
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Reo Hamaguchi,
Juntendo University, Japan

REVIEWED BY

Thomas N. Seyfried,
Boston College, United States

*CORRESPONDENCE

Alexey Bogdanov
A.Bogdanov@oncocentre.ru

SPECIALTY SECTION

This article was submitted to
Cancer Metabolism,
a section of the journal
Frontiers in Oncology

RECEIVED 27 June 2022

ACCEPTED 08 August 2022
PUBLISHED 29 August 2022

CITATION

Bogdanov A, Bogdanov A,
Chubenko V, Volkov N, Moiseenko F
and Moiseyenko V (2022)
Tumor acidity: From hallmark of
cancer to target of treatment.
Front. Oncol. 12:979154.
doi: 10.3389/fonc.2022.979154

COPYRIGHT

© 2022 Bogdanov, Bogdanov,
Chubenko, Volkov, Moiseenko and
Moiseyenko. This is an open-access
article distributed under the terms of
the Creative Commons Attribution
License (CC BY). The use, distribution
or reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Mini Review
PUBLISHED 29 August 2022

DOI 10.3389/fonc.2022.979154
Tumor acidity: From hallmark of
cancer to target of treatment

Alexey Bogdanov*, Andrey Bogdanov, Viacheslav Chubenko,
Nikita Volkov, Fedor Moiseenko and Vladimir Moiseyenko

Saint Petersburg Clinical Research and Practical Center of Specialized Types of Medical Care
(Oncological), Saint Petersburg, Russia
Tumor acidity is one of the cancer hallmarks and is associated with metabolic

reprogramming and the use of glycolysis, which results in a high intracellular lactic

acid concentration. Cancer cells avoid acid stress major by the activation and

expression of proton and lactate transporters and exchangers and have an inverted

pH gradient (extracellular and intracellular pHs are acid and alkaline, respectively). The

shift in the tumor acid–base balance promotes proliferation, apoptosis avoidance,

invasiveness, metastatic potential, aggressiveness, immune evasion, and treatment

resistance. For example, weak-base chemotherapeutic agents may have a

substantially reduced cellular uptake capacity due to “ion trapping”. Lactic acid

negatively affects the functions of activated effector T cells, stimulates regulatory T

cells, and promotes them to express programmed cell death receptor 1. On the other

hand, the inversion of pH gradient could be a cancer weakness that will allow the

development of new promising therapies, such as tumor-targeted pH-sensitive

antibodies and pH-responsible nanoparticle conjugates with anticancer drugs. The

regulation of tumor pH levels by pharmacological inhibition of pH-responsible

proteins (monocarboxylate transporters, H+-ATPase, etc.) and lactate

dehydrogenase A is also a promising anticancer strategy. Another idea is the oral or

parenteral use of buffer systems, such as sodium bicarbonate, to neutralize tumor

acidity. Buffering therapydoesnot counteract standard treatmentmethods andcanbe

used in combination to increase effectiveness. However, the mechanisms of the

anticancer effect of buffering therapy are still unclear, and more research is needed.

We have attempted to summarize the basic knowledge about tumor acidity.

KEYWORDS
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Introduction

Cancer cells have an inverted pH gradient: extracellular and intracellular pHs (pHe,

pHi) are acid and alkaline, respectively (1). The acid shift in the tumor

microenvironment (TME) is closely associated with hypoxia (2) but, more specifically,

with highly activated glycolysis in tumor cells. Even in normoxia, about 80% of all
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malignant tumors use aerobic glycolysis, described as the

Warburg effect (3), which is an integral part of metabolic

reprogramming and sustaining biosynthetic pathways in

cancer cells (4).

According to the present knowledge, the shift in the tumor

acid-base balance promotes proliferation, apoptosis avoidance,

invasiveness, metastatic potential, aggressiveness, immune

evasion, and treatment resistance (5–8). On the other hand,

inversion of the pH gradient in tumors could be a weakness that

will allow for the development of new promising therapies

(Figure 1). It is possible to create acid stress inside cancer cells

by inhibiting proton release systems or by using drugs that

decrease mitochondrial activity to increase lactate production (5,

9, 10). The acidity of the TME could be used for the drug delivery

of cytotoxic agents and/or carriers that are more active and/or

change physicochemical properties under such conditions (11–

13). It is very attractive to increase the pHe by a combination of

an alkaline diet and bicarbonate therapy (14–16) or by direct

local isolated perfusion of the tumor with bicarbonate solutions

(17, 18).

