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Enhanced Amplification and Fan-
Out Operation in an All-Magnetic 
Transistor
Saswati Barman, Susmita Saha, Sucheta Mondal, Dheeraj Kumar & Anjan Barman

Development of all-magnetic transistor with favorable properties is an important step towards a new 
paradigm of all-magnetic computation. Recently, we showed such possibility in a Magnetic Vortex 
Transistor (MVT). Here, we demonstrate enhanced amplification in MVT achieved by introducing 
geometrical asymmetry in a three vortex sequence. The resulting asymmetry in core to core distance in 
the three vortex sequence led to enhanced amplification of the MVT output. A cascade of antivortices 
travelling in different trajectories including a nearly elliptical trajectory through the dynamic stray field 
is found to be responsible for this amplification. This asymmetric vortex transistor is further used for a 
successful fan-out operation, which gives large and nearly equal gains in two output branches. This large 
amplification in magnetic vortex gyration in magnetic vortex transistor is proposed to be maintained for 
a network of vortex transistor. The above observations promote the magnetic vortex transistors to be 
used in complex circuits and logic operations.

In magnetic thin films, magnetostatic interactions usually force the magnetization to lie parallel to the plane of the 
film. For laterally confined thin ferromagnetic platelets satisfying certain conditions of geometric and magnetic 
parameters, the magnetic moments form rotationally symmetric patterns that follow an in-plane flux closure 
configuration known as magnetic vortex. Due to the closed flux lines, the dipolar energy is minimized and the 
structure is stable. However, at the centre of the disk, magnetization cannot remain flat, because the short-range 
exchange interaction favours a parallel alignment of neighbouring magnetic moments. The exchange energy 
forces the magnetization to stay out-of-plane in a very small area of only a few exchange lengths in diameter and 
thus creates the vortex core with a distinct polarization p, either up (p =  +1) or down (p =  −1)1–3. Magnetic vorti-
ces can be brought to gyration with a frequency in the sub-GHz to GHz range by the application of the magnetic 
fields and spin polarized currents4–17. The sense of gyration (clockwise or counter-clockwise) is determined by 
the vortex core polarization. Recently, dynamic vortex core reversal was also obtained by application of pulsed 
magnetic fields18–22, alternating magnetic fields14 or spin-polarized currents23–30. These findings opened up the 
possibility of using magnetic vortices as memory bits and for future spintronic applications. Wide investigations 
of the physics behind this reversal mechanism have also been started.

The vortex core gyration is qualitatively described by the Landau-Lifshitz-Gilbert equation. In the linear 
regime, the vortex core equation of motion can be obtained from Thiele’s equation31. During the motion of the 
vortex core, the demagnetization field at the core points antiparallel to the enlarged domain generated due to 
the displaced core and the time derivative of magnetization vector at the core points into the disk centre or into 
the opposite direction. A variation in chirality naturally changes the direction of the demagnetization field and 
therefore it does not affect the core gyration direction. Therefore, the core gyration direction is solely controlled 
by the core polarization. Since the vortex core motion is governed by the demagnetization field, the demagnet-
ization energy determines the core potential. In the linear regime, parabolic potential can be assumed and core 
can be described under a harmonic oscillator model32. Therefore, magnetostatically coupled vortex gyration in 
the linear regime can be considered as the coupled forced oscillator. Consequently, one expects mutual energy 
transfer between the gyrating vortices in the linear regime and a constant phase relation exists between the gyrat-
ing vortices33,34.

