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Abstract
Background  Methylation at the N6 atom of adenosine (m6A) of RNA has been linked 
to immune responses to various types of tumors. How m6A methylation affects 
tumorigenicity, progression, and tumor microenvironment in hepatocellular carcinoma 
(HCC) is unclear.

Methods  Consensus clustering was used to define m6A methylation patterns based 
on expression of 26 regulatory factors in HCC. The relative abundance of various 
immune cell types in the tumor microenvironment was quantified using single-sample 
gene set enrichment analysis. Cox regression with LASSO was used to screen for genes 
whose expression correlated with survival of patients with HCC.

Results  Two patterns of m6A methylation in HCC were identified: pattern C1 was 
associated with abundant tumor infiltration by activated CD8+ T cells and by effector 
memory CD8+ T cells, as well as longer survival; pattern C2 was associated with 
abundant tumor infiltration by activated CD4+ T cells and by type 2 helper T cells, as 
well as with shorter survival. Cox regression identified a seven-gene signature capable 
of predicting the characteristics of the tumor microenvironment and overall survival 
in HCC: patients in the high-risk group had a lower immunophenoscore, higher TIDE 
score, and worse survival.

Conclusions  Patterns of m6A methylation in HCC are related to immune cell 
characteristics of the tumor microenvironment and to disease progression and 
prognosis. Analyzing these patterns in detail may clarify when and how the HCC 
responds to checkpoint inhibitors and guide the personalization of immunotherapy.

Keywords  Hepatocellular carcinoma, m6A modification, Tumor microenvironment, 
Prognosis, Immunotherapy

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1007/s12672-025-02965-7
http://crossmark.crossref.org/dialog/?doi=10.1007/s12672-025-02965-7&domain=pdf&date_stamp=2025-6-12


Page 2 of 20Yan et al. Discover Oncology         (2025) 16:1094 

1  Introduction
Methylation of RNA at the N1 or N6 atom on adenosine or the N5 atom on cytosine plays 
a vital role in regulating gene expression [1]. The most common type of RNA meth-
ylation in eukaryotic mRNA is at the N6 atom on adenosine (m6A), which may influ-
ence characteristics of various cancers [2–4]. Alterations in the expression or activity 
in proteins that catalyze, recognize or remove the m6A modification [5, 6] may influ-
ence gene expression and thereby numerous cellular processes and physiological func-
tions [2, 6, 7], in turn affecting the development and progression of malignant tumors as 
well as the host’s immune responses to them [8–11]. Comprehensive analysis of muta-
tions in m6A regulators and of their expression may help characterize the heteroge-
neous tumor microenvironment and identify potential targets for personalized cancer 
immunotherapy.

Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related deaths 
around the world [12], and its incidence and mortality rate remain high despite wide-
spread vaccination of children against the hepatitis B virus, which is a major risk factor 
for the disease [13, 14]. Immunotherapies targeting the tumor microenvironment (TME) 
in HCC are actively being explored. The TME comprises cancer cells on one hand as well 
as stromal and immune cells on the other [15], and crosstalk between the cancer cells 
and infiltrating immune cells establish an environment that promotes tumor growth, 
invasion, and metastasis [16]. Inhibiting the immune checkpoints CTLA-4 and PD-1/
PD-L1 [17] in the TME has been explored against HCC, but this strategy failed to meet 
primary endpoints in the CheckMate-459 and KEYNOTE-240 trials [18], in contrast to 
its promising performance against other types of cancer [19–21], Moreover, only a small 
percentage of patients respond to immunotherapy.

Response to tumor immunotherapy may be influenced by m6A modification [11, 22]. 
Clarifying how this modification affects infiltration of the TME by immune cells may 
help predict response to existing immune checkpoint inhibitors and guide the devel-
opment of novel immunotherapies [23]. Towards this end, the present study analyzed 
the expression of 26 m6A regulatory factors in 779 HCC patients from several data-
bases using unsupervised consensus clustering, and it searched for correlations between 
expression and TME infiltration by immune cells. Two m6A modification patterns were 
identified, each associated with a different immune cell profile in the TME. Based on 
these patterns, a gene signature was constructed that showed promise for predicting 
overall survival of HCC patients. These findings contribute to understanding how m6A 
regulators affect the immune cell characteristics of the TME.

2  Methods
2.1  Collection and preprocessing of data from public datasets

The flowchart of our work is shown in Figure S1. This study made use of publicly avail-
able data from the National Center for Biotechnology Information GEO database (www.
ncbi.nlm.nih.gov/geo), International Cancer Genome Consortium (ICGC; ​h​t​t​p​s​:​/​/​i​c​g​
c​.​o​r​g​​​​​)​, and The Cancer Genome Atlas (TCGA; https://portal.gdc.cancer.gov). Patients 
with no survival data were excluded from the analysis. The final analysis involved 779 
HCC patients from four cohorts: GSE76427 [24] (115 HCC specimens) and GSE116174 
(64 HCC specimens) in the GEO database, ICGC-LIRI-JP [25, 26] (232 specimens) and 

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
https://icgc.org
https://icgc.org
https://portal.gdc.cancer.gov
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TCGA-LIHC (368 specimens). The integrated dataset comprising these four cohorts is 
referred to in the text below and in figures as the “four-cohort HCC dataset”.