Obviously, the altered acid-base state of the tumor affects

every stage of cancer development, from dysplasia to metastatic

disease (1, 2). In this mini-review, we have attempted to

summarize the basic knowledge about tumor acidity from

hallmark of cancer to target of treatment.
Tumor acidity as a hallmark
of cancer

One of the causes of tumor heterogeneity is altered tumor

vasculature, which leads to different perfusion of nutrients and

oxygen and to the accumulation of acidic metabolites (19, 20).

Due to the reprogramming of metabolism in such conditions
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and the use of glycolysis as a major source of ATP production,

tumor cells have an acidic pHe (6.4-7.1) and an alkaline pHi

(7.1-7.8). For normal tissues, the pHe is around 7.4, and the pHi

is around 7.2 (2, 21). Large amounts of lactate produced during

glycolysis result in a significant increase in the intracellular

proton (H+) concentration. It should be noted that

glutaminolysis is another way for ATP production and an

additional source of lactate and H+ in cancer cells (21–24). In

addition, glutamine uptake and metabolism in oxidative cancer

cells can be promoted by lactate (25). However, even in the

presence of oxygen, glucose is almost completely converted into

lactate. At the same time, glutamine is not fully respired, but it is

rather fermented into lactate or pyruvate. Increased glutamine

flux can enhance aerobic glycolysis and make it optimal for

tumor proliferation (22, 26).

As acid stress triggers apoptosis (27), cancer cells use several

ways to evade it (28). Activation and expression of H+ (and

lactate) transporters and exchangers are the main mechanisms

of tumor cell adaptation to intracellular acidification and of the

inverted pH gradient phenomenon (29–32). It should be noted

that not only H+ ejection systems lead to an increase in the pHi,

but also a reduction of CO2 by decreased activity of the

tricarboxylic acid cycle (TCA) and oxidative phosphorylation

(OXPHOS) (1, 10). Carbonic anhydrases (CAs) additionally

support the pH regulation of cancer cells by catalyzing the

reversible hydration of CO2 to HCO3− and H+ (32).

Acidosis of the TME is an essential stage associated with

high rates of tumor cell proliferation (33). Numerous studies

have shown a role for tumor acidity in acquiring aggressive

cancer characteristics, so it is recognized as a hallmark of cancer

(21, 31, 34–36). For example, melanoma cells exposed to acidosis

are characterized by a high invasive potential, high resistance to

apoptosis and drug therapy, fixed independent growth, and a

phenotype of epithelial to mesenchymal transition (37). Under
FIGURE 1

Schematic representation of tumor acidity properties.
frontiersin.org

https://doi.org/10.3389/fonc.2022.979154
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Bogdanov et al. 10.3389/fonc.2022.979154
growth factor limitations, alkaline pHi favors cancer cells

survival (38). The acid adaptation of tumor cells leads to a

gene expression response that correlates with human cancer

tissue gene expression profiles and survival (39). Acidic TME

improves the activity of regulatory T-cells and inhibits effector

T-cells (40). In view of the foregoing, acidic TME could serve as

an incubator that represses overabundant proliferation and

cultures cells with a restricted growth rate but with strong

proliferative potential (41). Clinicians should consider tumor

acidity when diagnosing and determining optimal treatment, as

it is also connected with poor cancer patients prognosis (39).

A wide range of non-invasive and minimally invasive

imaging modalities have been studied preclinically for tumor

pH monitoring, including magnetic resonance imaging (MRI)

and spectroscopy, positron emission tomography, electron

paramagnetic resonance, and optical and photoacoustic

imaging (42). To date, among the methods used, MRI appears

to be the most promising, particularly chemical exchange

saturation transfer (CEST) MRI, which has good in vivo

sensitivity for assessing tumor acidosis and changes in pH

after therapeutic treatment, with a high spatial resolution to

determine the heterogeneity of extracellular acidification. For

example, CEST MRI has been used successfully to map tumor

pH in a rabbit liver cancer model (43). In another study, tumor

acidosis assessed by CEST MRI revealed the metastatic potential

of breast cancer in mice (44). Translating the results of

preclinical studies into clinical trials is only beginning to yield

significant results. CEST MRI shows good results for measuring

pH in ovarian cancer patients (45). In addition, CEST MRI has

recently been shown to differentiate between benign and

malignant liver tumors in patients (46). However, it is still

difficult to routinely measure the pH of tumors in the clinic.