The mutual transfer of energy between uniformly excited magnetostatically coupled vortices due to the 
gyrotropic motion is extremely important in devices for microwave communication35. Dynamical property of 
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coupled vortices in two nanodisks has been investigated analytically, numerically and experimentally4,10,33–39. The 
magnetostatic interaction between two closely spaced vortices is found to play an important role in determin-
ing the dynamics of vortices. The rigid vortex model has been employed to calculate the magnetostatic interac-
tion between the coupled vortices4. The eigenfrequencies of circular vortex core motion are found to depend on 
polarizations of the cores. The chiralities of the vortices do not influence the eigenfrequencies. It is found that 
the time-averaged magnetostatic interaction energy varies as the minus sixth power of the separating distance. 
Therefore, the dynamical system of coupled vortices can be compared with a diatomic molecule with the van der 
Waals bonding induced by the dipolar interaction. Magnetic charges on the side surfaces of the off-centred nearby 
vortices induce the magnetic dipole-dipole interaction. The splitting of gyration mode of coupled vortex system 
into higher and lower frequency modes via dipolar interaction has been demonstrated experimentally36. The 
main mode splitting is due to a chirality sensitive phase difference in gyrations of the coupled vortices, whereas 
the magnitude of the splitting is determined by their polarity configuration. It has been shown that the coupled 
pair of vortices behaves similar to a diatomic molecule with bonding and antibonding states. Selective excitation 
of coupled gyration modes has been performed by spin transfer torque35. For coupled gyration, the asymmetric 
variation in resonance frequency with respect to the external magnetic field for same polarization and opposite 
chirality implies a transition from stronger to weaker magnetostatic coupling. In contrast, for same polarization 
and chirality, the symmetric variation in resonance frequency implies that the strength of the magnetostatic 
interaction is not modified. Locally excited magnetic vortex gyration propagation through a linear array of mag-
netostatically coupled nanomagnetic discs is mediated by the magnetic side charges and can be controlled by 
combination of polarization, chirality and shape33,34. Transmitted peak amplitude and velocity of propagation is 
maximum for identical core polarization and chirality of the nanodiscs with geometric asymmetry.

Experimental demonstration of all the collective normal modes10 and logic operations38 were recently 
achieved. Analytical and numerical calculations indicate that the energy transfer rate is characterized by the 
relative polarization configuration, saturation magnetization, aspect ratio of the magnetic disks and core to core 
distance37 and attenuation is governed by the intrinsic damping constant and other physical parameters.

The signal transfer is found to be maximum when the core polarizations of the vortices are opposite10 but none 
of the above works showed an amplification in the output signal, which is important for signal propagation over 
longer distance through complicated circuitry. If the input amplitude is made high to overcome this problem, 
the vortex motion enters into nonlinear regime and vortex core switching occurs, making it difficult to increase 
and maintain a larger amplitude output and a constant phase relation between dynamics of input and output 
vortices. On the other hand, if the input vortex is resonantly excited with small amplitude signal, the amplitude 
of the response gradually increases indicating that the core switching will occur at some point, which is also not 
desirable for device applications. One alternative is to use a very small amplitude off-resonant signal (within 5% 
of the resonance frequency) to get around this problem35.

However, a recent work by Kumar et al. shows an amplification in the transferred signal in magnetostatically 
coupled vortices, paving the way towards a magnetic vortex transistor (MVT)39. Antivortex soliton dynamics 
moving through the inter-disk stray field is proposed to be responsible for this gain of transferred energy. A three 
vortex sequence was proposed for the MVT where the left vortex (emitter) is locally excited and the output gain 
on the extreme right vortex (collector) can be switched from an ON to OFF state by controlling the core polarity 
of the middle vortex (base) in analogy to an electronic bipolar junction transistor39. However, the maximum 
gain obtained in ref. 39 is about 15 dB and an attempt to show fan-out operation remained unsuccessful. With 
the miniaturization of devices and complexity of the circuits it is imperative to obtain larger gain and fan-out 
operation. The gain, which is defined as the difference between the energy spectral densities (ESD) at the output 
and input, is expected to depend upon a number of parameters such as the distance between the three vortices, 
excitation frequency, aspect ratio of the magnetic disks and symmetry of the arrangement of three vortices. On 
the other hand, the failure towards fan-out operation was because the antivortex solitons do not split easily to 
transfer energy equally to both symmetrically placed branches. Creation of topological instability in stray field 
antivortices by introducing positional asymmetry may forbid any preferential energy transfer leading to success-
ful fan-out operation.

