images from 284 subjects and compared to a meta-analysis including 12 previous deep learning
studies. The mean area under the receiver-operating characteristic curve (AUC) for detecting breast
cancer in each merged mammogram was 0.952 ± 0.005 by DenseNet-169 and 0.954 ± 0.020 by
EfficientNet-B5, respectively. The performance for malignancy detection decreased as breast density
increased (density A, mean AUC = 0.984 vs. density D, mean AUC = 0.902 by DenseNet-169).
When patients’ age was used as a covariate for malignancy detection, the performance showed little
change (mean AUC, 0.953 ± 0.005). The mean sensitivity and specificity of the DenseNet-169 (87 and
88%, respectively) surpassed the mean values (81 and 82%, respectively) obtained in a meta-analysis.
Deep learning would work efficiently in screening breast cancer in digital mammograms of various
densities, which could be maximized in breasts with lower parenchyma density.

Keywords: breast cancer; mammography; breast density; artificial intelligence; deep learning;
convolutional neural network

1. Introduction

Breast cancer is the most common cancer among women worldwide [1,2]. Over the last several
decades, mammography has played an important role in breast cancer screening [3] and helped to reduce
cancer-associated mortality rates [1]. Breast cancer is known to have an asymptomatic phase that can be
detected by mammography only [4], and approximately 10% of patients undergoing mammography are
reported to be recalled for further evaluation [5], among whom 8 to 10% needed a breast biopsy.

Of note, it requires the careful attention of a radiologist to read a mammogram to detect breast
cancer, usually taking 30–60 s per each image [6]. Nevertheless, the sensitivity and specificity
of mammogram reading by human radiologists have been reported as only 77–87% and 89–97%,
respectively [7]. Recently, double reading is advocated in most screening programs, but this would
worsen the time burden of human radiologists even more [4].
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Recently, the progress of artificial intelligence (AI) has enabled automated disease detection on medical
images in radiology, pathology, and even gastroenterology [8–11]. For breast cancer screening, several deep
learning studies have also been performed, reporting sensitivities of 86.1–93.0% and specificities ranging
from 79.0 to 90.0% [12–15]. Nevertheless, there are only few publications on AI-based breast cancer
detection in mammograms among Asians who have higher breast densities compared to Caucasians.
Breast density may affect the cancer detection rate in mammographic images [16–20].

Therefore, in this study, we aimed to develop and validate a deep learning model that automatically
detects malignant breast lesions on digital mammograms of Asians, and investigated the performance
of the model according to the grade of breast density. To maximize the performance of the model,
we adopted a unique preprocessing method. Additionally, we endeavored to perform a meta-analysis
for comparison using available studies on AI-based breast cancer detection. To our knowledge, this is
one of the largest studies performed on Asians.

2. Methods

2.1. Study Subjects

Female patients who underwent digital mammography in the department of breast and endocrine
surgery of Hallym University Sacred Heart Hospital between February 2007 and May 2015 were
sequentially involved in this study. Only subjects 18 years of age or older and not having a history
of previous breast surgery were included. Subjects without available medical records or pathological
confirmation for a suspicious breast lesion, missing mammograms, or having poor-quality mammograms
hindering proper interpretation due to noise, defocusing, or inadequate positioning were excluded.
This study was approved by the Institutional Review Board (No. 2019-03-004) and adhered to the
tenets of the declaration of Helsinki. The Institutional Review Board waived the requirement of written
informed consent because this study involved no more than the minimal risk to subjects.

From the involved subjects, craniocaudal and mediolateral oblique view mammograms of each
breast were retrieved using the picture archiving and communication system (PACS) of Hallym
University Sacred Heart Hospital with a resolution of 2560 x 3328 pixels. Digital mammography
protocols were in accordance with the European Federation of Organizations for Medical Physics.
A Lorad Selenia digital mammography unit (Hologic Incorporated, Bedford, MA, USA) was used
to capture all images. The performance of the unit was assured within a set and acceptable range
implemented for quality control during the study period.