In addition to direct measurements, tumor acidity can be

assessed indirectly by determining the concentrations of

bicarbonate (47) and lactate ions in the blood and using

biopsy data (48). However, each clinical situation requires an

individual approach.
Tumor acidity and tumor resistance

Cancer cell survival strategies in acidic TME promote

resistance to radiation and chemotherapy. Radioresistance is

closely related to hypoxia. Available clinical data show that the

presence of large hypoxia areas in solid tumors is associated with

a poor prognosis in cancer patients after radiotherapy (49). The

cytotoxic effects of ionizing radiation are mainly due to damage

to genomic DNA as a result of the indirect action of generated

free radicals (50). Molecular oxygen must be present during

irradiation, which is insufficient under hypoxic conditions.

Hypoxia also prevents DNA repair and leads to the inhibition

of the G1/S cell cycle checkpoint, an increase in DNA errors, and

an increase in chromosomal instability. At the same time, the
Frontiers in Oncology 03
alkaline pHi of tumor cells prevents mitotic arrest initiated by

activated checkpoints during DNA damage (21, 51). Thus, the

inversion of the pH gradient of the tumor is a “partner” of

hypoxia in creating conditions for radioresistance, and clinicians

should consider acidic TME in the planning of radiation therapy.

Acidic TME itself can lead to chemoresistance due to

ongoing physicochemical changes in the structure and charge

of drugs. Weak-base chemotherapeutic agents, such as

vincristine, mitoxantrone, doxorubicin, vinblastine, and

paclitaxel, may have substantially reduced cellular uptake

capacity due to neutralization or protonation [“ion trapping”

(52)]. Therefore, the cytotoxic effects of these drugs may be

reduced, resulting in a stable tumor phenotype. Interestingly,

reversing the pH gradient may increase the intracellular

concentrations of some weak-acid drugs, including

cyclophosphamide and chlorambucil (53–56). Acidic TME

induces p-glycoprotein (multiple drug resistance (MDR)

protein) activity by promoting p38 mitogen-activated protein

kinase (57–59). Tumor acidosis induces the expression of the

transcription factor SOX2 by inhibiting vitamin D receptor-

mediated transcription, which also results in drug resistance

(60). Oxidation-induced lactic acidosis increases resistance to

uprosertib, a serine/threonine protein kinase inhibitor, in colon

cancer cells (61). To obtain the maximum effect of

chemotherapy, the acidity of the TME must be considered.

Current knowledge strongly suggests that acidic TME

inhibits the antitumor immune response, although the

complication of experimentally measuring tumor acid-base

status makes it difficult to obtain direct evidence (7, 62). For

instance, a decrease in the pHe leads to a decrease in the activity

and proliferation of T cells (63, 64). In an acidic environment,

effector T cells require higher thresholds for full activation and

co-stimulatory signals (e.g., CD28) and show increased negative

regulatory signaling through upregulation of interferon gamma

receptor 2 (IFN-gR2) and cytotoxic T cell-associated protein 4

(CTLA-4) (64). Acidic extracellular conditions reduce the

expression of T-lymphocyte receptor components (65). Since

the movement of lactate between the cytosol and the

extracellular space depends on its concentration gradient, a

high concentration of extracellular lactate in the TME prevents

the export of lactate from T cells. This negatively affects the

functions of activated T-lymphocytes dependent on glycolysis

for ATP production (66). Notably, the functions of effector T-

lymphocytes could be restored after normalization of pH (65–

69), so the acidity does not have a cytotoxic effect. A significant

effect of low acidity appears to be its negative effect on effector

cytokines production by T cells, which is significantly reduced

under acidic conditions (70–72). However, receptor interactions

also play an important role. For example, in acidic TME, the V-

domain Ig suppressor of T cell activation (VISTA), which is

expressed by tumor-infiltrating myeloid suppressor cells, is

activated and suppresses effector T cells (73). The inhibitory

effect of acidic TME on dendritic cells is not related to the high
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concentration of H+, which actually stimulates antigen

presentation (74). This inhibition can be explained by the

accumulation of lactate, which modulates the dendritic cell

phenotype and causes increased production of anti-

inflammatory (e.g., IL-10) and decreased production of pro-

inflammatory (e.g., IL-12) cytokines (75, 76). An acidic pHe and

a high concentration of lactate together lead to a decrease in the

activity of natural killers, including the depletion of interferon

gamma (IFN-g) and their ability to infiltrate the tumor (71, 77,

78). At the same time, for example, an acidic environment

stimulates regulatory T cells (Tregs) activity by involving lactic

acid in metabolism (79). In addition, lactic acid promotes Tregs’

expression of programmed cell death receptor 1 (PD-1) by

absorption through monocarboxylate transporter 1 (MCT1).

