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Abstract

In this study, we shed light on the interdependency of child growth, morbidity and life expec-

tancy in the fisher-hunter-gatherers of the Jabuticabeira II shell mound (1214–830 cal B.C.

E. - 118–413 cal C.E.) located at the South Coast of Brazil. We test the underlying causes of

heterogeneity in frailty and selective mortality in a population that inhabits a plentiful environ-

ment in sedentary settlements. We reconstruct osteobiographies of 41 individuals (23 adults

and 18 subadults) using 8 variables, including age-at-death, stature, non-specific stress

markers (cribra orbitalia, porotic hyperostosis, periosteal reactions, periapical lesions and

linear enamel hypoplasia), as well as weaning patterns based on stable isotope data to

examine how stress factors module growth and survival. Our results show that shorter adult

statures were linked to higher morbidity around weaning age and higher chances of dying

earlier (before 35 years) than taller adult statures. In addition, short juvenile stature was

related to physiological stressors and mortality. The adult “survivors” experienced recurrent

periods of morbidity during childhood and adulthood, possibly associated with the high para-

site load of the ecosystem and dense settlement rather than to malnourishment. An associa-

tion between early-stress exposure and premature death was not demonstrated in our

sample. To explain our data, we propose a new model called “intermittent stress of low

lethality”. According to this model, individuals are exposed to recurrent stress during the

juvenile and adult stages of life, and, nevertheless survive until reproductive age or later

with relative success.
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Introduction

The examination of child growth, health, nutritional status, and life expectancy of ancient pop-

ulations is among the main concerns of bioarchaeology. The study of juveniles in different

contexts of population growth and subsistence is of first importance to assess the balance

between nutrition, disease, and death, because population growth theoretically depends,

among other factors, on low infant-mortality and long enough survival until reproductive age

[1,2]. Therefore, studying juveniles is also useful to test how morbidity in early life may impact

frailty and survival in later life [3,4]. This applies especially to nutritional and demographic

transitions. Sedentism and the adoption of agriculture, for example, lead to a decrease in life

expectancy and poor health conditions through population growth and malnutrition [5,6].

Bioarchaeological inferences about health in the past are modulated by the concepts of “het-

erogeneity in frailty” and “selective mortality”, under the interpretative limits imposed by the

“Osteological Paradox” [7]. A key question to understand these concepts is: does a skeleton

without detectable bone lesions represent a healthy person or a fragile individual who perished

at a first exposure to disease? “Heterogeneity in frailty” suggests that variable susceptibility to

disease from individuals do not allow reliable inferences about the populations’ health, since

the factors involved (i.e. genetic, socioeconomic, environmental, chronologic, etc.) are not eas-

ily identifiable. “Selective mortality” means that skeletal lesions may not accurately reflect a liv-

ing population at risk of death at any age. This is because deceased individuals integrate the

age structure of the sample according to different morbidity experiences, frailty and death rea-

sons [7–9].

Documenting the heterogeneity in frailty and selective mortality is critical to discussions

about health in the past. Recent reviews have highlighted the importance of analyzing data

within its historical/archeological context in order to examine causes, effects and correlations

between heterogeneity in frailty and selective mortality [9]. In recent years, bioarcheological

researches introduced new approaches to assess the relation between early-stress, later morbid-

ity and mortality [10–14]. Focusing on the study of health conditions in past foraging societies,

two hypotheses were tested: the “plasticity/constrain” model and the “predictive adaptive

response” model. The first predicts that people trade-off in future growth and maintenance

when early investment in growth and survival is required, thus, individuals with more stress

episodes during childhood are more prone to higher morbidity and early mortality in adult-

hood [4,15,16]. The second suggests that processes by which organisms adapt to their environ-

ment can operate during early development and induce adjustments, by epigenetic

mechanisms, in the mature phenotype. Individuals who experienced early-life stressors can

improve their physiological competence to deal with future stress events [4,17].

The prehistoric shell mound builders from the Brazilian South Coast provide an unparal-

leled opportunity to test these models and discuss differences in the underlying causes of het-

erogeneity in frailty and selective mortality between fisher-hunter-gatherers around the world.

The current archaeological evidence suggests that the groups who built the Brazilian shell

mounds (sambaqui) lived for thousands of years in sedentary or semi-sedentary settlements

located in plentiful environments (lagoons, mangroves or estuaries), with an abundant and

stable marine-based subsistence, and experienced high population growth [18]. However,

despite this “idyllic” context of affluence, sambaqui populations have shown high frequencies

of non-specific stress markers [19,20] that suggest other biocultural factors involved.

Jabuticabeira II: Lifestyle, diet and health

Jabuticabeira II (UTM 22J - 0699479E; 6835488S) is located in the Laguna region, the highest

density area of sambaquis from the Brazilian Southern coast (Fig 1; [21]). Jabuticabeira II is a
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medium size shell mound (400 x 250 x 10 m in height), settled on a paleodune, 3 km from

Laguna do Camacho, one of several water sources associated with a barrier-lagoon geological

system formed during the Holocene [22,23]. The predominant ecosystems in the region are

restingas and dense ombrophilous forests rich in fauna, and subtropical weather [24]. Radio-

carbon dating indicates a long occupation period between 1214–830 cal B.C.E. and 118–413

cal C.E. [21:35; 25:260, 296].