Here, we show a large increase in the gain of the MVT by tailoring the inter-disk separation and the arrange-
ment asymmetry. The absorption of anivortex solitons at the neighbouring vortex and absence of a feedback loop 
is found to be responsible for this high gain. Furthermore, the output from this asymmetric magnetic vortex 
transistor (AMVT) is fed into the input of another two such AMVTs to perform a successful fan-out operation 
and significantly large and nearly equal gains are observed at both the outputs.

Results
A circular disk of 200 nm diameter and 40 nm thickness made up of Ni80Fe20 (Py) is used to form a stable mag-
netic vortex. The coupled two vortex system is formed by placing another Py disk of same dimension next to the 
first disk and similarly three vortex system is formed by placing three such disks in a row. Figure 1(a,b) show 
coupled two and three vortex systems with core polarities (+1, − 1) and (+1, − 1, − 1), respectively. Spatially 
averaged x-component of magnetization mx  is considered as an indicator of core displacement away from its 
equilibrium position. The square of the amplitude of Fourier transform of mx  is considered as the energy spec-
tral density (ESD), which shows the peak power corresponding to maximum core displacement.

Coupled Vortex Pair. Before optimizing the MVT gain and other related MVT operations, we investigated 
the energy transfer gain in a coupled two vortex system as a function of inter-disk separation. Figure 2(a) shows 
the ESDs for the left and right vortex for the coupled two vortex systems with four different inter-disk separa-
tions. Here, only the left vortex is excited with a local field. For higher separations (60 and 100 nm) a single gyra-
tion mode is observed, while for lower separation three coupled modes are observed. The mode splitting is an 
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interesting problem and is studied in details in previous literature11–13,35–36. However, here only the central peak 
corresponding to highest ESD is considered for calculating the energy transfer gain. The gain is calculated as the 
difference between maximum value of ESD of right and left vortex. For all four separations large gain is observed. 
The gain (B) is systematically plotted as a function of inter-disk separation (S) in Fig. 2(b). Here, B shows almost 
a linear increase with the decrease in S and reaches 25.55 dB at S =  60 nm. For S <  60 nm, B suddenly decreases to 
22.77 dB, followed by another steeper increase down to S =  10 nm, where it reaches a maximum saturation value 
of 42.15 dB and does not increase any further. In order to justify the choice of core polarities, we changed the 
core polarities of the coupled vortex system with separations of S =  10 nm and 60 nm to (+ 1, + 1) and observed 

Figure 1. The ground state spin configuration of magnetic disk of diameter of 200 nm and thickness of 40 nm 
arranged in coupled (a) two vortex system with inter disk separation (S) 10 nm and (b) three vortex system with 
the separation between left and centre vortex (S1) of 10 nm and the separation between centre and right vortex 
(S2) of 100 nm.

Figure 2. (a) Energy spectral densities (ESDs) for coupled two vortex systems with varying inter-disk 
separation (S). (b) Variation of gain (B) with S for coupled vortex.
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a much reduced gain in the latter cases (22.0 dB for S =  10 nm and 7.0 dB for S =  60 nm) as opposed to 42.15 dB 
(S =  10 nm) and 22.77 dB (S =  60 nm) for the former cases. Greater details of this observation can be found in the 
supplementary Figure 1S(a).