Thus, the PD-1 blockade activates PD-1-rich Tregs, resulting

in treatment failure (80). Besides this, the acidity of the TME

upregulates programmed death ligand 1 (PD-L1) in tumor

cells (81).

It seems clear that the acidic conditions of the TME must be

considered in monoclonal antibodies (mAbs) anticancer therapy.

On the onehand, slightly acidic conditions areprobably optimal for

most mAbs (82), i.e., acidity in solid tumors may only slightly

influence the deterioration of the therapeutic properties of mAbs.

Ontheotherhand, thepossibilityof thedegradationofmAbsunder

such conditions cannot be excluded (7). For example, the rate of

antibodyFc fragmentoxidation andaggregation,whichdetermines

antibody-dependent cellular cytotoxicity (ADCC) and

complement-dependent cytotoxicity (CDC), has been shown to

increase with decreasing pH (83, 84). Despite the fact that cancer

immunotherapy uses immune checkpoint-blocking mAbs that are

specifically modified to eliminate interactions with Fc receptors,

fatal changes inother parts ofmAbs thatdetermine their activity are

also possible at low pH values. For example, the chemical

degradation of aspartic acid induced by acidic pH in the

complementarity-determining region (CDR) of a monoclonal

antibody against the epidermal growth factor receptor (EGFR)

causes a loss of antibody-binding activity (85). The high structural

and physicochemical affinity of mAbs to their targets is a condition

for achieving a therapeutic effect. In particular, histidine residues in

interacting sites can increase pH-mediated dissociation due to

protonation under acidic conditions, favoring electrostatic

repulsion between rigid domains in protein–protein interaction

(86). The low pHe can also greatly affect the bioavailability of

therapeuticmAbs.At the same time, the “useful” side of acidicTME

is the possibility of creating therapeutic pH-selectivemAbs (87, 88).
Tumor acidity as a target
of treatment

Tumor-targeted pH-sensitive antibodies should be screened

for low pH activity, and antibody engineering should not be

limited to finding molecules with activity over a wide pH range
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(87). For example, despite the pH-independent affinity of CTLA-

4 for ipilimumab, an analog was developed with up to a 50-fold

affinity for CTLA-4 at pH 6.0 compared to pH 7.4 (89). A

bispecific pH-responsive anticarcinoembryonic antigen-related

cell adhesion molecule (CEACAM) 5 antibody that binds pH-

independently to CEACAM6 was generated (88). Likewise,

acidic TME allows for pH-activated molecular targets, such as

VISTA. A combination of anti-VISTA mAb with anti-PD-L1

therapy demonstrated a significant survival benefit in tumor-

bearing mice (90). Nanotechnologies also provide a good tool for

creating pH-responsible anticancer drugs based on pH-

responsible polymer nanomaterials, nanogels, etc. (91, 92). It

has recently been summarized that several types of pH-sensitive

nanoparticle conjugates with paclitaxel, doxorubicin, or others

enhance drug delivery and potentiate anticancer effects in

various experimental cancer cell lines (93).

Another approach to influencing tumor aggressiveness and/

or therapeutic response is the regulation of tumor pH levels.

First, since glycolysis is the main source of lactate and H+, would

it be possible to reduce lactate production by limiting glucose?