For the two GSE cohorts, series matrix files and supplementary files, including clini-
cal features and survival data, were downloaded from the GEO database. High-through-
put Illumina sequencing data for the GSE76427 cohort were normalized using the RSN 
method in the “lumi” R package [27], while data for the GSE116174 cohort were pro-
cessed using the “affy” R package and the RMA algorithm for background adjustment 
[28].

For the ICGC-LIRI-JP cohort, RNA sequencing data in terms of fragments per kilobase 
of transcript per million mapped reads (FPKM) as well as data on somatic mutations 
and clinical information were downloaded. FPKM data were converted to transcripts 
per kilobase million (TPM) values, which facilitate comparisons across samples and with 
microarray data [29].

For the TCGA-LIHC cohort, RNA sequencing data in terms of FPKM as well as 
VarScan-processed somatic mutation data [30] and copy number variations were down-
loaded. The corresponding data on clinical features and survival were extracted via the 
University of California Santa Cruz (UCSC) Xena browser (https://xenabrowser.net).

Batch effects among the various datasets were removed using the removeBatchEffect 
function in the “limma” R package [31]. Due to the limited availability of normal liver 
samples in the TCGA, gene expression differences between tumor and normal tissues 
were explored using a dataset (in TPM format) combining the TCGA cohort and data 
from the “Therapeutically applicable research to generate effective treatments” (TAR-
GET) dataset and “Genotype-tissue expression” (GTEx) dataset in the UCSC Xena data-
base [32]. The immunotherapy dataset IMvigor210 was downloaded from ​h​t​t​p​:​/​​/​r​e​s​e​​a​
r​c​h​-​p​​u​b​.​g​​e​n​e​.​c​​o​m​/​I​M​​v​i​g​o​r​2​​1​0​C​o​​r​e​B​i​o​l​o​g​i​e​s [33], and count values were transformed 
into TPM values. Values of the stemness index of messenger RNA (mRNAsi), which 
describes how similar tumor cells are to stem cells based on mRNA expression levels, 
were calculated as described [34].

Supplementary Table S1 lists the platforms, sample numbers, and clinical endpoints 
for each HCC dataset. Data were analyzed using R software (version 4.0.3), R Biocon-
ductor, and Python (version 3.8.8).

2.2  Genomic analysis of 26 m6A regulators

The oncoplot function in the “maftools” R package [35] was used to analyze the muta-
tional landscape of the genes encoding 26 m6A regulatory factors in the TCGA-LIHC 
and ICGC-LIRI-JP cohorts. Results were depicted using the “ComplexHeatmap” R pack-
age [36]. The landscape of copy number variations in the 26 m6A genes across human 
chromosomes was plotted using the “RCircos” R package [37].

2.3  Crosstalk among 26 m6A methylation regulators

Protein-protein interactions (PPI) among the 26 m6A regulators were analyzed using 
the STRING interaction database [38] and visualized using Cytoscape software (version 
3.8.0) [39]. The size of each node reflects the number of regulatory factors that interact 
with it.

https://xenabrowser.net
http://research-pub.gene.com/IMvigor210CoreBiologies
http://research-pub.gene.com/IMvigor210CoreBiologies
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2.4  Unsupervised consensus clustering based on expression of m6A methylation 

regulators

To identify distinct patterns of m6A methylation, data on the expression of 26 m6A 
regulator genes from previously published studies [40, 41] (Supplementary Table S2) 
were extracted from the four integrated HCC datasets mentioned above. Unsupervised 
clustering based on the expression data was used to categorize patients with the “Con-
sensuClusterPlus” R package [42]. Clustering was based on Euclidean distance and the 
k-means approach and was performed 1,000 times to ensure cluster stability.

2.5  Gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA)

The activity of biological pathways in different patterns of m6A modification was 
assessed using the “GSVA” R package [43]. Functions and pathways in patients express-
ing low or high levels of HNRNPA2B1 in the TCGA cohort were investigated using 
GSEA within the “fgsea” R package [44]. Gene sets showing a |normalized enrichment 
score| > 1 and P < 0.05 were considered significant enrichment for enrichment in Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways and hallmark gene sets from the 
Molecular Signatures Database (version 7.5).

2.6  Single-sample GSEA (ssGSEA) to estimate abundance of immune cells in the TME

The relative abundances of 28 types of immune cells in the TME were quantified using 
ssGSEA within the “GSVA” R package based on well-defined gene signatures for each 
cell type [45] (Supplementary Table S3). Abundances were expressed on a normalized 
scale from 0 to 1.

2.7  Prediction of HCC response to immunotherapy

Likely response of HCC to immunotherapy was predicted using several published scor-
ing systems. The immunophenoscore (IPS) score [45] was calculated by summing the 
weighted average of Z scores for the following four variables: (1) effector cells, defined 
as activated CD4+ T lymphocytes, activated CD8+ T lymphocytes, effector memory 
CD4+ T lymphocytes, and effector memory CD8+ T lymphocytes; (2) suppressive cells, 
defined as regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs); (3) 
MHC-associated molecules; and (4) use of immunomodulators or checkpoint inhibitors. 
Higher IPS suggests greater abundance of immune checkpoint molecules in the TME 
and therefore stronger immunogenicity and response to immunotherapy.

The “tumor immune dysfunction and exclusion” (TIDE) score was calculated as 
described [46]. Higher TIDE score suggests greater likelihood of immune escape by the 
tumor, implying weaker response to checkpoint inhibitors.