Any personal information, annotation, or displayed information explaining laterality or type of
mammography view was removed from the image. Then, all mammograms were re-reviewed and evaluated
by two radiologists for the presence of any malignant lesion. Medical records, previous mammography
readings, and pathological reports for any possibly malignant breast lesion were retrospectively investigated,
following up for at least 5 years after the mammography examination. A malignant lesion had to be
confirmed based on surgical histopathology. The participation flowchart is presented in Figure 1.
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2.2. Data Preprocessing

Before analyses, all images were resized into the size of 1000 x 1300 pixels. Then, the images
were preprocessed using a contrast limited adaptive histogram equalization (CLAHE) algorithm to
minimize interimage contrast differences [21]. The CLAHE is a modification of an adaptive histogram
equalization which is an image processing algorithm that transforms the brightness of each pixel in the
image, applying histogram equalization locally in the neighboring pixel regions to enhance the local
contrast of an image [22,23]. The CLAHE algorithm solves the noise overamplification problem of the
adaptive histogram equalization, by limiting the cumulative density function slope when calculating
histogram equalization [22,23]. In this study, the CLAHE was implemented using OpenCV library
version 4.1.2.30 in Python programming language. All mammograms for left breasts were vertically
flipped, making the images in a similar format to those of the right breasts, to make a unified deep
learning model for right and left breasts.

Next, for each breast, craniocaudal and mediolateral oblique view images were cropped,
removing marginal 10% of empty space, and were concatenated horizontally. Finally, the concatenated
images were resized to the size of 900 x 650 pixels.

2.3. Dataset Construction

All the merged images were classified into two categories, malignant vs. benign, based on
the presence or absence of malignant lesions in the images. The whole dataset was split into the
training and testing datasets, allocating 10% of each category’s images randomly in the test dataset.
Then, the resting training set was further divided into the proper training dataset and the tuning
dataset at a ratio of 8:1, using random allocation by category. The training, tuning, and test datasets
were mutually exclusive and collectively exhaustive.

Because the malignancy group was only approximately one-fifth of the non-malignant group in
size, the malignancy group in the training dataset was augmented to mitigate the class imbalance.
The images in the malignancy group of the training dataset were amplified as large as five times,
producing the 10 and 20% magnified images and the 10 and 20% reduced images of the dataset.

2.4. Training Convolutional Neural Networks (CNNs)

To develop a deep learning model, two types of CNN architecture were used: DenseNet-169 and
EfficientNet-B5. Briefly, DenseNet-169 is a CNN structure characterized by a dense block in which
the input feature maps of each former sub-block are concatenated and then used as the input feature
map of a certain sub-block [24]. This dense connectivity helps to resolve vanishing gradient problems
and reduce the number of parameters [24]. EfficientNet-B5 was designed using a MBconv block,
controlling the balance between the width, depth and resolution of a network at once via reinforcement
learning [25]. This network outperformed previous networks on image classification using ImageNet
dataset with fewer parameters and inference times [25]. These two CNN models were pretrained using
the ImageNet dataset and were fine-tuned using the training dataset in this study.

An Adam optimizer was used for binary cross-entropy minimization using a beta1 of 0.9 and
beta2 of 0.999. The initial learning rate was 10−4, and the learning rate was reduced by 10% every
10 epochs until when the rate reached 10−7. The batch size was set to 4, and the weight decay rate was
10−4. Early stopping was used after 30 epochs with a patience value of 20. Dropout was not used for
DenseNet-169 but was used for EfficientNet-B5, with a dropout rate of 0.4. The Pytorch framework
was used on the NVIDIA GeForce Titan RTX graphics processing unit.

2.5. Gradient-Weighted Class Activation Mapping (Grad-CAM)

Gradient-weighed class activation mapping (Grad-CAM) was used to show the region of interest
recognized by the AI models [26]. Grad-CAM is a modified version of class activation mapping which
requires replacing an existing fully connected layer with global average pooling (GAP) and a new
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fully connected layer, and re-training the network [27]. Grad-CAM works based on feature maps
of an input image and its gradient [26]. The gradient is pooled via GAP, and the final color map is
obtained through ReLU activation of the summation of multiplications of feature maps by the pooled
gradient [26].

