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Robustness is the key feature of biological networks that enables living organisms to keep their homeostatic state and to survive
against external and internal perturbations. Variations in environmental conditions or nutrients and intracellular changes such
as genetic mutations have the potential to change stability and efficiency of an organism. Structural robustness helps biological
systems to choose alternative routes of adaptation to varying conditions. In this study, in order to estimate the structural robustness
in metabolic networks we presented a novel flux balance-based approach inspired by bond percolation theory. Fourteen in silico
metabolic models were studied in this work in order to examine the possible relationship between the lifestyle of organisms and
their metabolic robustness. The results of this study confirm that in organisms which are highly adapted to their environment
robustness to mutations may decrease compared to other organisms.

1. Introduction

During the last years, many researchers have studied the
robustness of metabolic networks against random mutations
(for a recent review, please see [1]). The purpose of these
studies is to investigate the mechanisms of protection of
metabolic networks against mutations and to measure the
tolerance of mentioned networks against “faults” (and maybe
targeted attacks).

Robustness is defined as the “insensitivity” of a system
to parametric variations [2]. Variation in parameters occurs
by changes in the environmental conditions or by internal
alterations [3, 4]. Structural robustness is an intrinsic prop-
erty of most biological networks. Measuring the robustness
of metabolic networks against mutations and gene/reaction
deletion is an important question in systems biology [1].
Robustness in a metabolic network is a result of redundancy
in metabolic pathways. The reason is that deficiencies in
the network cannot be tolerated unless new alternative
pathway(s) are evolved [5]. This is typically done by gene
duplications [6] or by horizontal transfer of metabolic genes

[7]. If alternative metabolic pathways are not present in a
metabolic network, for example, due to reductive evolution
[8, 9], then the metabolic network becomes extremely fragile
[10]. It has been shown that metabolic networks are excep-
tionally robust when compared to appropriate null models
[11].

In the present work, we introduce a novel approach to
the analysis of metabolic network robustness. We study the
resistance of metabolic networks to deletion of reactions
by removing reactions until no flux can pass through the
network. We show that eukaryotes and free-living prokary-
otes show much higher mutational robustness compared to
organisms which are highly adapted to their habitats.

2. Materials and Methods

2.1. Genome-Scale Metabolic Network Models. The genome-
scale metabolic network models of 14 species are used
in this study, including 3 eukaryotes (group 1), 6 “free-
living” prokaryotes (group 2), and 5 prokaryotes with highly
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Table 1: List of species used in the present work.

Species name Specific growth conditions Metabolic
network ID

Number of
reactions

Network
reference

Eukaryotes
Saccharomyces cerevisiae N/A iIN800 1292 [12]
Aspergillus nidulans N/A iHD666 711 [13]
Arabidopsis thaliana N/A AraGEM 672 [14]

“Free-living” prokaryotes

Lactococcus lactis N/A — 671 [15]
Vibrio vulnificus N/A VvuMBEL943 642 [16]
Escherichia coli N/A iAF1260 2167 [17]
Mycobacterium tuberculosis Human pathogen iNJ661m 800 [18]

Methanosarcina barkeri Diverse anaerobic
conditions iAF692 538 [19]

Staphylococcus aureus Human pathogen iSB619 583 [20]

Prokaryotes with highly
specific growth conditions

Helicobacter pylori Extremely acidic conditions
[21] iIT341 501 [22]

Thermotoga maritima Extremely thermophilic
conditions [23] — 547 [24]

Mycoplasma genitalium Intracellular conditions
[25] iPS189 46 [26]

Mycoplasma pneumoniae Intracellular conditions
[27] iJW145 300 [28]

Clostridium beijerinckii Strictly anaerobic
conditions [29] iCB925 501 [30]

specific growth conditions (group 3) [12–20, 22, 24, 26, 28,
30]. Detailed information about the models is presented in
Table 1.