The algorithm “Estimation of stromal and immune cells in malignant tumors using 
expression data” (ESTIMATE) was applied to the data as described [47]. Scores were 
calculated for relative abundance of immune cells (“immune score”), stromal cells (“stro-
mal score”) and tumor cells (“tumor purity”) in the TME. Lower tumor purity suggests 
greater abundance of stromal and immune cells than tumor cells, implying stronger 
response to immunotherapy.
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2.8  Identification of differentially expressed genes (DEGs) between patterns of m6A 

modification

Genes whose expression differed between patterns of m6A modification were identified 
using the “limma” R package [31]. DEGs were defined as genes whose expression showed 
|log2(fold change)| > 0.5 and P < 0.05 after Benjamini-Hochberg adjustment for multiple 
testing [48].

2.9  Enrichment of DEGs in defined functions and pathways

To explore the potential roles of the abovementioned DEGs, the DEGs were analyzed 
for enrichment in predefined functions and pathways using GSEA within the “cluster-
Profiler” R package [49]. The filtering criteria for GSEA are the same as in the previous 
description. GSEA results were visualized using the “enrichplot” R package.

2.10  Construction of gene signatures related to m6A modification

Genes whose expression might predict overall survival of HCC patients were explored in 
the TCGA-LIHC cohort using Kaplan-Meier and univariate Cox regression. Prediction 
was considered significant if P < 0.01. Only genes satisfying this criterion were consid-
ered in subsequent analyses.

Next, we randomly divided the TCGA-LIHC cohort 1:1 into a training and test set 
using the createDataPartition function in the “caret” R package. Cox regression involv-
ing the least absolute shrinkage and selection operator (LASSO) was applied to the train-
ing set using the “glmnet” R package [50, 51]. The best penalty parameter lambda (λ) was 
determined through 10-fold cross validation, and the proportional hazard hypothesis 
was tested using the cox.zph function in the “survival” R package. Genes that did not 
meet the proportional hazard hypothesis were excluded from subsequent analyses.

Finally, multivariate Cox regression was performed on gene expression and patient 
survival data. A risk score was computed for each sample using the formula:

risk score =
∑ n

i=1
(Coefficienti ∗ Expressioni) ,

where Coefficient refers to the regression coefficient and Expression to the gene’s relative 
expression level. Based on the median risk score in the TCGA training set, patients from 
the TCGA training set, the TCGA testing set, the entire TCGA cohort as well as both 
GEO cohorts and the ICGC-LIRI-JP cohort were stratified into those at low or high risk. 
Patients in the IMvigor210 dataset were divided into high or low risk groups based on 
the optimal cutoff value of the risk score derived from the surv_cutpoint function in the 
“survminer” package in R.

2.11  Statistical analysis

All statistical analyses were performed using R version 4.0.3 (www.r-project.org). All 
P values were two-sided, with significance defined as P < 0.05 unless otherwise noted. 
Pairwise differences were assessed for significance using the nonparametric Wilcoxon 
rank-sum test, while differences among more than two groups were assessed using the 
nonparametric Kruskal-Wallis test. Associations between clinicopathological param-
eters and risk score were assessed using the chi-squared test.

http://www.r-project.org


Page 6 of 20Yan et al. Discover Oncology         (2025) 16:1094 

Univariate Cox regression was used to assess hazard ratios (HRs) for 26 m6A regu-
lators, and correlations among the regulators were explored using the nonparametric 
Spearman test, with the results visualized in the “forestplot” R package. Survival curves 
were generated using the Kaplan-Meier approach, and curves were compared using the 
log-rank test. All heatmaps were generated using the R packages “pheatmap” ​(​​​h​t​t​p​s​:​/​/​C​R​
A​N​.​R​-​p​r​o​j​e​c​t​.​o​r​g​/​p​a​c​k​a​g​e​=​p​h​e​a​t​m​a​p​​​​​) and “ComplexHeatmap” [36].

3  Results
3.1  Multi-omics landscape of m6A methylation regulators in HCC

The roles of 26 genes encoding proteins that regulate m6A methylation in HCC were 
investigated in this study (Fig.  1A). The encoded proteins comprised nine “writers”, 
which add the modification to RNA [METTL3, METTL14, METTL16 (or METT10D), 
WTAP, KIAA1429, ZC3H13, RBM15, RBM15B, and CBLL1]; three “erasers”, which 

Fig. 1  Multi-omics landscape of m6A regulators in HCC. (A) Overview of the 26 m6A regulators and their biological 
processes in RNA metabolism. (B) The frequency of mutations in 26 m6A modification regulators in the TCGA-LIHC 
cohort. Each column indicates an individual sample. The upper bar plot indicates tumor mutation burden (TMB). 
The number on the right shows the frequency of mutations for each regulator. The right bar displays the percent-
age of each type of genetic alteration. (C) The frequency of copy number variations (CNV) of 26 m6A regulators in 
the TCGA-LIHC cohort. Amplification of the DNA copy number is shown in red and deletion of the copy number 
in blue. (D) The network of protein-protein interactions among 26 m6A regulators. The size of each node reflects 
the number of proteins that interact with it. (E) Boxplot comparing the expression of 26 m6A regulators between 
tumor and normal tissues. ns: not significant, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001
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delete the modification (ALKBH3, ALKBH5, and FTO); and 14 “readers”, which recog-
nize the methylation (YTHDF1, YTHDF2, YTHDF3, YTHDC1, YTHDC2, IGF2BP1, 
IGF2BP2, IGF2BP3, HNRNPA2B1, HNRNPC, FMR1, LRPPRC, ELAVL1, and EIF3A). 
How these three groups of proteins dynamically modify RNA is unclear.