To understand this non-monotonic increase in B with S we have studied the temporal evolution of the stray 
magnetic field. Figure 3(a) shows the stray field distribution of a single vortex at two different times (t =  0 and 5 ns)  
and it is clear that the stray field distribution changes with time as the core of the vortex starts to gyrate even for 
a single vortex. Figure 3(b) shows the snapshots of the simulated stray fields for four different two vortex systems 
at specific instants of time of the dynamics. The supplementary movies M1–M4 show the dynamics in detail. 
Earlier work showed that the energy transfer from left to right vortex is mediated by stray field antivortices, 
which travels from the left disk and collides with the right disk. It is also inferred in ref. 39 from the only case 
studied i.e., S =  50 nm, that an amplification occurs when no feedback loop of stray field antivortex trajectory is 
present between the two disks. A feedback causes an energy rebalancing and hinders the amplification. However, 
a detailed study of variation of gain as a function of inter-disk separation, as presented here, shows that amplifica-
tion may occur even in the presence of a feedback loop and even when the antivortex do not directly collide with 
the right vortex. For S =  100 nm, the antivortex generates after the onset of the dynamics and passes through the 
gap between the two disks without a single collision with either of the disks and the energy is transferred only due 
to the variation of the flux lines with time, which leads to a gain of 17.80 dB. With the reduction of S, collision of 
antivortex starts to occur with both disks, leading to a gain in the energy transfer albeit with a feedback, which 
hinders a very large value of the gain. The feedback mechanism weakens with further reduction in S, causing a 
continuous increase in gain value. However, for S close to 60 nm a special situation occurs where a stray field 
antivortex is present even in the ground state before the onset of the dynamics, as shown by the yellow circle in 
Fig. 3(c), and the energy transfer occurs immediately after the onset of the dynamics causing the feedback mech-
anism to weaken further. However, when S deviates significantly from 60 nm this antivortex disappears from the 
ground state and the transfer of energy starts after the creation of a stray field antivortex following the onset of 

Figure 3. Stray field distributions for (a) single vortex at time t =  0 and 5 ns and (b) magnetostatically coupled 
two vortex systems with four different inter-disk separations are shown. The green arrows represent the paths of 
the antivortex solitons. (c) The ground state strayfield configuration of a magnetostatically coupled two vortex 
system with inter-disk separation 60 nm at t =  0 ns is shown and the antivortex is marked by a yellow circle. The 
colour bars are shown at the bottom of the figure. The contour colouring is based on the sum of squares of x and y 
components of the stray field and the colour bar is in dB. The core of the vortex is marked by blue dot.
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gyration in the left vortex. As S reduces further, the feedback mechanism and the ensuing energy rebalancing 
disappears and a one-way transfer of energy from the left to right vortex causes energy build up in the right vortex 
and an enhanced amplification occurs. This continues to increase with further reduction of S due to the faster 
transfer of energy. Finally a saturation occurs at S ≤  10 nm, when a very high dipolar interaction energy between 
the nearest edge regions of the disks forbids the antivortex to enter that zone and it transfers energy only in the 
lower half of the disk.