2.6. Meta-Analysis

Relevant articles were searched in the Pubmed, Embase, and Cochrane databases. The protocol
was based on the Preferred Reporting Items for Systemic Reviews and Meta-Analysis (PRISMA)
guideline. Authors, publication date, sample size, sensitivity, specificity, positive predictive
value, and negative predictive value were extracted. Analysis was performed by RevMan 5.3
(Cochrane Collaboration, London, UK). A fixed-effects model was utilized in the presence of statistical
homogeneity. However, a random-effects model was preferred if significant heterogeneity among the
included studies was identified.

2.7. Statistical Analysis

After training, the performances of deep learning models were evaluated using the initially fixed
testing dataset. The performances were evaluated three times using three different random seeds
for the tuning dataset. The areas under receiver-operating characteristic (ROC) curves (AUCs) were
calculated. The accuracy, sensitivity, specificity, positive predictive value, and negative predictive
values were obtained on the ROC curves at the point maximizing Youden’s J statistic, or the sum
of sensitivity and specificity minus one. Continuous variables were expressed as mean ± standard
deviation, and a p value of <0.05 was considered statistically significant.

3. Results

3.1. Clinical Demographics of Subjects

Ultimately, a total of 3002 merged mammograms generated from 1501 patients were included
in the study. The mean age of the participants was 48.9 ± 11.1 years. The whole dataset contained
537 malignant images and 2465 non-malignant images. The malignancy group was older than the
non-malignancy group (52.7 ± 11.2 years old vs. 48.1 ± 10.9 years old; p <0.001). There were more
images of dense breasts, density grade C or D (2256, 75.1%). Data composition of the training and
testing datasets is presented in Table 1. The testing dataset contained 301 images including 54 images
classified as malignant and 247 non-malignant images. The mean age of the participants who took the
mammograms in the test dataset was 49.9 ± 10.9 years.

Table 1. Data composition for digital mammograms in the training and testing datasets.

Whole Dataset Training Set Test Set

Breast n Patient n Breast n Patient n Breast n Patient n

Overall 3002 1501 2701 1484 301 284
Non-malignant 2465 1496 2218 1427 247 235

Malignant 537 532 483 478 54 54

Breast
density

A 152 76 132 74 20 18
B 594 297 532 292 62 57
C 1560 780 1405 774 155 149
D 696 348 632 344 64 60

3.2. Performance of CNN Models for Breast Cancer Detection

The performance metrics of CNN models are presented in Table 2. The mean AUC for breast cancer
detection in mammograms was 0.952 ± 0.005 by DenseNet-169 and 0.954 ± 0.020 by EfficientNet-B5.
The mean accuracy was 88.1 ± 0.2% by DenseNet-169 and 87.9 ± 4.7 by EfficientNet-B5. For the
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DenseNet-169 model, mean sensitivity and specificity values were 87.0 ± 0.0 and 88.4 ± 0.2, respectively.
The normalized confusion matrix for each CNN structure differentiating malignant images from
non-malignant ones is presented in Figure 2.

Table 2. Performances of deep learning models for breast cancer detection in mammograms by
breast density.

Breast
Density/Model

Accuracy
(%)

Sensitivity
(%)

Specificity
(%) PPV (%) NPV (%) AUC

Overall
DenseNet-169 88.1 ± 0.2 87.0 ± 0.0 88.4 ± 0.2 62.1 ± 0.5 96.9 ± 0.0 0.952 ± 0.005

EfficientNet-B5 87.9 ± 4.7 88.3 ± 4.7 87.9 ± 4.7 62.1 ± 9.9 97.2 ± 1.3 0.954 ± 0.020
Density A

DenseNet-169 95.0 ± 0.0 100 ± 0.0 92.9 ± 0.0 85.7 ± 0.0 100.0 ± 0.0 0.984 ± 0.007
EfficientNet-B5 96.7 ± 2.9 100.0 ± 0.0 95.3 ± 4.1 90.5 ± 8.3 100.0 ± 0.0 0.988 ± 0.012

Density B
DenseNet-169 96.2 ± 4.1 97.0 ± 5.3 96.1 ± 3.9 85.3 ± 14.3 99.3 ± 1.2 0.962 ± 0.041