The total mutation rate of 26 m6A regulators was relatively low in the HCC genomes 
of the TCGA cohort, where 44 samples had mutations (Fig. 1B), and the ICGC cohort, 
where 37 samples had mutations (Figure S2A). The most frequent alterations were 
missense mutations. In the TCGA cohort, KIAA1429 showed the greatest mutation 
frequency, followed by HNRNPC and LRPPRC (Fig. 1B). In the ICGC cohort, HNRN-
PA2B1 showed the highest mutation frequency, followed by KIAA1429 and EIF3A (Fig-
ure S2A).

Analysis of concurrent mutations across the 26 m6A regulators revealed patterns of 
co-occurring mutations in YTHDC2 and EIF3A, IGF2BP2 and KIAA1429, as well as 
FMR1 and HNRNPC (Figure S2B). No evidence of mutually exclusive mutations was 
found among the 26 m6A regulators (Figure S2B).

Analysis of copy number variation revealed that KIAA1429, YTHDF3, and HNRN-
PA2B1 had a relatively high frequency of amplification, while METTL16, METTL14, and 
ZC3H13 had frequent deletions (Fig. 1C). Figure S2C illustrates the chromosomal loca-
tions of copy number variations across the 26 m6A regulators. Analysis based on the 
STRING database predicted extensive protein-protein interactions among the 26 m6A 
regulators (Fig. 1D).

Most regulators were strongly elevated in HCC tissues, with the exception of ZC3H13 
and YTHDC2 (Fig. 1E), implying that they play essential roles in the formation and pro-
gression of HCC. Most of the 26 m6A regulators showed a strong positive co-expression 
relationship with one another in the TCGA cohort based on the Spearman correlation 
test (Figure S2D), in accord with the results in the four-cohort HCC dataset (Fig. 2A and 
Table S4).

Taken together, these findings suggest that genetic variation and abnormal expression 
of the 26 m6A regulators may promote cell-cycle disturbance, genomic instability, and 
accumulation of genomic mutations during the development and progression of HCC.

3.2  Associations of m6A regulators with patient prognosis and immune cell profiles in the 

TME

The prognostic value of 26 m6A regulators was assessed for the four cohorts in our 
study using univariate Cox regression. Higher expression of most regulators, including 
RBM15B, YTHDF2 and LRPPRC, was associated with shorter overall survival, imply-
ing that they are risk factors of poor prognosis (Fig. 2A and S3A). Higher expression of 
ZC3H13, in contrast, was associated with longer overall survival, implying that it pro-
tects against poor prognosis. The positive co-expression among numerous m6A regula-
tors implies that crosstalk among the regulators may influence prognosis.

To better understand the role of these m6A regulators in HCC, we explored interac-
tions between their levels of expression and abundance of immune cell types in the TME. 
Expression of WTAP and ALKBH3 correlated positively with the relative abundance of 
most types of immune cells, whereas expression of the remaining m6A regulators cor-
related negatively with abundance of most types of immune cells (Fig. 2B). Comparison 
of the expression of the 26 m6A regulators in tumors of patients who showed complete 
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or partial response or stable or progressive disease in the IMvigor210 cohort, which con-
tained patients with various types of cancer on immunotherapy (Figure S4), revealed 
that expression of HNRNPA2B1 was higher in tumors showing complete or partial 
response (Fig. 2C). Patients in the TCGA-LIHC cohort with high HNRNPA2B1 expres-
sion showed shorter overall survival than those with low expression (Fig. 2D), yet those 
in the IMvigor210 cohort with high HNRNPA2B1 expression showed longer survival 
than those with low expression (Fig. 2E). GSEA analysis of the TCGA cohort linked high 

Fig. 2  Prognosis and immune characteristics of m6A regulators. (A) Prognosis and correlation network diagram of 
26 m6A regulators in HCC patients. The red line indicates a positive correlation with P < 0.0001, whereas the blue 
line indicates a negative correlation with P < 0.0001. The size of the node reflects the P value of univariate Cox re-
gression. Green points denote factors associated with higher overall survival; black points, factors associated with 
lower overall survival. (B) Heatmap of correlations between 26 m6A regulators and 28 types of immune cells in the 
four-cohort HCC dataset. Red indicates a positive correlation, while blue indicates a negative correlation. *P < 0.05, 
**P < 0.01. (C) Boxplot of relative HNRNPA2B1 expression in tumors showing different responses to anti-PD-L1 im-
munotherapy. Kruskal-Wallis test, P = 0.0062. (D) Survival analysis of groups expressing high HNRNPA2B1 (n = 184) 
or low HNRNPA2B1 (n = 184) in the TCGA-LIHC cohort. Log-rank test, P = 0.005. (E) Survival analysis of groups ex-
pressing high HNRNPA2B1 (n = 48) or low HNRNPA2B1 (n = 300) in the IMvigor210 immunotherapy cohort. Log-
rank test, P = 0.047. (F) In the TCGA-LIHC cohort, gene set enrichment analysis (GSEA) revealed that cancer- and 
immune-related pathways were enriched in the group expressing high HNRNPA2B1, while four metabolism-relat-
ed pathways were enriched in the group expressing low HNRNPA2B1
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HNRNPA2B1 expression to enrichment in several pathways related to cancer and immu-
nity, such as the FC γ R-mediated phagocytosis and T cell receptor signaling (Fig. 2F).