Magnetic Vortex Transistor (MVT). For the MVT operation, we begin with a three vortex sequence 
with polarizations +1, − 1 and − 1, which worked successfully in our previous work39. Here, we vary the dis-
tance between the left and middle vortex (S1) and the middle and right vortex (S2) to optimize the gain B. In 
symmetric MVT, maximum gain achieved was 14.8 dB for S1 =  S2 =  50 nm39. Based on simulations by sys-
tematic variation of the values of S1 and S2 we show here that introduction of asymmetry in the arrangements 
of the three vortices lead to an enhanced gain in MVT and the gain can be maintained in complex circuits 
along different branches. The asymmetry is introduced by making the separation between the central vortex 
and right vortex (S2) larger than that between the left vortex and middle vortex (S1). The optimum value is 
obtained by fixing S1 =  10 nm, which provides maximum gain for a coupled two vortex system. Various 
aspects of dynamics of MVT have been presented in Figs 4 and 5. Figure 4(a) shows the ESDs of MVTs for 
S1 =  10 nm and for S2 varying between 10 and 175 nm. Figure 4(b) shows that the gain increases with the 
increase in S2, and a maximum of 28.28 dB is observed at S2 =  100 nm, beyond which it decreases with fur-
ther increase of the S2. This two-fold increase in the gain in an AMVT is remarkable and can lead to appli-
cations in magnetoelectronic circuits requiring signal amplification. To justify the choice of core polarities 
we changed the core polarities of the three vortex system with separations of S1 =  10 nm and S2 =  100 nm 
to (+1, + 1, + 1), (+ 1, + 1, − 1) and (+ 1, − 1, + 1). We observed much reduced gain in these combina-
tions of core polarities as opposed to the former case (+1, − 1, − 1). The gain in output vortex is − 4.5 dB,  
5.0 dB and 16.5 dB for the polarity combination (+ 1, + 1, + 1), (+ 1, + 1, − 1) and (+ 1, − 1, + 1), respectively. 
Greater details of this observation can be found in the supplementary Figure 1S(b). In order to understand the 
relation between the MVT gain with the relative core displacement (r =  displacement of vortex core in disk 3 – 
displacement of vortex core in disk 1) we plotted, in Fig. 4(c), r as a function of S2 for some selected values of S2. 
A similar nature in the variation of the relative core displacement with S2 is observed to the variation of gain B. To 
understand this enhanced amplification we again investigated the temporal evolution of the magnetic stray field 
as presented in Fig. 5 while greater details of the dynamics can be found in the supplementary movies M5–M10. 
We observe that the mechanism of transfer of energy from the left to the center vortex for all cases is same as the 
coupled two vortex system with S1 =  10 nm. However, the transfer mechanism from the center to the right vor-
tex varies with S2. Consequently, the final gain of the vortex transistor is dominated by the stray field dynamics 
between the center and the right vortex. At S1 =  S2 =  10 nm, the antivortices created between the center and the 
right vortex are very small in size and therefore, very little energy is transferred to the right vortex leading to a 
smaller gain of 14.76 dB. As S2 increases, larger antivortices are created and they traverse nearly elliptical paths 
through the stray field between the center and the right vortex. The length of the major axis of this elliptical path 
appears to determine the amount of transfer of energy and it is plotted as a function of S2 in Fig. 4(d). It is clear 
that this length increases with the increase in S2 and reaches a maximum at S2 =  100 nm beyond which it drops. 
This variation is consistent with the variation of gain and hence we believe they are strongly correlated. We further 
investigated the variation of gain of the optimized AMVT structure (S1 =  10 nm and S2 =  100 nm) with the input 
signal amplitude h0. Figure 4(e) shows a plot of variation of gain with logarithm of signal amplitude h0. Here, 

Figure 4. (a) ESDs for MVT and AMVT. (b) Variation of gain (B) with S2 for AMVT. (c) Variation of relative 
core displacement (r) of the right vortex with respect to the left vortex with S2 for AMVT. (d) Variation of 
length of the major axis of the ellipse with S2 for AMVT. (e) Variation of gain (B) with strength of the applied 
magnetic field.
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the core of the left vortex reversed for h0 =  5 mT and therefore, we limit ourselves to 4 mT. For lower values of h0, 
the gain remains nearly constant at Bactive =  28.28 dB. This is considered as the active region of the AMVT and 
Bactive resembles the small-signal gain of an electronic bipolar junction transistor. At 5 mT, the core of left vortex 
switches, and the gain suddenly drops, defining the cut-off region. Unlike the symmetric MVT the non-linear 
distortion of gain from Bactive at higher signal strength (before cut-off) is not observed in the AMVT.

Fan-Out. The symmetric MVT did not show a successful fan-out operation as the antivortex soliton does not split 
easily leading towards an asymmetry in energy transfer in the two arms of the fan-out circuit. Here, we investigate the 
possibility of fan-out using AMVT. The optimized AMVT with the horizontal distance between the left and central vor-
tex (Sx1) as 10 nm and that between the central and right vortex (Sx2) as 100 nm with similar core polarity (+1, − 1, − 1) 
like AMVT is used as a unit here. We placed two AMVTs vertically above and below the original AMVT while keeping 
the left vortex of the upper and lower branches and right vortex of the original AMVT in the same line and vary the 
vertical distances of the upper (Sy1) and lower (Sy2) AMVTs with the input AMVT to tune the gains at the two outputs. 

Figure 5. Stray field profiles for MVT and AMVT. The green lines represent the paths of the antivortex 
solitons. The colour bars are shown at the bottom of the figure. The contour colouring of is based on the sum of 
squares of x and y components of the stray field and the colour bar is in dB.
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The ESDs and stray field profiles for fan-out circuits with different values of Sy1 and Sy2 are shown in Fig. 6. The detailed 
temporal evolutions of the magnetic stray fields are provided in supplementary movies M11–M13.