2.2. Constraint-Based Analysis of Metabolic Networks. We
used constraint-based analysis of metabolic networks in
our study (for a brief review, please see Chapter 1 in [31]).
In this modeling strategy, it is often assumed that steady-
state conditions hold. Therefore, for a certain distribution
of reaction fluxes, say v, the metabolic concentrations do
not change during time. In a metabolic network with 𝑚
metabolites and 𝑛 reactions, this assumption is equivalent to
the following equation:

S ⋅ k = 0, (1)

where S is an 𝑚 × 𝑛 matrix representing stoichiometric
coefficients of metabolites in the reactions, v is the vector
of the 𝑛 steady-state fluxes, and 0 is an m-dimensional zero
vector. Blocked reactions [32] are those reactions which
cannot carry any nonzero flux. In other words, for a blocked
reaction i, we have V

𝑖
= 0 subject to stoichiometric constraints

(S ⋅ k = 0) and reversibility constraints (V
𝑗
≥ 0 for all

irreversible reaction like 𝑗). Finding blocked reactions is
typically the first step of flux coupling analysis [32, 33]. In our
study, we utilized F2C2 tool [34] for this purpose (see below).

2.3. Measuring Robustness. Our algorithm is inspired by the
concept of percolation. For more information, the interested
reader may refer to [35, 36]. Here, we briefly present the main
idea of the percolation theory by an example.

Figure 1(a) shows a schematic representation of the
Watson-Leath experiment [37]. Suppose that we have a two-
dimensional steel-wire mesh (lattice). Two copper electrodes

with negligible resistance are soldered to the two opposite
sites of this square lattice. The resistance of the steel mesh is
measured externally.

In each iteration of the experiment, a steel wire (a “bond”)
is cut (Watson and Leath actually studied “site” percolation;
i.e., in each iteration they cut the four wires coming to a
junction). The electric conductance of the lattice gradually
decreases by cutting the wires. The idea is to cut steel wires
randomly until no electrical current can pass through the
mesh.

Let 𝑃 be the ratio of unblocked bonds to the total number
of bonds. On average, when bonds are cut, at a critical
value, say 𝑃

𝐶
, conductivity of the lattice vanishes to zero [35].

Therefore, 𝑃
𝐶
is a random variable which can be estimated by

repeating the experiment several times.
The method used in present study is based on solving

a sequence of linear programming (LP) problems. In our
algorithm, we used F2C2 [34] to study reactions deletions
and their consequences on the activity of metabolic fluxes.
The algorithm starts by correcting reversibility of reactions
in a metabolic network and deleting all dead-end reactions.
Then, in each iteration, one column of the stoichiometric
matrix of the metabolic network (or equivalently, a reaction
in metabolic network) is randomly deleted (Figure 1(b)). The
procedure continues until all reactions become blocked based
on the F2C2 program. Finally, the critical ratio is computed
as follows:

𝑃
𝐶

=

Number of deleted reactions
Number of unblocked reactions in the original network

.

(2)
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(a) (b)

Figure 1: (a) Schematic representation of the two-dimensional bond percolation experiment. Conductivity of a steel-wire mesh is studied
during the procedure of cutting wires (bonds) in the mesh.The goal is to find an average number of bonds which should be removed until the
mesh conductivity vanishes to zero. (b) Schematic representation of our procedure. In each iteration of the modeling, a reaction is knocked
out until no reaction can carry a nonzero flux in steady-state conditions.

The experiment is repeated 100 times for each network, and
average 𝑃

𝐶
values were computed for each of the metabolic

network models.
We also compared our results with a classical measure

of metabolic network robustness [38] based on flux balance
analysis (FBA) [39]. This approach is based on in silico
deletion of reactions. In each iteration, a reaction is deleted
from the network and the sensitivity of the growth rate to
the reaction deletion is modeled. We used the core reductive
algorithm [8, 9, 40] for this purpose. In each iteration, we
find a (randomly selected) minimal reaction set which can
be used to produce biomass from a minimal growth medium
in steady-state conditions. In a highly robust network, a
considerable number of reactions can be deleted without
influencing growth, while in a sensitive network deletion of a
few reactions can result in no biomass production.Therefore,
the average ratio of “unnecessary” reactions to the total
number of reactions can be used as a measure of network
robustness. For each metabolic network, the experiment was
repeated 1000 times to have a good estimation of this ratio.