These findings associate HNRNPA2B1 expression with HCC formation, progression 
and response to immunotherapy. The m6A reader HNRNPA2B1 may be a biomarker for 
predicting immunotherapy response.

3.3  Patterns of m6A methylation in HCC based on expression of the 26 m6A regulators

HCC tissues in the four-cohort HCC dataset were stratified according to expression 
of 26 m6A regulators using consensus clustering, and two patterns of m6A methyla-
tion were found to provide the most effective clustering (Fig. 3A and B). Patients were 
therefore divided into two categories, Cluster 1 (C1, n = 461) and Cluster 2 (C2, n = 318). 
Most m6A regulators showed relatively high expression in pattern C2 (Figure S3B and 
S3C), which was associated with significantly shorter overall survival than pattern C1 
(P < 0.0001, log-rank test, Fig. 3C).

The two patterns C1 and C2 differed significantly in the relative abundance of vari-
ous types of immune cells in the TME (Table S5). Even though C2 was associated with 
worse survival (Fig. 3D), it was associated with significantly greater abundance of acti-
vated CD4+ T cells, effector memory CD4+ T cells and natural killer T cells, as well as 
with significantly lower abundance of regulatory T cells, type 1 helper T cells and mono-
cytes. Pattern C1, for its part, was associated with relatively high proportions of acti-
vated CD8+ T cells and effector memory CD8+ T cells.

The ESTIMATE algorithm showed that pattern C1 was associated with higher stro-
mal scores than pattern C2 (Fig. 4A, P = 0.00021), while C2 showed greater tumor purity 

Fig. 3  m6A methylation modification patterns in the four-cohort HCC dataset. (A) Consensus clustering matrix 
of 779 patients with k = 2. (B) Three-dimensional principal component analysis (3D-PCA) of 26 m6A regulators to 
identify two m6A methylation patterns in 779 patients from four cohorts. (C) Kaplan-Meier curves of the two m6A 
modification patterns involving 461 cases of m6A modification pattern C1, and 318 cases of m6A modification pat-
tern C2. Log-rank test, P < 0.0001. (D) Boxplot depicting relative immune cell abundance in the two m6A modifica-
tion patterns. ns: not significant, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001
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(Fig. 4B, P = 0.0079). Immune score did not differ significantly between the two patterns 
(Fig. 4C, P = 0.096).

Pattern C1 was significantly enriched in metabolic pathways, such as those involving 
metabolism of xenobiotics, bile acids and fatty acids (Fig. 4D and Table S6). C2, in con-
trast, was markedly enhanced in pathways related to the cell cycle, such as those involv-
ing the MYC targets V1/V2, DNA repair, and E2F targets. These results link pattern C2 
to cancer activation status.

3.4  Associations of the two m6A methylation patterns with clinical and transcriptomic 

characteristics in the TCGA-LIHC cohort

Consensus clustering of patients in the TCGA-LIHC cohort according to expression of 
the 26 m6A regulators revealed two m6A modification patterns similar to those iden-
tified above in the combination of four cohorts (Fig. 5A and S5A, S5B and S5C). Pat-
tern C2 was associated with higher expression of all m6A regulators except the eraser 
ALKBH3 (Figure S5C). Pattern C1 was associated with better overall survival than C2 
(log-rank test, P = 0.003; Fig. 5B).

In the TCGA-LIHC cohort, comparison of the immune cell landscape in the TME 
between the two m6A methylation profiles using ssGSEA revealed similar differences in 
relative abundance of activated CD4+ T cells, activated CD8+ T cells, effector memory 
CD8+ T cells, and type 2 helper T cells as in the above analysis involving all four cohorts 
(Figure S5D). Based on several immune infiltration-related signatures from previous 
work [52] (Table S7), pattern C1 appeared to be enriched in immune responses involving 

Fig. 4  Tumor microenvironment characteristics in different m6A modification patterns. (A) Boxplot of tumor purity 
in the two distinct m6A modification patterns in the four-cohort HCC dataset. Wilcoxon rank sum test, P = 0.0079. 
(B) The stromal score of two m6A modification patterns were analyzed and plotted. Wilcoxon rank sum test, 
P = 0.00021. (C) Comparison of immune score of two m6A modification patterns. Wilcoxon rank sum test, P = 0.096. 
(D) Gene set variation analysis (GSVA) of relative activation of hallmark gene sets in two m6A modification patterns. 
Red indicates activated pathways, and blue indicates inhibited pathways
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CD8+ T effector cells, angiogenesis, cytolytic activity, and type II interferon (Fig.  5C). 
Pattern C2, in contrast, featured higher expression of epithelial-mesenchymal tran-
sition (EMT) 1 and EMT 3. Further comparison of the expression of immune-related 
genes between patterns C1 and C2 (Fig. 5E) revealed relatively high expression of several 
ligands (such as CXCL10, CXCL9, VEGFA, and VEGFB), co-inhibitor CD276, and cell 
adhesion molecules (ITGB2 and ICAM1) in pattern C2.