Also considering that hyperglycemia is known to be associated

with reduced survival rates in some types of cancer (94–97),

although this is still controversial, for example, in pancreatic

(98–100) or colorectal cancers (101–103). Indeed, glucose

restriction can reverse the Warburg effect and decrease lactate

production in vitro (104). However, cancer cells can also use

glycogenolysis, glycogen synthesis, and gluconeogenesis to

compensate for glucose starvation (105–107). Many therapies

targeting glucose metabolism (e.g., targeting glucose

transporters, glycogen phosphorylase, glycogen synthase kinase

3b, hexokinase 2, glucose-6-phosphate isomerase, etc.) have

been developed, but have not yet been successful in clinical

trials (107). Furthermore, glycolysis is the main metabolic

pathway of neutrophils, M1 macrophages, dendritic cells,

naive T cells, effector T cells, etc. (108). For example, glucose-

deficient TME limits the anaerobic glycolysis of tumor-

infiltrating T cells and thus suppresses tumor-killing effects

(109). Nutritional deficiencies in the TME, especially glucose,

impair the metabolism of NK cells and their antitumor activity

(110). It is important to note that human glucose levels may be

reduced to very low levels without causing harm (111), and

ketone bodies can be used for energy production with benefits

for the organism (112, 113). For instance, a ketogenic diet

improves the function of T cells (114, 115) and possibly

creates an unfavorable metabolic environment for cancer cells

(116, 117). However, ketone bodies utilization or formation may

be a promoter for tumor cells proliferation and metastasis (118–

121). Therefore, limiting glucose or its metabolism to reduce

lactate production can have a completely ambiguous effect.

A more optimal way to reduce lactate production seems to

be the inhibition of lactate dehydrogenase A (LDHA). This

approach provides the simultaneous restriction of lactate

synthesis from both glycolysis and glutaminolysis. Indeed, the
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inhibition of LDHA in vivo redirects pyruvate to support

OXPHOS (122, 123). To date, a large number of LDHA

inhibitors have been studied preclinically, but unfortunately,

the clinical utility of such inhibitors may be limited due to

nonselective toxicity or complex interactions with other cellular

components. Optimization of existing compounds and

continued search and development of new LDHA inhibitors

will be reasonable strategies to obtain direct antitumor effects or

enhance, for example, immunotherapy results (48, 124, 125). For

example, since the effect of immunotherapy can be prevented by

lactate (79, 80) and high LDH levels before treatment are

correlated with a poor response to immunotherapy (126, 127),

inhibition of LDHA can improve the efficacy of anti-PD-1

therapy (128).

Alternate modality to regulate tumor acidity is the

pharmacological inhibition of proteins responsible for

regulating pHi or mitochondrial activity (5, 9, 10). For

example, inhibition of mitochondrial pyruvate transporter

(MPC) works to block lactate utilization while preventing

oxidat ive g lucose metabol i sm (129) . Blocking the

monocarboxylate transporter 1 (MCT1) (used to import

lactate as an energy source in oxidative cancer cells) with the

specific MCT1 inhibitor AZD3965 prevents lactate

consumption, increases its concentration in the TME, and has

an antiproliferative effect (130–132). Conversely, the inhibition

of MCT4 (expressed to remove lactate in glycolytic tumor cells)

causes intracellular lactate accumulation, a decrease in pHi, but

also reduces tumor growth in vitro and in vivo (132, 133). The

cooperative use of MCT1/MCT4 inhibitors or nonspecific MCT

inhibitors has good therapeutic potential (125, 132, 134, 135).

Also of great importance to decrease pHi values is the

pharmacological inhibition of the proton pump H+-ATPase

(136), sodium-hydrogen antiporter 1 (NHE1) (137), and

carbonic anhydrase IX (CAIX) (138). For example, according

to the results of a phase III clinical trial (NCT01069081),

intermittent use of a high dose of the proton pump inhibitor

esomeprazole potentiates the effects of docetaxel and cisplatin

chemotherapy in metastatic breast cancer without causing

further toxicity (139). In a retrospective study, omeprazole was

found to have a synergistic effect with chemoradiotherapy and to

significantly reduce the risk of rectal cancer recurrence (140).

Other ion exchangers and transporters are involved in tumor pH

regulation, but their role in cancer progression remains

unclear (2).

Another way to affect tumor acidity is the use of buffer

systems, such as sodium bicarbonate. Preclinical and some

clinical studies suggest that “direct” tumor deacidification may

slow progression or improve therapeutic response (34). Oral

administration of sodium bicarbonate can increase the efficacy of

doxorubicin and mitoxantrone in model experiments (52, 55).

Furthermore, peroral administration of sodium bicarbonate and

other buffer solutions significantly reduced the invasion and

metastasis of various experimental (including spontaneous)
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tumors in genetically modified animals but had no effect on

the growth of primary tumors (141–146). Neutralization of

tumor acidity improved the antitumor response to anti-CTLA-

4 and PD-1 mAbs, as well as the adoptive transfer of T-

lymphocytes in experiments using the B16 melanoma model

and Panc02 pancreatic cancer in mice (69).