2.4. Statistical Analysis. The 𝑅 package (http://www.r-
project.org/) was used for statistical analyses. In order to
compare the 𝑃

𝐶
distributions in two organisms, one-sided

two-sample t-test was used. To investigate the correlation
between𝑃

𝐶
values and the number of reactions in themodels,

Pearson’s product-moment correlation test was applied.

3. Results and Discussion

𝑃
𝐶
was defined as the critical ratio of the fluxes to be removed

such that a metabolic network becomes entirely blocked
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Figure 2: Average 𝑃
𝐶
for the fourteen metabolic network models.

The histograms for group 1 (eukaryotes), group 2 (“free-living”
prokaryotes), and group 3 (highly-adapted prokaryotes) are shown
in dark blue, green, and yellow, respectively. The error bars in this
plot are the 95% confidence intervals based on one-sample t-test.

(Figure 1(b)). The higher the average 𝑃
𝐶
is, the higher the

number of nonessential reactions is. Thus, we chose 𝑃
𝐶
to

estimate the robustness of the metabolic networks.
Each set of deleted reactions is a cut set for the network

[41] (but presumably not a minimal cut set). Therefore, the
average 𝑃

𝐶
is an estimate for the average cut set size. For

each of the fourteen metabolic networks in our dataset, we
computed average 𝑃

𝐶
by repeating the reaction deletion pro-

cedure 100 times. The results of this analysis are summarized
in Figure 2. From this figure, one can observe that there is
comparable range of 𝑃

𝐶
values for metabolic networks in

group 1 and group 2. However, for group 3, we face a range of
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Figure 3: The upper box shows the 𝑃 values of t-test for 𝑃
𝐶
(group 1) > 𝑃

𝐶
(group 2), while the lower box shows the 𝑃 values of t-test for 𝑃

𝐶

(group 2) > 𝑃
𝐶
(group 3).

𝑃
𝐶
values which does not overlap with the range of 𝑃

𝐶
values

for groups 1 and 2. This observation implies that the network
robustness of group 3 is much less than that of groups 1 and 2.

To investigate the significance of differences between
𝑃
𝐶
values of different groups, one-sided two-sample t-test

was used. We tested whether the 𝑃
𝐶
values of eukaryotes

(group 1) are significantly greater than𝑃
𝐶
values of free-living

prokaryotes (group 2) and whether the 𝑃
𝐶
values of free-

living prokaryotes (group 2) are significantly greater than 𝑃
𝐶

values of prokaryotes with highly specific growth conditions.
The results are summarized in Figure 3. Obviously, the
differences between group 2 and group 3 are much more
significant than the differences between group 1 and group
2. This observation confirms that prokaryotes with highly
specific growth conditions are significantly less robust than
the free-living prokaryotes.

We also tested whether the number of unblocked reac-
tions (and not the network structure) determines the network
robustness. We found that although the correlation between
the number of reactions and 𝑃

𝐶
is positive (𝑅2 = 0.26), it

is not statistically significant (𝑃 value > 0.05 in Pearson’s
product-moment correlation test). Therefore, there is only a
weak, if any, relationship between the number of reactions
and network robustness. This finding emphasizes the impor-
tance of the network “structure” and “wiring” (as an intrinsic
property in each metabolic network) in shaping the network
mutational robustness.

In this study, group 1 includes eukaryotic species (S.
cerevisiae, A. nidulans, and A. thaliana). It is well known that
S. cerevisiae and A. nidulans can adapt to a wide range of
growth conditions. Moreover, A. thaliana is a multicellular
organism with different tissues. For these reasons, in group 1
we expect a large number of alternative metabolic pathways,
which in turn results in great robustness values. It should be
noted that, in the metabolic model of A. thaliana, only 672
unblocked reactions are included. However, due to the large
number of metabolic enzymes involved in the plants, this
number is greatly underestimated. One expects that addition
of the missing metabolic pathways to this model will greatly
enhance the robustness of this network.