In the TCGA-LIHC cohort, many patients with advanced HCC showed pattern C2, 
whereas most patients with lower histology grades showed pattern C1 (Fig. 5D and F), 

Fig. 5  Different clinical and transcriptional characteristics associated with the two m6A modification patterns in 
the TCGA-LIHC cohort. (A) Heatmap shows the expression of 26 m6A regulators. Red denotes high expression, and 
blue denotes low expression. Samples were annotated by m6A modification pattern, overall status, stage, histology 
grade, Child-Pugh grade, and age. (B) Kaplan-Meier curves of two m6A modification patterns involving 221 cases 
of m6A modification pattern C1 and 147 cases of pattern C2. Log-rank test, P = 0.003. (C) Fractions of 17 immune 
signatures in the two m6A modification patterns. ns: not significant, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. 
(D) Stacked bar plot of histology grade in the two m6A modification patterns. G1, blue; G2, orange; G3, red; G4, 
light blue. (E) Heatmap depicting the average differences in immune-related gene expression between the two 
m6A modification patterns. Red squares represent upregulation, while blue squares represent downregulation. (F) 
Proportions of different “tumor, lymph node, metastasis” (TNM) stages in the two m6A modification patterns. Stage 
I, blue; stage II, orange; stage III, red; stage IV, light blue
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implying that C2 may be associated with HCC progression. Indeed, pattern C2 was asso-
ciated with significantly higher stemness mRNAsi (Figure S6A).

These findings suggested that HCC patients could be classified into two molecular 
subtypes based on the expression of 26 m6A regulators. In the two subtypes, pattern C1 
indicated a high proportion of infiltrating CD8+ T cell and stromal cells in the TME, 
and it was associated with favorable prognosis. Pattern C2 indicated high proportions of 
infiltrating CD4+ T cells and type 2 helper T cells as well as high tumor purity, and it was 
associated with malignant progression and poor prognosis.

3.5  DEGs between m6A methylation patterns in HCC and their selection for a potential 

prognostic gene signature

To explore how the two patterns of m6A methylation in HCC may translate to differ-
ent tumor phenotypes, an empirical Bayesian approach was used to identify 2887 DEGs 
between the two patterns (Figure S6B). GSEA between patterns C1 and C2 linked C2 to 
enrichment in pathways related to the cell cycle, such as pathways involving E2F targets, 
the G2M checkpoint, the MYC target V1, TGF-β and the EMT, which was consistent 
with previous analyses (Fig. 6A).

Of the 2887 DEGs, 861 showed prognostic value based on Kaplan-Meier analysis 
and univariate Cox regression (Table S8). Unsupervised clustering analysis based on 
the expression of these 861 genes assigned HCC patients to one of two patterns, which 
we termed “m6A methylation-related gene patterns” (Fig. 6B and S6C). Gene pattern B 
was associated with worse prognosis and higher histology grade than gene pattern A 
(Fig. 6B C). Expression of immune-related genes in gene patterns A and B were remark-
ably similar to that in the two m6A methylation patterns C1 and C2 in the TCGA-LIHC 
cohort (Fig.  6D). Gene pattern A was associated with greater expression of angiogen-
esis and type I/II interferon response signatures, whereas gene pattern B was associated 
with greater expression of EMT1/3, immune checkpoint, and MHC-II HLA signatures 
(Figure S6D). These results further support that the two m6A methylation patterns cor-
respond to two molecular subtypes of HCC differing in clinical characteristics and infil-
tration of the TME by immune cells.

In order to define an “m6A signature” that might predict prognosis, LASSO Cox 
regression was performed on the 861 DEGs related to prognosis, and the regression 
coefficient of each gene was estimated using an optimal lambda (λ) derived from 10-fold 
cross validation (Figure S7A and S7B). Based on the resulting m6A signature, patients 
were assigned to low- or high-risk groups using a median cutoff value of 0.8434 in the 
case of the TCGA training set or an optimal threshold value of 4.1580 in the case of the 
IMvigor210 cohort.

3.6  Ability of the m6A signature to predict clinical features and prognosis

Patients who were assigned to the low-risk group based on the m6A signature showed 
favorable overall survival, whether in the TCGA-LIHC training set (P < 0.001), TCGA-
LIHC test set (P < 0.001), entire TCGA-LIHC cohort (P < 0.001; Fig.  7A and C), ICGC 
cohort (P < 0.001; Fig. 7D), the combination of all four cohorts (P < 0.001; Fig. 7E), the 
GSE116174 cohort (P = 0.002; Fig.  7F), or the IMvigor210 cohort (P = 0.019, Fig.  7G). 
However, the survival advantage of being in the low-risk group did not achieve statistical 
significance in the GSE76472 cohort (P = 0.541; Fig. 7H).
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Tumor mutation burden (TMB) may be useful for predicting response to checkpoint 
immunotherapy [53], so we compared TMB between high- and low-risk groups in the 
TCGA-LIHC cohort. TMB was significantly higher in the high-risk group (P = 0.0016; 
Fig. 7I), which had a relatively high level of neo-antigens. At the same time, risk score 
correlated positively with mRNAsi (R = 0.49, P < 0.001; Figure S7C), which may help 
explain the poor prognosis in the high-risk group.