EfficientNet-B5 95.2 ± 4.3 97.0 ± 5.3 94.8 ± 4.1 81.0 ± 12.9 99.3 ± 1.2 0.990 ± 0.009
Density C

DenseNet-169 86.4 ± 6.2 87.7 ± 4.3 86.2 ± 6.7 58.8 ± 13.5 97.0 ± 1.1 0.950 ± 0.014
EfficientNet-B5 81.9 ± 5.1 84.0 ± 5.7 81.5 ± 5.2 49.6 ± 9.1 96.0 ± 1.6 0.940 ± 0.016

Density D
DenseNet-169 84.3 ± 5.4 83.3 ± 5.8 84.6 ± 5.3 51.0 ± 11.5 96.5 ± 1.3 0.902 ± 0.033

EfficientNet-B5 85.9 ± 10.9 86.7 ± 11.5 85.8 ± 10.8 58.4 ± 28.2 97.1 ± 2.5 0.925 ± 0.055

PPV, positive predictive value; NPV, negative predictive value; AUC, area under the receiver operating
characteristic curve.J. Pers. Med. 2020, 10, x FOR PEER REVIEW 6 of 12 
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Figure 2. Heatmap of confusion matrix for breast cancer detection by the best performing
(a) DenseNet-169 and (b) EfficientNet-B5.

3.3. Sub-Group Analyses

The model performances among sub-groups by breast density in the test dataset are also presented
in Table 2. There was an increasing tendency in the model performance as the breast density decreased.
For the DenseNet-169 model, the mean AUC detecting malignancy in breasts with density A was
higher than that in breasts with density D (0.984 ± 0.007 vs. 0.902 ± 0.033). The ROC curves of each
CNN architecture for sub-groups are presented in Figure 3.

When patients’ age was additionally used in combination with mammogram for DenseNet-169,
the overall performance of detecting breast cancer was not so improved (mean AUC, 0.953 ± 0.005).
The mean AUC in the sub-group of density grade B reached 0.989 ± 0.009, but the AUCs in other
sub-groups were nearly stationary. The performance metrics are presented in Supplementary Table S1.
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Figure 3. Receiver operating characteristic curves for detecting breast cancer on digital mammograms
by the best performing (a) DenseNet-169 and (b) EfficientNet-B5.

3.4. Grad-CAM

Examples of Grad-CAM images are presented in Figure 4. The CNN models detected malignant
lesions efficiently. In the merged mammograms, the malignant lesions were mostly detected
appropriately in both craniocaudal and mediolateral oblique view images. The CNN models focused
on the interface between breast cancer and surrounding parenchyma. The radiopaque area contributed
to cancer prediction more than the radiolucent area. Of note, the CNN models tended to identify the
abnormalities in the form of mass or calcification rather than architectural distortion or asymmetry.
However, radiopaque structures with normal structures were disregarded because they were likely to
exist in most images. Grad-CAM also spanned areas beyond breast cancer, which means the importance
of not only breast cancer itself but also surrounding parenchyma.
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3.5. Meta-Analysis

In meta-analysis, 12 available deep learning studies were selected, where we could extract all
necessary data for comparison [13–15,17,28–35]. A pooled analysis showed that sensitivity was
0.81 ± 0.01 and specificity was 0.82 ± 0.01 (Table 3). The present study showed better performances
compared to the evaluated performances in our meta-analysis, although high heterogeneity was observed.
The heterogeneity originated from different sample sizes, a discordant design, and unexplained variables.

Table 3. Forest plot of the previous studies showing the pooled (a) sensitivity and (b) specificity
on performance of deep learning algorithm for breast cancer detection in mammograms.
CI, confidence interval.