Jabuticabeira II is one of 65 sambaquis mapped (located at equidistance of about 5 km,

some of them higher than Jabuticabeira II) around the lagoon system. This large number of

settlements and their overlapping occupation history attests to a fairly dense occupation

between 7500 and 900 cal BP, with groups of sambaquis interacting intensely in this stable and

plentiful area [26].

The analysis of faunal macroremains and stable isotopes in the site demonstrates higher

reliance on fishing than mollusks gathering, while some females exhibit diets of lower trophic

level than most adults [25,27]. Osteological activity markers also point to fishing as the most

remarkable feature of the Jabuticabeira lifestyle with some sex-related differences [28,29].

Anthracological analyses, microremains in dental calculus and oral pathology studies support

the idea of regular plant consumption at the site [30–32]. Nevertheless, its impact on nutrition

and health is still to be unraveled.

Stratigraphic studies suggest that Jabuticabeira II was formed by the incremental accumula-

tion of funerary areas [21]. A total of 204 burials and 282 individuals were excavated from dif-

ferent areas at the site. Between 2000- and 1500-years BP, several sambaquis of the Laguna

Fig 1. Setting of Jabuticabeira II. The star represents Jabuticabeira II, the triangles represent other sambaquis mapped for the Laguna Region (modified from Boyadjian

et al. [31:137]).

https://doi.org/10.1371/journal.pone.0229684.g001
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region, including Jabuticabeira II, experienced a change in their depositional pattern. The pre-

dominant deposition of shells was replaced by the accumulation of a black superficial layer

(0.50–1.50 m of thickness), composed mainly of intentionally burned fish bones and charcoal

[33]. This depositional change (from shell-rich layers to fish-rich-layers) was not related to var-

iations in diet, technology or constructive patterns [21,26,33]. Biodistance studies also did not

detect biological differences among groups [34].

Our former bioarchaeological study on sambaqui dwellers at the Brazilian coast show that

Jabuticabeira II people had shorter stature than several Amerindian groups [35], as well as

high prevalence of bone lesions associated with non-specific physiological stress and infectious

processes. These conditions were attributed to sedentary-dense settlements, as well as ecologi-

cal factors [19–36].

Osteobiographic approach and life-history

In theory, an osteobiographic approach, a context-driven analysis of human remains of given

individuals [37–39], can reveal life course processes of exposure to situations of homeostatic

imbalance or stress and their impact. Integrated analyses of non-specific physiological stress

markers, stature and weaning behaviors, allow the assessment of past health conditions to test

hypotheses about morbidity, frailty and increased risk of mortality in ancient populations

[4,13,40].

The study of growth can be particularly informative about adaptive responses of the body

to the environment. The expression of stature is modulated by a complex interaction of

genetic, socioeconomic and cultural factors [6,41,42]. According to available genomic data

and several studies in twins from affluent societies, the expression of stature is highly con-

trolled by genes. The estimated heritability ranges between 0.68 and 0.93 (with higher values in

men, and lower values in poor populations: [43–45]). Apart from genetic factors, several envi-

ronmental conditions can modulate height expression. The influence of those conditions on

heritability rates is highest in early childhood, decreasing during adolescence and early adult-

hood [46].

The relevance of nutrition for linear growth has been widely recognized, and the mean

height of a population can be considered a proxy for its nutritional condition [47–49]. Cumu-

lative evidence suggests that patterns of development (in height and weight) of well-nourished

and healthy children are similar during the first five years of life regardless of ethnic origin

[50]. Irreversible retardation of child growth is associated with chronic malnutrition and

recurrent infectious diseases, such as diarrhea, through negative effects on the metabolism,

especially in contexts of population agglomeration, lack of resources and social stratification

[40,51–54].

In contemporary populations of developing countries, subject to nutritional (mostly pro-

tein) deficiencies, mean height in children and adults is substantially lower than in developed

countries [49,55,56]. Additionally, it is widely believed that the duration and intensity of fac-

tors that produce physiological stress may also have direct and indirect consequences on indi-

vidual development and premature death [49,57,58]. In bioarchaeology, numerous authors

have shown that short height-for-age (stunting) is a signal of poor health, being commonly

associated with increased risk of morbidity and early mortality [4,13,40,42]. Therefore, a rela-

tive short adult stature is almost always associated with stress factors during the growth period

(including the intrauterine period) and should undergo a detailed contextual analysis

[10,12,59].

In this sense, weaning habits and juvenile diets influence morbidity and mortality, espe-

cially at the more vulnerable ages during childhood. Adequate breastfeeding and weaning
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patterns are positively related with child health, growth and increasing chances of survival

[60], whereas poor breastfeeding habits result in arrested growth, fragile health and increased

infant mortality [61,62]. The early cessation of breastfeeding and the introduction of supple-

mentary diet or adult diet, eventually in association with pathogens, makes weaning age an

especially vulnerable period [53,63].