At first we started with a symmetric fan-out circuit by setting Sy1 =  Sy2 =  50 nm. Gain is observed in both 
the outputs (O1 and O2) but gain in the upper branch is much higher than the gain in the lower branch 
(BO1 −  BO2 =  6.33 dB). To remove this asymmetry in gain we have introduced a second level of asymmetry in 
the fan-out circuit. A systematic variation of Sy1 and Sy2 shows that for Sy1 =  50 nm and Sy2 =  30 nm the ESDs at 
O1 and O2 are nearly same and subsequently the gains are also the same, BO1 =  BO2 =  5.4 dB. When Sy2 is further 
decreased, the gain in O2 becomes higher than O1. Figure 6(c) shows that BO2 −  BO1 =  2.77 dB.

To understand this behaviour, we have studied the stray field dynamics (Fig. 6(d–f)) of the fan-out circuits 
in details. An antivortex soliton is observed to be moving from the left vortex of the upper AMVT to the left 
vortex of the lower AMVT via the right vortex of the input AMVT. The size and speed of this antivortex soliton 
and interaction time (T) with right vortex of the input AMVT is determined by the amount of asymmetry in the 
structure. For the first case shown here (Sy1 =  Sy2 =  50 nm), four antivortices marked by violet circles are observed 
close to the middle and right vortex of the upper and lower AMVTs (Fig. 6(d)). Among these four antivortices, 
two are situated between the right vortex of the upper and lower AMVTs. The larger antivortex is stationary at 
the halfway between the right vortex of the upper and lower AMVT branches and the smaller one moves towards 
the right vortex of the upper AMVT branch. As a result, the upper AMVT (O2) shows higher gain for symmetric 
fan-out circuit.

In the case of successful fan-out (Sy1 =  50 nm, Sy2 =  30 nm), the energy transfer mechanism is different from 
that in the symmetric case. Here we observe three antivortices marked by violet circles close to the middle and 
right vortices of the upper and lower branches (Fig. 6(e)). Two of them first combine and then again split into two 
antivortices. These two antivortices move towards the right vortex of upper and lower AMVT branches and trans-
fer energy equally. In the third case (Sy1 =  50 nm, Sy2 =  10 nm), in addition to the above mentioned antivortices, 
there are very small antivortices near the right vortex of the lower branch (marked by violet circles), causing the 
energy transfer to be significantly higher in the lower branch as compared to the previous two cases (Fig. 6(f)).

In addition to the distribution of energy to the two outputs in a fan-out circuit, we also observe an interesting 
trend in the sum of energy transferred to the two outputs and its relation to the stray field antivortex dynamics. 
When Sy1 =  Sy2, the antivortex soliton marked by green circle is quite large and it moves very quickly between the 
two branches (interaction time, T ≈  0.55 ns). As a result, the sum of the output gains is large (O1 +  O2 =  12.71 dB).  
As we break the symmetry by lifting up the lower branch slightly towards the input AMVT, the sum of the gains 
decreases to 11.67 dB. In this case, the size of the antivortex soliton (marked by green circle) moving from the left 
vortex of the upper AMVT branch to left vortex of the lower AMVT branch via the right vortex of the input AMVT 
decreases slightly as compared to that of the symmetric fan-out circuit. The interaction time (T) of about 0.51 ns is 
nearly same as that for the symmetric case and the sum of gain is also similar. As we increase the asymmetry further 
(Sy2 =  10 nm), the size of the antivortex decreases (marked by green circle) further and it moves very slowly between 

Figure 6. (a–c) ESDs for fan-out operation. (d–f) Stray field profiles for fan-out. The green lines represent the 
paths of the antivortex solitons and the antivortices are marked by green and violet circles. The interaction time 
(T) is mentioned in each figure. The colour bar is shown at the bottom of the figure. The contour colouring is 
based on the sum of squares of x and y components of the stray field and the colour bar is in dB.
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the left vortex of the upper and lower branches of the circuit via the right vortex of input AMVT (interaction time, 
T ≈  1.02 ns). As a result the sum of the gains at two output branches decreases significantly (O1 +  O2 =  6.31 dB).