At the same time, the first three clinical trials of oral sodium

bicarbonate (NCT01350583, NCT01198821, NCT01846429) to

improve outcomes and reduce pain in pancreat ic

adenocarcinoma failed due to poor taste sensation and

gastrointestinal disturbances, resulting in bad compliance

(147). However, a recent clinical study successfully examined

the effect of alkalinization therapy (an alkaline diet

supplemented with oral sodium bicarbonate) in combination

with chemotherapy on the survival of patients with advanced

pancreatic cancer (UMIN 000035659). The median overall

survival rate in patients whose urine pH became high (>7.0)

after the start of therapy was significantly greater than in patients

with low urine pH (≤7.0) (16.1 vs 4.7 months; p<0.05) (14). In

another study (UMIN000043056), the combination of

alkalinization therapy with intravenous vitamin C was also

associated with favorable outcomes in patients with small cell

lung cancer (SCLC) receiving chemotherapy. The median overall

survival for the intervention group was 44.2 months vs. 17.7

months for the control group (15).

Parenteral administration of buffer systems to directly

neutralize tumor acidity is also of great importance, but it

must be done under the close supervision of medical

personnel and can have some serious side effects (148). The

use of nanoobjects to deliver buffers due to the enhanced

permeability and retention effect (EPR) can overcome such

limitations (149). For example, the administration of sodium

bicarbonate-loaded liposomes in combination with

subtherapeutic doses of doxorubicin in mice with triple-

negative breast cancer resulted in a superior therapeutic

response compared to drug administration alone (150).

Performing an isolated infusion or perfusion of the tumor

with buffer solutions is another option. In the ChiCTR-IOR-

14005319 clinical study, the efficacies of transarterial

chemoembolizat ion (TACE) with or without local

administration of 5% sodium bicarbonate solution in patients

with large-focal hepatocellular carcinoma were compared. In the

case of sodium bicarbonate, the objective response rate (ORR)

was 100% vs. 44.4% in the case of conventional TACE in a

nonrandomized cohort and 63.6% in a randomized study (151).

In a preclinical study, it was found that intraperitoneal perfusion

with 1% sodium bicarbonate solution significantly prolonged

overall survival in mice with the ascitic form of Ehrlich’s

adenocarcinoma (median survival, 24 vs. 17 days; p < 0.05)

when compared to 0.9% sodium chloride solution (18). In

another study, perfusion was performed with a 4% sodium

bicarbonate solution of rat limbs with a Pliss lymphosarcoma

graft. The median survival in the sodium bicarbonate group was
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17 days, while in the nonperfused group and in the isotonic

saline group it was 13 days (17).

The mechanisms of the anticancer effects of alkalization

(buffering) therapy remain unclear. While the improved

chemotherapeutic effect can be explained by “ion trapping”

(53, 54), the antitumor, antimetastatic, and immunotherapy-

enhancing effects of buffered therapy may be much more

complex and have been studied predominantly as a

phenomenon until now. Buffering of the TME can reduce the

optimal conditions for enzymes involved in tumor invasion,

such as cathepsins and matrix metalloproteases (MMPs) (152).

Neutralization of acidity in the TME can result in a reduction of

PD-L1 expression, which is increased at low pH through proton-

sensing G protein-coupled receptors (81). Neutralization of

lactic acid with sodium bicarbonate reactivates metabolically

altered (in an acid environment) T cells, enabling extracellular

lactate as an additional source for their energy production (153).

More research is needed on the mechanisms of the effectiveness

of sodium bicarbonate and other buffer solutions in cancer

patients. Alkalization (buffering) therapy does not conflict with

standard treatment methods but can be used in combination to

increase effectiveness (154).
Conclusion

Despite extensive studies on the acid-base status of

malignant tumors over the past decades, the mechanisms of

tumor adaptation to acidity, induction of invasion and

metastasis, and the mechanisms leading to evasion of immune

surveillance are still poorly understood. Further research in this

direction is needed, including the development of approaches

and drugs that directly or indirectly increase the pH of the TME

for use in conjunction with chemotherapy, radiation therapy,

and immunotherapy. However, it is clear that clinical options

already exist to counteract tumor acidosis in patients.

Additionally, the selectivity of acidosis in tumors versus

healthy tissues holds promise for pH-activated or pH-targeted

drugs, which are safer than traditional chemotherapy and are
Frontiers in Oncology 06
applicable to more cancers than many targeted drugs. Regardless

of the complexity of the clinical assessment of the TME acidity,

clinicians should consider acidosis in practice, and the continued

development of methods for clinical assessment of tumor pH

should allow for accurate diagnosis and selection of personalized

treatment regimens.
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