Stature is an informative marker of environmental insults experienced during the earlier

phases of growth (in terms of occurrence, duration and timing) and can be contrasted to other

markers to uncover whether individual growth (normal or delayed) is related to an individual’s

exposure to situations of non-specific physiological stress. Physiological stress markers cur-

rently used in bioarchaeology such as enamel hypoplasia, cribra orbitalia, porotic hyperostosis,

and periosteal reactions provide an overview of health disorders at certain ages [14,64]. Below

we shortly describe these osteological markers.

Linear enamel hypoplasias (LEH) are horizontal defects located on the labial and buccal

surface of the dental crown. Although other kinds of hypoplastic defects can occur (pits, verti-

cal grooves, areas of missing enamel), LEH are the most common [54,65]. LEH is associated

with disturbances in the perikymata. Perikymata are incremental layers of enamel (visible as

“concentric ripples” on the tooth crown surface and extend horizontally around the circumfer-

ence of the crown), the outer expression of striae of Retzius, underlying incremental growth

layers. LEH result from accentuated perikymata during the enamel formation process followed

by recovery periods [65]. The average secretion rate or periodicity of perikymata and striae of

Retzius is 8–9 days. Therefore, the analysis of LEH allows evaluating the timing, duration and

severity of short-term non-fatal stress events [66–69].

LEH have been used to infer metabolic insults related to multiple non-specific factors,

including systemic infectious diseases and nutritional stress during childhood [10,13,70–72].

Although caries and dental attrition can destroy crowns affected by LEH, the enamel defects

acquired during development periods do not remodel. Thus, LEH recorded in adults provide a

record of metabolic stress during juvenile periods [65,69,70]. Such information can be con-

trasted to mortality profiles to test if exposure to child stress has a negative impact on survival

rates, as well as other issues concerning heterogeneity in frailty and selective mortality [10].

Cribra orbitalia (CO) and porotic hyperostosis (PH) appear as increasing porosity in the

orbital roof and the cranial vault, respectively. They are thought to be the effect of bone mar-

row expansions linked to the compensatory production of blood cells in response to increased

physiological demand and have been mostly associated with non-specific anemia [64,73,74].

These two entities are not necessarily related, and a variety of newer studies indicate that they

may have different etiologies such as local inflammation, scurvy, rickets [74] or different types

of anemia [75]. These porosities are more common in coastal settings, possibly due to limited

access to parasite–free water and frequent contact with chronic parasitic diseases associated

with population growth, dense settlements and poor sanitation [54].

Periosteal Reactions (PR) are new bone formations associated with augmented activity of

osteoblasts and osteoclasts in response to several stimuli over the periosteum. Their etiologies

include trauma, local or systemic inflammation or infection, nutritional deficiencies [64,76–

79], neoplasia and metabolic diseases [80]. Bone markers of specific infection include osteomy-

elitis, signs of bone remodeling and diagnostic patterns of localized and diffuse periosteal reac-

tions typical of systemic infectious processes [14,64]. Several studies support that sedentism,

population growth and aggregation are strongly related to increased prevalence of infections

and periosteal reactions [54].

Finally, many clinical and epidemiological studies showed bi-directional relationships

between poor oral health (mainly periodontal disease and oral infections) and chronic/sys-

temic diseases with potential effects on mortality [81,82]. Periapical lesions (PL) located in
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mandible and maxilla are potential sources of infection in joints, heart and kidneys (and vice

versa) and are indirectly related to immunological depletion and other shared risk factors [83–

85]. Periapical lesions result from acute or chronic infections (abscesses and granulomas,

respectively) in alveolar bone, associated with caries, periodontal disease, pulp exposures due

to severe occlusal wear, and also from sinus infections [86].

Aims and expectations

In this study we evaluate child stunting, malnutrition and morbidity as modulating factors for

development and survival in the Jabuticabeira II sambaqui using several osteobiographic

markers. These markers include adult and juvenile height, linear enamel hypoplasias, cribra

orbitalia, porotic hyperostosis, periosteal reactions, and age-at-death. Finally, data from our

earlier isotopic weaning study are used herein to evaluate the implications of nutrition during

juvenile ages on morbidity [87].

Our aims are to identify periods of higher vulnerability and causes of frailty among Jabuti-

cabeira II individuals and to examine how stress factors influence them, to answer the follow-

ing questions: Is there evidence of early stress periods in Jabuticabeira II individuals? How

does early-life exposure to physiological stress influence individual health and mortality risk in

adulthood?

More specifically, six hypotheses about child development, health and survival expectations

in Jabuticabeira II are tested: 1) higher early-stress factors during juvenile periods (presence,

duration, and timing of LEH in relation to weaning) are associated with shorter adult stature;

2) higher early-stress factors during juvenile periods (presence, duration, and timing of LEH

in relation to weaning) are associated with earlier adult age at death (<35 years); 3) higher

juvenile morbidity (CO, PH, PR and LEH) is associated with higher juvenile mortality (>1

year and<1 year); 4) higher adult morbidity (CO, PH, PR, PL) is associated with earlier adult

age at death (<35 years); 5) infant malnutrition (no breastfeeding or early weaning age) is

associated with higher morbidity (CO, PH, PR and LEH) in juveniles >1 year; 6) infant mal-

nutrition is associated with higher morbidity (CO, PH, PR and PL) in adults.