(a) Sensitivity

Sensitivity (95% CI)
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4. Discussion

In the present study, we developed two CNN models for automatic breast cancer detection
using digital mammograms collected originally from our institution. Two images per breast were
concatenated and used for training by the DenseNet-169 and EfficientNet-B5 models. The mean AUC
reached 0.952 ± 0.005 by DenseNet-169 and 0.954 ± 0.020 using EfficientNet-B5. The mean AUC was
increased in sub-groups involving breasts with lower parenchyma density.
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Previously, mean AUCs in similar studies have ranged from 0.70 to 0.96 [3,5,28,36–39]. The wide range
of AUC values comes from using heterogeneous data or a small amount of data. Additionally, the bias of
different mammography equipment manufacturers may contribute to AUC variability, because there is the
difference in vendor-specific contrast/brightness characteristics [29]. Nonetheless, deep learning applied
to mammography can provide automated assistance in breast cancer detection. When we performed the
meta-analysis, a pooled analysis showed that the sensitivity was 0.81 ± 0.01 and specificity was 0.82 ± 0.01.
The present study showed a good performance and general agreement with the previous studies.

The majority of cancer cases that were initially undetected in screening mammograms correlate
with dense breast tissue (density equal to C or D) [40]. Large numbers of breast lesions are occluded by
overlapping fibroglandular tissues in two-dimensional images. Our results showed high performance
even in patients with a dense breast tissue, grade C or D, although there a higher performance was
seen in patients with grade A or B. Researchers already reported the lower detection rates in dense
breast, where masking could occur [29,39,40]. Our models can assist radiologists in mammogram
interpretation resulting in higher accuracy and detection rates. Assisting and improving human
performance in the medical field is one of the roles anticipated to be undertaken by artificial intelligence.

Because breast density is higher in Asians, the value of mammography would be reduced among
Asians compared to Westerners. Although there is certain evidence that high tissue density causes
breast cancer, a higher density can interfere with mammograms, which has the potential for lowering
the detection rate [16–20]. This might mean mammograms with grade C or D densities need automated
support to assist the human eye in interpretation. Thus, these algorithms could be used for detecting
breast cancer in Asians because our algorithms were not influenced by breast density.

The Breast Imaging-Reporting and Data System (BI-RADS) categories consider calcification,
mass, architectural distortion, and associated findings to homogenize the data collection and quality
of mammography reports. However, these parameters sometimes intermingle in a complex way,
which produces greater inter- and intraobserver variability [41]. Our study focused on disease
discrimination not BI-RADS categories. Therefore, our current algorithms do not fulfill the
expectation that BI-RADS would reduce variability in mammogram interpretation. Because BI-RADS
categories work for disease discrimination, our current algorithms will still help radiologists to
interpret mammography.

Downscaling, downsampling, or focusing on only a small region of interest hampers artificial
intelligence performance as digital mammography screening relies on fine details. It is important to
visualize the whole breast to assess architectural distortion. Machine learning in mammography should
not only deal with high-resolution images but also considers the standard four views concurrently.
Breast asymmetry is important for breast cancer detection because it is known that both breasts from
the same patient tend to have a high degree of symmetry [42]. However, we merged two different
views for each breast into one image. Thus, our models tended to find the abnormalities in the form of
mass or calcification rather than architectural distortion or asymmetry. Considering these vulnerable
points, our models will be consistently upgraded for the detection of malignant breast lesions.

CAM uses combined pixels identified by the algorithm to be of interest and overlays a color-coded
distribution on the image. The Grad-CAM shows highlighted areas representing regions, which were
positive in predicting breast cancer, with red indicating areas of strong emphasis. The color
distribution spans to a blue area, indicating little value. When algorithms make classification
decisions, CAM illustrates regions where important features are extracted. Using this approach,
radiologists can recognize the value of machine learning. This kind of visualization enables better
communion with humans while retaining prediction accuracy. CAM will contribute to a wider adoption
of machine learning techniques.

The present study has limitations. The number of patients sampled was small for machine learning
analysis. However, our mammograms were strictly classified based on pathology confirmation and
a 5-year follow-up period used to minimize the interval cancer risk. Second, the original images
were derived from a single tertiary academic institution, to which more severe patients were referred
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from secondary institutions. Lastly, mammograms were generated using a single equipment vendor.
Further research is needed to validate our model across institutions and vendors before it can be broadly
implemented. Additionally, our research suffers from the usual limitations of observational studies.

5. Conclusions

Our deep learning models would help to interpret digital mammography to identify patients with
breast cancer. Using this strategy, the burden on radiologists could be reduced considerably.
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