The score on the m6A signature also correlated with at least some clinical characteris-
tics of HCC patients. The low-risk group showed earlier staging and histology grade in 
the TCGA cohort (Fig. 8A, ***P < 0.001) and the ICGC cohort (Fig. 8B, ***P < 0.001). Risk 
type based on the m6A signature correlated with m6A methylation pattern, m6A methyl-
ation-related gene pattern, and overall survival (Fig. 8C and Table S9). Multivariate Cox 
regression confirmed the m6A signature to be an independent predictor of overall sur-
vival in the TCGA and ICGC cohorts (Fig. 9A and B).

Fig. 6  Transcriptomic characteristics and functional annotation of genes differentially expressed between the 
two m6A modification patterns. (A) Gene set enrichment analysis (GSEA) plots showing enrichment of the fol-
lowing gene sets in m6A modification-related gene pattern B: E2F targets (red), epithelial-mesenchymal transition 
(purple), G2M checkpoint (brown), MYC target V1 (cyan), PI3K-AKT-mtor signaling (green), and TGF-β signaling 
(orange). (B) Unsupervised clustering of 861 genes associated with m6A modification in the TCGA-LIHC cohort. 
Annotations along the top refer to m6A modification pattern, overall survival status, stage, histology grade, Child-
Pugh grade, and age. Red denotes high expression, and blue denotes low expression. (C) Kaplan-Meier curves of 
two m6A modification-related gene patterns involving 226 cases in gene pattern A, and 142 cases in gene pattern 
B. Log-rank test, P < 0.0001. (D) Heatmap showing the average differences in expression of immune-related genes 
in two m6A modification-related gene patterns. Red squares represent upregulation, while blue squares represent 
downregulation
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These results indicate that the m6A signature may be useful for predicting at least 
some of the clinical features of HCC and overall survival of patients.

3.7  Ability of the m6A signature to predict response to immunotherapy

While prediction of tumor response to immunotherapy has so far relied mainly on 
PD-L1 expression, TMB, and microsatellite instability [18, 54], other indices such as 
TIDE and IPS may be useful. In both the combination of all four cohorts and the TCGA-
LIHC cohort on its own, low risk on the m6A signature was associated with significantly 
lower TIDE (both P < 0.001, Fig. 9C and D) and significantly higher IPS (both P < 0.001, 
Fig.  9E and F). These results suggest that m6A methylation may help regulate HCC 
response to immunotherapy.

Fig. 7  Prognostic value of the risk score in multiple HCC cohorts. (A) Kaplan-Meier survival analysis of patients 
in the TCGA training cohort stratified into groups at high risk (n = 92) or low risk (n = 92). Log-rank test, P < 0.001. 
(B) Kaplan-Meier survival analysis of patients in the TCGA test cohort stratified into high risk (n = 81) or low risk 
(n = 103). Log-rank test, P < 0.001. (C) Kaplan-Meier survival analysis of patients in the whole TCGA cohort stratified 
into groups at high risk (n = 173) or low risk (n = 195). Log-rank test, P < 0.001. (D) Kaplan-Meier survival analy-
sis of patients in the ICGC cohort stratified into groups at high risk (n = 115) or low risk (n = 117). Log-rank test, 
P < 0.001. (E) Kaplan-Meier survival analysis of patients in the four-cohort HCC dataset stratified into groups at 
high risk (n = 208) or low risk (n = 571). Log-rank test, P < 0.001. (F) Kaplan-Meier survival analysis of patients in the 
GSE116174 cohort stratified into groups at high risk (n = 32) or low risk (n = 32). Log-rank test, P = 0.002. (G) Kaplan-
Meier survival analysis of patients in the IMvigor210 immunotherapy cohort stratified into groups at high risk 
(n = 111) or low risk (n = 237). Log-rank test, P = 0.019. (H) Kaplan-Meier survival analysis of patients in the GSE76427 
cohort stratified into groups at high risk (n = 88) or low risk (n = 27). Log-rank test, P = 0.541. (I) Box violin plot of 
tumor mutation burden (TMB) in the TCGA-LIHC cohort stratified into groups at high risk or low risk. Wilcoxon rank 
sum test, P = 0.0016
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Fig. 8  Correlations between clinical characteristics and risk score in HCC. (A) Bar chart showing the relationship 
between risk scores and various clinical features in the TCGA-LIHC cohort. Samples are annotated with risk type, 
overall status, inflammation, Child-Pugh grade, histology grade, stage M, stage N, stage T, tumor vascularization, 
and stage. (B) Bar chart showing the relationship between risk scores and various clinical characteristics in the 
ICGC-LIRI-JP cohort. Samples are annotated with risk type, sex, overall survival status, age, stage, and cancer history. 
(C) Sankey diagram illustrating relationships among m6A modification patterns, m6A modification-related gene 
patterns, risk group, and overall survival status. Metastasis, M; Lymph node, N; Tumor, T
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4  Discussion
Growing evidence suggests that m6A methylation plays a vital role in host responses 
to tumors such as HCC [22, 55] as well as in tumor responses to immune checkpoint 
blockade therapy. Therefore, identifying distinct patterns of m6A modification in HCC 
may help clarify infiltration of the TME by immune cells and the personalization of ther-
apeutic regimens. Here we identified two patterns of m6A modification based on expres-
sion of 26 m6A regulators, which were associated with different interactions between 
tumor cells and immune cells as well as with different clinical characteristics and overall 
survival.