Materials and methods

The Jabuticabeira II collection is housed in the Museu de Arqueologia e Etnologia da Universi-
dade de São Paulo, Brazil. No permits were required for the described study, which complied

with all relevant regulations. As in the case of other archaeological contexts, this collection is

seriously compromised by taphonomic damage. Due to the high degree of bone fragmentation,

only 41 individuals (adults and juveniles), from a total of 282 evaluated records, met the fol-

lowing inclusion criteria: a) one or more long bones in good condition for measurements; b)

availability of alveolar bone and teeth in order to assess dental age, enamel hypoplasia, and

maxillary infections; c) previously studied isotopic values that allow for the evaluation of the

weaning age and/or infant/adult diet estimations [87]. Because the focus of this work is child

development, the first criterion was imperative.

Estimation of sex and age at death

Adult sex was estimated according to morphological characteristics of the skull and pelvis [88].

Due to the difficulties of sex determination in juveniles, all of them were classified as “undeter-

mined” [89]. The age at death in juveniles was estimated based on dental formation-eruption

sequences published by Ubelaker [90], based on Arikara Indians of North America, and by

Gaither [91], based on indigenous populations from Central Andes. The degree of epiphyseal

union and vertebral development [89] were also observed to confirm our estimations. Age at
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death in adults was taken from our previous research 19,32] also based on standardized mor-

phological markers [88]. Adults were classified into broad categories: Young Adult (YA) = 20–

35 years; Middle Adult (MA) = 35–50 years; Old Adult (OA) > 50 years; Adult = Age not

determined). Because a detailed demographic study in Jabuticabeira II is missing and the

mean age-at-death of Jabuticabeira II individuals is unknown, the age of 35 years, was arbi-

trarily chosen as the cut-off to differentiate “early” from “late death”, assuming that Young

Adults (<35 years) died at an unexpected early age.

Osteometric recording

The osteometric recording was based on Buikstra and Ubelaker ([88]: 46, 79–84) standards.

All complete bones from either side were measured with a sliding digital caliper (Mitutoyo 150

mm) and a standard osteometric board by one of us (LPL). In cases of well-preserved bones on

both sides, only left bones were considered for analysis [92]. Pathological long bones were

excluded from this study.

Stature estimation in adults

Stature estimation in adults was based on regression equations from the measurement of long

bones. Ideally, formulae should be developed on a subset of complete individuals from the

same population and then applied for stature estimation in the rest of the sample. However,

because our sample is inappropriate for that, other formulae that respect the allometric varia-

tion in the population were selected. A rather straightforward approach to evaluate similarities

in body proportions between the population used for developing the method and the subject

population is to test the consistency of results obtained with formulae based on different skele-

tal elements using the Delta of Gini method ([6,93], S1 File). This approach was used herein to

decide which of two available methods should be used for Jabuticabeira II.

Between Pomeroy and Stock ([94], conceived from Andean archaeological populations),

and Genovés ([95], corrected by Del Angel and Cisneros [96], based on Mesoamerican indi-

viduals), the first method provided more consistent Delta of Gini estimates (DG = 1.65 vs.

DG = 2.37) in 4 individuals with complete set of long bones. Thus, we used the formulae by

Pomeroy and Stock ([94]: Table 6), the most appropriate for our sample (S1 File).

When it was not possible to use the tibia and/or the femur measurements, height was esti-

mated using any available long bone; we also calculated Z-scores (using the median group val-

ues of males and females from Jabuticabeira II) to analyze correlations between stature and

other markers.

Adult height is the outcome of a complex process. Considering the high heritability of adult

eight expression, classifying any adult as stunted or non-stunted based on bone measures is

virtually impossible. We can only know if they were relatively smaller or taller than others.

Conventionally, “short stature” is defined as a height� -2 SD (standard deviations) of a spe-

cific population [45]. However, due to the small sample size, we were compelled to classify

adult individuals by relative stature using the median of each group as classification parameter,

arbitrarily. Thus, relative short stature in adults was classified as “below the median”.

Stature estimation in juveniles

As our goal was assessing if juvenile growth is compatible with stunting three strategies were

applied:

1. Height estimation in juveniles between 1–17 years old was based on the long bone’s regres-

sion formulae postulated by Ruff ([92]: Tables 4 and 5) based on the maximum diaphyseal
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length (without epiphysis) that is applicable to undetermined-sex juveniles. Stunting was

diagnosed as height by age Z-scores (HAZ) less or equal to two (� -2 SD, moderate) or

three (� -3 SD, severe) standard deviations. The Z-scores were calculated using the simpli-

fied formula proposed by the WHO [50]: Z = [(X—M)/SD], where X is the measured or esti-

mated stature, M is the median and SD the standard deviation for each age-range (values

provided in the Height-for-age tables of Child Growth Standards, [50]). For individuals <5

years old the calculation was performed by applying the package Anthro v.3.2.2 [97]. Con-

sidering that juvenile sex is unknown, and the WHO charts are divided by sex, we calcu-

lated HAZ for males and females.