In group 2, we have six prokaryotes which are able to grow
in different habitats. L. lactis is well known for its application
to the lactic industry, while it is reported that this species is
also isolated from vegetables [42] and intestinal tract of the
Amur catfish [43]. On the other hand, V. vulnificus, which
is a cause of deadly food poisoning and wound infections,
is also present in brackish ponds [44]. Another species from
this group, that is, E. coli, can easily grow in human intestine,
in water, and in soil [45]. While M. tuberculosis is a human
pathogen, it is proven that this bacterium has an exceptional
ability to survive environmental stresses [46]. Moreover, it
can grow in different growth conditions, both in vivo and in
vitro [47]. S. aureus is typically known as a human pathogen.
However, there is a growing body of evidence that this
microorganism is also able to grow in a variety of different
conditions, including foods [48] and soil [49]. M. barkeri is
the only archaeon in this group, with the ability to grow in
many different growth conditions ranging from rumen [50]
to freshwater lagoons [51].

Group 3 includes bacterial species with highly specific
growth conditions. H. pylori, a human pathogen, grows in
highly acidic environment of the stomach [21], T. maritima
only grows in extremely thermophilic conditions [23], and
C. beijerinckii grows only in strictly anaerobic conditions
[29]. M. genitalium and M. pneumoniae, on the other hand,
have reduced metabolic networks which helps them to grow
faster as intracellular pathogens [25, 27].The extreme level of
adaptation in species of group 3 has resulted in the greater
degree of “nonrobustness” in the metabolic networks of
these organisms.

In this work, we presented a novel way of measuring
metabolic network robustness in the constraint-based mod-
eling framework. Another class of robustness measures in
this framework is based on FBA [38]. We believe that our
robustness measure is more suitable for comparing a variety
of living organisms. The reason is that FBA is always based
on a predefined objective function (e.g., biomass production
flux) and a predefined growth medium (i.e., those uptake
reactionswhich can take nonzero flux values), which can vary
across species. Despite this fact, all measures of robustness
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must be correlated. For example, a highly robust metabolic
network with many alternative pathways is identified as a
robust network by any measure of robustness.

In order to find the relationship between our novel
robustness measure and the FBA-based measure of robust-
ness, we used our recent implementation of the core-
reductive algorithm [40] to obtain minimal metabolic sub-
networks which are able to produce biomass. The number of
reactions which can be deleted without decreasing biomass
production is an FBA-based measure of network robustness.
We found out that the results are qualitatively comparable,
with a relatively high correlation between the two measures
(Pearson’s correlation 𝑅 = 0.80). The results confirm that
our novel robustnessmeasure is comparable with the classical
measures of robustness, but with the advantage that no
additional assumption is required for its computation.
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Dı́az, and F. Baquero, “Mycoplasma pneumoniae: a reduced-
genome intracellular bacterial pathogen,” Infection, Genetics
and Evolution, vol. 3, no. 1, pp. 47–55, 2003.

[28] J. A. H. Wodke, J. Puchalka, M. Lluch-Senar et al., “Dissecting
the energy metabolism in Mycoplasma pneumoniae through
genome-scale metabolic modeling,”Molecular Systems Biology,
vol. 9, article 653, 2013.

[29] W. J.Mitchell, “Carbohydrate uptake and utilization byClostrid-
ium beijerinckii NCIMB 8052,” Anaerobe, vol. 2, no. 6, pp. 379–
384, 1996.

[30] C. B. Milne, J. A. Eddy, R. Raju et al., “Metabolic network
reconstruction and genome-scale model of butanol-producing
strain Clostridium beijerinckii NCIMB 8052,” BMC Systems
Biology, vol. 5, article 130, 2011.

[31] S. A. Marashi, Constraint-Based Analysis of Substructures of
Metabolic Networks, Freie Universität Berlin, Berlin, Germany,
2011.

[32] A. P. Burgard, E. V.Nikolaev, C.H. Schilling, andC.D.Maranas,
“Flux coupling analysis of genome-scale metabolic network
reconstructions,” Genome Research, vol. 14, no. 2, pp. 301–312,
2004.

[33] L.David, S. A.Marashi, A. Larhlimi, B.Mieth, andA. Bockmayr,
“FFCA: a feasibility-based method for flux coupling analysis of
metabolic networks,” BMC Bioinformatics, vol. 12, article 236,
2011.