Discussion
We have numerically explored the dependence of signal amplification of vortex core gyration in coupled 
vortex pair on the inter-disk separation with the goal of increasing the gain of a magnetic vortex transistor 
(MVT). We observe a non-monotonic increase in the amplification in the energy transfer with separation in 
the two-vortex case. An almost linear increase in the amplification occurs with the decrease in separation 
from higher separation down to 60 nm where the amplification suddenly drops followed by another steeper 
increase with further decrease in separation. The amplification saturates at a large value of 42.15 dB for the 
inter-disk separation of 10 nm. This amplification of energy transfer is extended to MVT consisting of a three 
vortex sequence with a particular combination of polarity of the three vortices (+1, − 1, − 1). We found that a 
symmetric arrangement of the three vortex sequence does not give the maximum gain of the transistor but an 
asymmetric arrangement is necessary. In this case, we found that a particular combination of separation i.e., 
10 nm between the left and middle disk and 100 nm between the middle and the right disk gives the maximum 
gain of 28.28 dB, which is nearly a factor of two improvement as compared to previously reported value. This 
remarkable observation can be interpreted in terms of the temporal evolution of stray magnetic field and 
anivortex packets moving through the stray field is held responsible for the above observation. We postulated 
some mechanisms based upon the motion of antivortex solitons and this can successfully explain our numer-
ical results in great detail.

One important issue of this study is the scalability of the magnetic vortex transistor. Numerical test studies by 
varying the diameter and thickness of the individual disks and the inter-disk separation could not produce any 
conclusive results and we believe a very thorough numerical study by varying each dimension would be necessary 
to establish the scalability. Development of analytical tools to calculate the magnetic vortex transistors would be 
helpful in drastically reducing the calculation time and in obtaining a conclusive result but this is beyond the 
scope of our study at present. Another important issue is the transistor operation timescales. Numerical analyses 
show that the gain of the optimized AMVT reaches a reasonably high value after about 10 ns and nearly saturates 
at about 20 ns from the excitation and does not fall within 40 ns of the simulation time. On the other hand from 
the literature14,18–22,23–30, we understand that vortex core reversal can occur within about 1 ns by applying current 
or Oersted field. This determines the timescale of switching the transistor from ON to OFF state and vice versa.

Further, we have numerically explored the fan-out operations using the asymmetric magnetic vortex transis-
tor (AMVT). Total gain and distribution of gain among the two branches were observed to be dependent upon 
the vertical separation between the input AMVT and the branches. The mechanisms of movement of antivortex 
solitons moving through the dynamic stray field were explored. With the rapid advancement of nanoelectronic 
devices we hope that our findings will promote the design of complex circuits entirely based on magnetic vortices 
and is a big leap towards all-magnetic computation.

Methods
Magnetic vortex dynamics was simulated using finite difference method based Landau-Lifshitz-Gilbert (LLG) 
ordinary differential equation solver called Object Oriented Micromagnetic Framework (OOMMF). At first a 
magnetic ground state was obtained with the required polarity and chirality. This was accomplished by using a 
Gaussian pulsed field Ht =  H0exp(− t′ 2), where μ 0H0 =  1 T and normalized time t′ =  (t −  t0)/(√ 2σ ), t0 =  75 ps and 
σ  is the standard deviation of the Gaussian pulse in time whose full width at half maxima is 30 ps. To control the 
core polarity we have applied a field Hz =  ±  Ht/10, along z direction, close to the centre of the circular disk, where 
the sign of the field determines the core polarity. X and Y components of the applied Gaussian field to produce the 
desired chirality are given by the equations 1 and 2 below:

θ= H H Sin (1)x t

θ= ±H H Cos (2)y t

where θ  =  tan−1(y/x) and the upper or lower sign was chosen for the CCW and CW chirality, respectively. This 
pulse signal dies down quickly during the simulation. The simulation was run for 40 ns under a high damping 
(Gilbert damping constant α  =  0.95 was used here) to obtain the ground state. The other material parameters used 
here are saturation magnetization Ms =  0.8 ×  106 A/m, exchange stiffness constant A =  13 ×  10−12 J/m and zero 
magneto-crystalline anisotropy. During the vortex dynamics simulation we have used the value of damping as 
α  =  0.008, which is a realistic value of damping for Py. The dynamic simulation was run for 40 ns and the average 
magnetization was observed in every 10 ps. The cell size used during simulation was 5 nm ×  5 nm ×  40 nm. We 
also performed simulations with cell size of 2 nm ×  2 nm ×  40 nm on the coupled two vortex and three vortex 
sequences and found that the results do not depend significantly on the cell size as long as the lateral dimensions 
of the cell size is below the exchange length of Py.

At first, the dynamics of single vortex was studied by using a broadband excitation signal and the natural 
frequency of the single vortex was found out. The excitation field is applied at t =  0. The signal had only X com-
ponent Hx

S which contained power up to fcut =  45 GHz and dependent upon time as given by equation 3 as below:

π

π
=

−

−
H H

f t t
f t t

Sin(2 ( ))
2 ( ) (3)

x
s

x
cut

cut

0 0

0

where, μ0H0 =  0.05 T and t0 =  200 ps.
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For calculating the dynamics of two vortex and three vortex systems, we have applied an in plane rotating 
magnetic field of frequency 1.27 GHz at the left disk. After obtaining the data from OOMMF, we analyse the 
results by investigating the time evolution of spatial average of X component of magnetization, mx for each vor-
tex, and its corresponding energy spectral density (ESD), mx

2. We normalize the magnetization by dividing the 
X component of magnetization Mx by Ms. Subsequently, we performed Fourier transform to obtain the required 
ESD. This is plotted in decibel scale as ×w m20 logH x10 , where a window scaling factor of wH =  2 is used for the 
Hanning window. The Hanning window is used to minimize spectral leakage. These ESDs were calculated after 
running the dynamics for 40 ns so that any transient vortex core dynamics is suppressed and steady state dynam-
ics becomes prominent in the spectrum. In various figures in this paper the ESDs are cut-off at arbitrary values to 
focus primarily upon the central mode with high value of ESD used for calculating the gain of transfer of energy. 
A lower cut-off of the ESD axis could show some additional modes with low ESD values but that does not affect 
the results presented in this paper. The stray field was also obtained from OOMMF during the dynamics. The 
stray field plots and the supplementary movies were created using MATLAB. The contour colour scale is loga-
rithm of amplitude of in-plane components of the stray field which are normalized by 8 ×  105 A/m. So the quan-
tity being plotted is log10 (hx

2 +  hy
2), where hx =  Hx/Ms and hy =  Hy/Ms. Here Hx and Hy are the x and y components 

of the stray field and Ms (0.8 ×  106 A/m) is the saturation magnetization of Py, used as normalization constant. The 
colour scale is in dB. The core shift of the vortex is found by fitting the out of plane component of magnetization 
profile with a Gaussian function and by finding the difference between the peak positions. The relative core shift 
as shown in Fig. 4(c) is the difference between the core shift of the input and output vortices. This relative core 
shift has possible errors originating from various sources. Consideration of finite cell size may introduce an error 
in the value of core shift. If the cell size is d, then the core position can be determined with a spatial resolution 
of ±  d/2. The cell size determines the number of data points in the curve where z component of magnetization 
varies with distance giving the core profile. Another source of error comes from fitting of the core profile with 
Gaussian function itself. In addition to this, error can be introduced due to the limitation in the time step used in 
the simulation. The cell size and the precise determination of the core position may also affect the ESD. However, 
the primary source of error in ESD is the total time window used in the simulation, which determines the spectral 
resolution of discrete Fourier transform, used to obtain the ESD. Besides those, spectral leakage, despite the use 
of window function during the discrete Fourier transform, may affect the ESD.
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