2. The WHO growth charts [50], however, do not include long bone measurements (and

therefore are not directly applicable to archaeological material). Thus, a second strategy to

evaluate stunting consisted of comparing long bone lengths of each dental-age cohort to

those of contemporary children from the Denver Growth Study [98]. This is considered a

good parameter of normal growth in extant [99], as well as, archaeological juveniles from

North America [90] and the Central Andes [100]. However, this method only aims to detect

differences by age in the length of bones between populations. Because our juvenile individ-

uals were not sexed and the Denver Growth Study tables are categorized by sex, we calcu-

lated the arithmetic mean and a range of variation of the entire sample (merging girls and

boys) for each age-cohort, in order to create a comparative parameter for each bone. As the

tables by Maresh [98] only show average and values between 90th and 10th percentiles,

“probable stunting” was arbitrarily attributed to diaphyseal lengths below the 10th percen-

tile [99]. The diaphyseal measures of Andean individuals [100:37,74–79] are not divided by

sex because they correspond to non-sexed juveniles of archaeological origin.

3. Another strategy to detect stunting was to calculate height from the length of upper and

lower limbs. We expect upper limbs to provide more reliable height reconstruction accord-

ing to dental age, because there are less sensitive to environmental conditions due to their

slower growth [101,102]. In individuals with probable stunting, the estimated height based

on lower limbs should be shorter than the estimated height based on upper limbs.

4. Finally, as our goal is to assess if Jabuticabeira II growth patterns are compatible with stunt-

ing, the percentage of adult femur length attained at different ages was calculated following

the method suggested by Humphrey [103:Fig 2B] to avoid potential source of error using

regression formulae and standards of other populations. The percentage was calculated

using the children’s femur lengths divided by the average adult femur length (including

epiphyses) of the pooled sample.

Weaning and infant malnutrition

The dietary data from Jabuticabeira II (approximate ages at the beginning and the end of

weaning, supplementary and post-weaning diets) originates from nitrogen and carbon isotope

values of dentin sections from adults, and bones from juveniles previously published [27,87].

These studies revealed an age range of weaning between 2 and 3 years (most likely 2.3 years

old). According to those studies child diet was similar to adult diet, both concerning broad

items as well as proportions, from around the age of 1.5 years on [87]. Breastfeeding and the

approximate ages at the start and end of weaning were inferred from δ15N and δ13C values for

each individual (S1 File). Malnourished individuals were diagnosed according to the following

criteria: absence of signs of breastfeeding (δ15N and δ13C below the expected value for breast-

feeding, around 2–3‰ above the mean value of women) and early weaning age (below 2

years).
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Morbidity. The evaluation of morbidity included the recording of non-specific physiolog-

ical stress markers:

Linear enamel hypoplasia (LEH) was observed directly under natural and artificial light

with the help of an angled dental explorer and 10x magnifying glass [70]. In individuals with

complete dentition every tooth was observed in order to record the LEH presence. In individu-

als with incomplete dentition, only incisors and canines were analyzed. Only cases with both

antimeres affected by LEH were considered positives [88]. LEH was recorded in terms of pres-

ence/absence and quantity of affected teeth per individual. Teeth with carious lesions were not

considered for analysis.

The approximate age of occurrence of LEH (in years and months) was estimated according

to Reid and Dean [67], taking into account the loss of coronal height due to dental wear (only

teeth with more than 70% of coronal height were considered). A “LEH incidence period”, that

means the period of recurrent LEH suffered by one individual, was calculated as the time

between the first and the last hypoplasia of a given individual.

Cribra orbitalia (CO) and porotic hyperostosis (PH), active or healed, were recorded in

terms of presence/absence [88]. Localized and diffuse periosteal reactions and signs of acute or

chronic bone infection, such as osteomyelitis, bone remodeling and fistula (all considered

herein as PR) were recorded in terms of presence/absence in all available bones [64]. Periapical

lesions (PL) of mandible and maxilla were recorded as presence/absence and number of

lesions per individual [32].

All conditions were recorded by macroscopic inspection, aided by the use of 10x magnifica-

tion lens, in each individual. Statistical analyses to test differences in the prevalence of markers

between groups were considered unnecessary since this subject is a subsample of an entire

Fig 2. Femoral lengths by age in juveniles from Jabuticabeira II and reference populations. Asterisks represent the individual values of Jabuticabeira II juveniles. For

the compared populations marks represent mean values and the lines represent the range of variability. DGS: Denver Growth Study.

https://doi.org/10.1371/journal.pone.0229684.g002
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population analyzed in other bioarchaeological studies earlier [19,32,35,104]. Furthermore,

since the choice of the skeletons is based on their preservation, they may represent an age and

sex-biased sample. To examine bivariate correlations, the Spearman’s coefficient (ρ) at p<0.05

was used. For some frequency comparisons, we used Student’s t-test, Chi-square, and Mann

Whitney U. To detect significant interactions between more than two variables or predictor

variables we used the binary logistic regression analysis [40]. The operationalization of mark-

ers in dichotomous variables appears in Table 1. All statistical analyses were performed using

SPSS 18.0 (IBM1).