[34] A. Larhlimi, L. David, J. Selbig, and A. Bockmayr, “F2C2: a
fast tool for the computation of flux coupling in genome-scale
metabolic networks,” BMC Bioinformatics, vol. 13, article 57,
2012.

[35] A. L. Efros, Physics and Geometry of Disorder: Percolation
Theory, Mir Publishers, Moscow, Russia, 1986.

[36] D. Stauffer and A. Aharony, Introduction to Percolation Theory,
CRC Press, New York, NY ,USA, 1994.

[37] B. P. Watson and P. L. Leath, “Conductivity in the two-
dimensional-site percolation problem,” Physical Review B, vol.
9, no. 11, pp. 4893–4896, 1974.

[38] J. S. Edwards and B. O. Palsson, “Robustness analysis of the
Escherichia colimetabolic network,” Biotechnology Progress, vol.
16, no. 6, pp. 927–939, 2000.

[39] J. D. Orth, I. Thiele, and B. O. Palsson, “What is flux balance
analysis?” Nature Biotechnology, vol. 28, no. 3, pp. 245–248,
2010.

[40] S. Tabe-Bordbar and S. A. Marashi, “Finding elementary flux
modes inmetabolic networks based onflux balance analysis and
flux coupling analysis: application to the analysis of Escherichia
colimetabolism,” Biotechnology Letters, vol. 35, no. 12, pp. 2039–
2044, 2013.

[41] S. Klamt and E. D. Gilles, “Minimal cut sets in biochemical
reaction networks,” Bioinformatics, vol. 20, no. 2, pp. 226–234,
2004.

[42] L. Uhlman, U. Schillinger, J. R. Rupnow, and W. H. Holzapfel,
“Identification and characterization of two bacteriocin-
producing strains of Lactococcus lactis isolated from vegetables,”
International Journal of Food Microbiology, vol. 16, no. 2, pp.
141–151, 1992.

[43] H. Sugita, K. Ohta, A. Kuruma, and T. Sagesaka, “An antibac-
terial effect of Lactococcus lactis isolated from the intestinal
tract of the Amur catfish, Silurus asotus Linnaeus,” Aquaculture
Research, vol. 38, no. 9, pp. 1002–1004, 2007.

[44] C. O. Tacket, T. J. Barrett, J. M. Mann, M. A. Roberts, and P. A.
Blake, “Wound infections caused by Vibrio vulnificus, a marine
vibrio, in inland areas of the United States,” Journal of Clinical
Microbiology, vol. 19, no. 2, pp. 197–199, 1984.

[45] M. A. Savageau, “Escherichia coli habitats, cell types, and
molecular mechanisms of gene control,” American Naturalist,
vol. 122, no. 6, pp. 732–744, 1983.

[46] K. Kulka, G.Hatfull, andA. K.Ojha, “Growth ofMycobacterium
tuberculosis biofilms,” Journal of Visualized Experiments, no. 60,
Article ID e3820, 2012.

[47] A.M.Dhople andD. L. S. Ryon, “ATP content ofMycobacterium
tuberculosis grown in vivo and in vitro,” Microbios, vol. 101, no.
399, pp. 81–88, 2000.

[48] M. I. Halpin-Dohnalek and E. H. Marth, “Staphylococcus
aureus: production of extracellular compounds and behavior in
foods: a review,” Journal of Food Protection, vol. 52, pp. 267–282,
1989.

[49] K. S. Ko, S. K. Lim, S. C. Jung, J. M. Yoon, J. Y. Choi, and J. H.
Song, “Sequence type 72 meticillin-resistant Staphylococcus
aureus isolates fromhumans, rawmeat and soil in SouthKorea,”
Journal of Medical Microbiology, vol. 60, no. 4, pp. 442–445,
2011.

[50] S. K. Sirohi, N. Pandey, B. Singh, and A. K. Puniya, “Rumen
methanogens: a review,” Indian Journal of Microbiology, vol. 50,
no. 3, pp. 253–262, 2010.

[51] O. Kandler and H. Hippe, “Lack of peptidoglycan in the cell
walls of Methanosarcina barkeri,” Archives of Microbiology, vol.
113, no. 1-2, pp. 57–60, 1977.