Overall mutation rates of 26 m6A regulators were found to be relatively low in the 
HCC genome. The m6A modification pattern C1 was associated with better survival, 
and it was characterized by activation of metabolic pathways and a higher proportion 
of activated CD8+ T cells, effector memory CD8+ T cells, and stroma cell infiltration. 
Pattern C2, in contrast, was characterized by TGF-β signaling, the G2M checkpoint, 
E2F targets, and greater TME infiltration by CD4+ T effector cells and type 2 helper T 
cells. In pattern C2, most of the m6A regulators showed higher expression, implying that 

Fig. 9  The risk score is a biomarker of response to immunotherapy and prognosis. (A) Forest plot of multivariate 
Cox regression of risk score in the TCGA-LIHC cohort. The horizontal line denotes the 95% confidence interval for 
each group. The vertical dotted line represents a hazard ratio (HR) = 1. (B) Forest plot of multivariate Cox regression 
of risk score in the ICGC-LIRI-JP cohort. The horizontal line denotes the 95% confidence interval for each group. 
The vertical dotted line represents HR = 1. (C) Boxplot of “tumor immune dysfunction and exclusion” (TIDE) score 
for different risk score groups in the four-cohort HCC dataset. Wilcoxon rank sum test, P < 0.001. (D) Boxplot of TIDE 
scores for different risk score groups in the TCGA-LIHC cohort. Wilcoxon rank sum test, P < 0.001. (E) Comparison 
of the relative distribution of immunophenoscore (IPS) between high- and low-risk groups in the four-cohort HCC 
dataset. Wilcoxon rank sum test, P < 0.001. (F) Comparison of the relative distribution of IPS between high- and 
low-risk groups in the TCGA-LIHC cohort. Wilcoxon rank sum test, P < 0.001
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upregulation of m6A regulators may contribute to the progression of HCC. Although 
m6A methylation regulator pattern C2 also showed high infiltration by activated CD4+ 
T cells and other immune cell types, the activation of several cancer-related pathways 
and a greater infiltration by type 2 helper T cells might promote the progression of HCC 
and inhibit the activation of anti-tumor lymphocyte cells, leading to poor prognosis. 
Moreover, pattern C2 was associated with higher mRNAsi and tumor purity than C1, 
implying cancer activation status in C2. Pattern C2 was also enriched in EMT and TGF-
β pathways of stroma activation.

Considering the different expression of HNRNPA2B1 among cancer patients show-
ing four different responses to immunotherapy, we explored the biological significance 
behind the reader HNRNPA2B1. HNRNPA2B1 is an RNA-binding protein that is 
involved in microRNA processing and alternative splicing of transcripts in the nucleus 
[56]. The high expression of HNRNPA2B1 correlated with several cancer-related path-
ways and poorer prognosis. These results indicate that HNRNPA2B1 may be involved in 
the progression of HCC and serve as a potential biomarker for the response to immune 
checkpoint blockade therapy.

DEGs between the two m6A methylation patterns were identified and were considered 
as m6A phenotype-related genes. Two m6A methylation gene patterns were identified 
based on these m6A phenotype-related genes and were found to be significantly associ-
ated with different profiles of immune cells in the TME and different overall survival. 
These findings support the existence of two molecular subgroups of HCC similar to the 
m6A methylation regulator patterns.

Based on the different m6A methylation regulator patterns, we defined an m6A signa-
ture to quantify risk of poor prognosis, which we validated in multiple HCC cohorts as 
well as a pan-cancer immunotherapy cohort. The risk score correlated strongly with IPS 
and TIDE, predictors of immune checkpoint blockade therapy. These findings imply that 
m6A modification can influence the efficacy of immunotherapy. The m6A signature may 
also be useful for assessing TMB, clinical stage, histology grade and other clinicopatho-
logical characteristics of HCC patients.

However, our research has several limitations that cannot be ignored. First, our find-
ings are based on bioinformatic analyses of publicly available data, and clinical validation 
is required. Second, to enhance the reliability of the m6A modification patterns, a series 
of newly identified m6A regulators should be incorporated into an unsupervised cluster-
ing algorithm in future studies. Third, due to the absence of suitable immunotherapy 
cohorts based on the HCC cancer dataset, the risk prognostic model was only validated 
in a pan-cancer immunotherapy cohort. Thus, future assessment of its performance in 
predicting the efficacy of immune checkpoint blockade therapy across multiple HCC 
immunotherapy cohorts is indeed necessary. Fourth, HCC patients were stratified using 
the median cutoff of the risk score in the TCGA training set, and it is essential to con-
firm the optimized cutoff value of the risk score to better stratify HCC patients. Addi-
tionally, molecular experiments are needed to validate the specific biological pathways 
linking the expression of HNRNPA2B1 to the response to PD1/L1 or CTLA-4-targeted 
checkpoint immunotherapy.
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5  Conclusions
We comprehensively evaluated the expression of 26 m6A regulators in 779 HCC sam-
ples and defined two molecular subtypes of the cancer. We systematically explored the 
relationship between these two m6A methylation patterns and characteristics of TME 
infiltration by immune cells. The results may provide insights into how m6A methylation 
relates to TME characteristics and promote the development of new therapies against 
HCC.
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