Results

The sample for analyses is composed of 41 individuals, that is, 23 adults (16 males and 8

females, of different age categories) plus 18 juveniles of undetermined sex (S1 File).

Stature in adults

Stature was estimated in 23 adults (Table 2). The mean height for males is 156.2 cm

(SD = 4.73; range: 150.1–166.8; n = 16) and 148.8 cm for females (SD = 5.45; range: 141.1–

156.8; n = 7). Males were 9–10 cm taller than females (t = 3.31; df = 21; p = 0.003), with higher

heterogeneity in females. Few individuals fit with the strict definition of “short stature” (height

� -2SD: 2 females and no males; height� -1SD: 2 females and 4 males).

Stature in juveniles

Only 18 juveniles from Jabuticabeira II provided adequate preservation for osteometric

recording. The estimated height-for-age of each juvenile is show in Table 3. In general, the

length of long bones suggests short statures in all juveniles in comparison with reference popu-

lations (Table 4). All individuals younger than 1 year of age had femoral bone lengths below or

near the 10th percentile of modern USA populations [98]. With five exceptions (individuals

120-L2.05; 10A-L1.25; 115A-L6; 17D2-L1.05; 119A-L6), the femoral lengths of Jabuticabeira II

Table 1. Operationalization of stress markers in dichotomous variables for logistic regression analysis.

Dichotomous

variable

Infant

malnutrition1
Infant morbidity Juvenile short

height-by-age

(stunting)

Adult relative

short height

Adult morbidity Early mortality

Juveniles2 Adults3 Juveniles Adults Juveniles Adults Adults Juveniles Adults

No (0) Breastfed:

δ15N > 2‰ above

the female mean

value and/or Mean

weaning-age: 2–3

years old

No stress markers No LEH Long bone length

into/above the

range of variability

and/or HAZ > -2

SD

Stature above

the group

median (in M,

F) or Z-

score > 0

No stress markers >1 year

old (1–20

years)

Late death:

Adult older

than 35

years

Yes (1) Non-breastfed:

δ15N around or

below the female

mean value and/or

Early weaning-age:

< 2 years old

Presence of CO,

PH, PR, PL, LEH

and/or number of

markers� 1

Presence of LEH

and/or > LEH

Incidence period

(years with LEH)

Long bone length

below the range of

variability and/or

HAZ�-2 SD

Stature below

the group

median (M, F)

or Z-score < 0

Presence of CO,

PH, PR, PL and/or

number of

markers� 1

� 1year

old

Early

death:

Young

Adult (20–

35 years)

1 Lack of breastfeeding or early weaning.
2Subadults (non-survivors, individuals who die early in childhood)
3Adults (survivors, individuals who survive to later life-stages). CO: cribra orbitalia; PH: porotic hyperostosis; PR: periosteal reactions and other signs of bone infection;

PL: periapical lesions; LEH: linear enamel hypoplasia; HAZ (height-for-age Z-score).

https://doi.org/10.1371/journal.pone.0229684.t001
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juveniles are closer to the lower limit of Arikara and within the range of Andean individuals

(Fig 2).

In juveniles with estimated stature, the Z-scores are well below the mean and lower limits

(� -2 SD) of contemporary growth curves [50]. That suggests an extremely low height-for-age

Table 2. Osteobiographic aspects in adults from Jabuticabeira II (n = 23).

N

˚

Individual Sex Age at

death

Bone Length

(mm)

Estimated stature

(cm)

Z score

(according sex)

Age at the end

of weaning

# LEH (age-

range)

LEH

incidence†
CO PH PR #

PL

1 SEP 34

L2.05

F YA femur 361 141.08 ±1.844 -2.738 < 3 yr 2 (4.0–4.8) 0.8 CO PH PR 0

tibia 302

2 SEP 36A

L2.05

M YA tibia 327 150.12 ± 2.581 -1.246 ~2 yr 6 (2.6–4.9) 2.3 CO PH PR 4

3 SEP 37

L2.05

M OA radius 236 158.05 ± 3.467 0.434 2–3 yr 6 (2.5–4.8) 2.3 CO PH 5

4 SEP 40

L2.05

F Adult humerus 259 142.94 ± 2.975 -2.396 ~2 yr? 7 (2.2–5.6) 3.4 CO PH PR 2

5 SEP 41A

L2.05

M Adult femur 386 150.49 ± 2.627 -1.167 < 3 yr 2 (4.0–4.8) 0.8 PH PR 3

6 SEP 108

L2.05

F MA ulna 239 151.44 ± 3.987 0.837 2–3 yr no hypoplasia 8

7 SEP 110 prof

L2

M YA femur 425 159.32 ± 2.289 0.703 < 4 yr 6 (1.5–5.1) 3.6 0

tibia 352

8 SEP 11

L1.25

M MA femur 403 153.27 ± 2.289 -0.578 2–3 yr 3 (2.4–5.6) 3.2 PH 2

tibia 334

9 SEP 12B

L1.25

M YA humerus 295 154.30 ± 2.975 -0.360 2–3 yr no hypoplasia 0

10 SEP 24 L1-

1.20

M Adult ulna 237 151.10 ± 3.615 -1.038 2–3 yr nr nr

11 SEP 14

L1.05

F YA tibia 338 151.35 ± 1.963 0.853 ~2 yr 2 (4.0–4.3) 0.3 0

12 SEP 15A

L1.05

M MA radius 257 166.83 ± 3.467 2.294 < 3 yr 2 (2.1–4.9) 2.8 PR 11

13 SEP 17 A

L1.05

M MA femur 430 161.17 ± 2.289 1.095 < 4 yr no hypoplasia PH PR 0

tibia 359

14 SEP 41 L1 M Adult humerus 290 154.78 ± 3.522 -0.259 2–3 yr nr nr

15 SEP 102

L1.75

F Adult humerus 284 150.83 ± 2.975 -0.949 2–3 yr no hypoplasia CO PH PR 0

16 SEP 123

L1.80

M MA humerus 299 157.91 ± 3.522 0.405 2–3 yr nr nr nr PR nr

17 SEP 107

L1-T1

M OA humerus 297 157.22 ± 3.522 0.256 2–3 yr no hypoplasia CO PH 3

18 SEP 2A L6 F MA radius 209 147.02 ± 3.012 -0.648 2–3 yr no hypoplasia CO PH 0

19 SEP 114 L6 M OA radius 246 162.23 ± 3.467 1.320 2–3 yr 2 (4.4–4.8) 0.8 nr PH nr

20 SEP 115B L6 M MA femur 398 151.09 ± 2.289 -1.040 ~2 yr 2 (4.0–4.8) 0.8 PH 0

tibia 325

21 SEP 118 L6 M YA femur 402 153.62 ± 2.289 -0.504 2–3 yr 7 (2.9–5.6) 2.7 CO PH PR 0

tibia 337

22 SEP 121 L6 M MA humerus 298 157.56 ± 3.522 0.331 2–3 yr 2 (3.7–4.9) 1.2 CO PH PR 8

23 SEP 333A L6 F YA radius 233 156.79 ± 3.467 0.145 2–3 yr nr nr nr PR nr

� Individuals whose final weaning age was not possible to be estimated, were considered as having been weaned at age 2–3 years. CO: cribra orbitalia; PH: porotic

hyperostosis; PR: periosteal reactions and bone infections; #PL: number of periapical lesions of maxilla and mandible. NR: not recordable.
†Maximum period between the first and last hypoplasias calculated in years according to Reid and Dean [67].

https://doi.org/10.1371/journal.pone.0229684.t002

PLOS ONE Stressful childhood in prehistoric fisher-hunter-gatherers from the South Coast of Brazil

PLOS ONE | https://doi.org/10.1371/journal.pone.0229684 March 11, 2020 11 / 29

https://doi.org/10.1371/journal.pone.0229684.t002
https://doi.org/10.1371/journal.pone.0229684


record in Jabuticabeira II (Fig 3), even when assuming an earlier dental eruption (around one

year earlier) following the chart of Gaither [91]. The height estimated from upper limbs is

greater than the height estimated from lower limbs in 3 out of 6 evaluated individuals

(Table 3). Reduced growth in lower limbs can be interpreted as stunting. Finally, the percent-

age of adult femur length attained at different ages confirms our observations in most cases.

Physiological stress markers during childhood and adulthood in

Jabuticabeira II

The physiological stress markers of the 23 adults assessed are shown in Table 2 and Fig 4. In

adults, LEH, which develops during childhood, affected 13 (10/12 males and 3/6 females),

among 19 individuals with available dentitions.

When we compare the timing of LEH to individual weaning trajectories (Fig 4), we observe

that in Jabuticabeira II, among the 13 adults with LEH, 6 experienced the first LEH a few

months before or immediately after the approximate age of the end of weaning, suffering

events of physiological stress between 2.1 and 5.6 years of age. Other 6 individuals had the first

LEH well after the end of weaning (with physiological stress events between 3.7 and 4.9 years

old). Finally, only one individual suffered the first LEH more than one year before weaning

(with physiological stress events from 1.5 to 5.1 years of age). Six individuals did not suffer

LEH and 4 were not evaluated due to the absence of teeth.

The mean ages at the first and last LEH, despite their inter-individual variability, suggest

that, in Jabuticabeira II, the individuals suffered metabolic stress after weaning (mean weaning

age = 2.3 years; mean age of the first LEH = 3.02 years, SD = 0.83, n = 17; mean age of the last

LEH = 4.90 years, SD = 0.52, n = 17). The time of exposure to etiological factors in individuals

with LEH is variable (ranging between 0.3 and 3.6 years of age; mean = 1.9 years; SD = 1.10,

n = 17), without differences between sexes (S2 File).

The statistically significant correlations between the age at the first LEH, “LEH incidence

period” and the number of LEH (Table 4) suggest that individuals who start earlier with LEH

after weaning suffered longer LEH incidence periods and had more LEH events in absolute

numbers. All these significant correlations can be interpreted as long periods of recurrent

stress during childhood.

The age-at-death in adults (the mean age of each age-range) does not correlate with early

stress (age of weaning ρ = -0.145, p = 0.508; duration of the “period of LEH incidence” ρ =

-0.069, p = 0.824; number of LEH ρ = -0.231, p = 0.341). Instead, it is possibly more related to

acute or chronic aggressions experienced later in life, as the positive correlation between age-

at-death and PL suggest (ρ = 0.493, p = 0.038).

Only 6 juveniles were available for enamel LEH analysis (those with mixed dentition or

exposed teeth). As observed in adults, in all these juveniles LEH appears during weaning peri-

ods and lasts several months after the end of weaning (Fig 5).

Among 18 juveniles examined in Jabuticabeira II (Table 5), 10 presented CO (not-record-

able = 6) and 4 show PH (not-recordable = 0). All individuals who died before 1 year old

showed presence of CO (5/5 with available orbits). Among the 18 juveniles, 7 died after age 1

year and 5 out of these 7 show CO and PH. However, there was no significant difference

between ages-at-death <1 year and at> 1 year (CO: X2 = 1.397 p = 0.237; PH: X2 = 2.822

p = 0.092). PR and other signs of infection occurred in 3/18 individuals (not recordable = 0).

Only two out of 18 juveniles showed periostitis in more than one bone (died at age 1 and 4

years, respectively) and both cases are consistent with subacute inflammatory processes.

Among the 23 adults, 9 individuals showed CO (5/16 males; 4/7 females; not-recordable = 3)

and 14 showed PH (10/16 males and 4/7 females; not-recordable = 2). PR were observed in 11
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Table 3. Dental age, long bone lengths and estimated stature in juveniles from Jabuticabeira II (n = 18).

N

˚

Individual Dental age� Bone Length

(mm)

Range of long bones lengths (mm) Estimated stature

(cm)

% of adult femur

length attained��
Compatible with

stunting?

Ubelaker

1999

Gaither

2004

EUA 20th

century1
Arikara2 Andean3 Ruff 2007 Z-score

1 SEP 35A -

L2.05

6±3 m 6±2 m femur 77 79.4–118.2 62.5–

106.0

77.4–

131.0

55.93 ± 1.7 M =

-6.07

0.19 (0.23) Yes

F = -4.89

2 SEP 17D1—

L1.05

6±3 m 6±2 m humerus 65 79.9–91.6 63.5–89.0 67.0–81.6 ? - - Yes

3

SEP 17B-

L1.05

6±3 m 6±2 m humerus 82 79.9–91.6 63.5–89.0 67.0–81.6 ? M =

-2.03

- No

tibia 83 81.6–98.1 59.5–94.0 65.6–

103.0

64.70 ± 1.5 F = -1.10

4 SEP 41B -

L2.05

9±3 m 6±2 m humerus 72 - 84.0–

119.0

70.2–88.9 ? M =

-5.56

0.21 (0.26) Yes

femur 83 - 92.5–

161.0

92.0–

110.2

57.75 ± 1.7 F = -6.79

5 SEP 3F - L6 9±3 m 6±2 m humerus 75 - 84.0–

119.0

70.2–88.9 ? M =

-5.66

0.23 (0.26) Yes

femur 91 - 92.5–

161.0

92.0–

110.2

60.33 ± 1.6 F = -4.51

tibia 76 - 81.0–

131.5

77.4–93.0

6 SEP

115A-L6

9±3 m 6±2 m humerus 86 - 84.0–

119.0

70.2–88.9 ? M = 0.11 0.27 (0.26) No

femur 108 - 92.5–

161.0

92.0–

110.2

73.52 ± 1.5 F = 0.83

7 SEP 17D2—

L1.05

9±3 m 6±2 m radius 69 - 84.0–

104.0

55.0–72.2 69.33 ± 2.0 M =

-1.72

- No

F = -0.87

8 SEP 120—

L2.05

12±4 m 9±2 m humerus 100 97.3–112.1 84.0–

119.0

83.8–98.7 ? - - No

9 FS30—L1.70 12±4 m 9±2 m femur 100 128.0–

143.0

92.5–

161.0

104.5–

140.9

62.90 ± 1.7 M =

-5.40

0.25 (0.28) Yes

F = -4.31

10 SEP 17D -

L1.05

12±4 m 9±2 m femur 105 128.0–

143.0

92.5–

161.0

104.5–

140.9

64.42 ± 1.7 M =

-4.76

0.26 (0.28) Yes

F = -3.72

11 SEP BEBÊ -

L1/L2

12±4 m 9±2 m humerus 96 97.3–112.1 84.0–

119.0

83.8–98.7 ? M =

-2.98

0.29 (0.28) No

femur 116 128.0–

143.0

92.5–

161.0

104.5–

140.9

68.55 ± 1.6 F = -2.08

tibia 98 102.6–

117.4

81.0–

131.5

85.6–

101.5

12 SEP 35B -

L2.05

4yr ±12 m 3yr±11m femur 150 209.7–

238.4

208.0–

218.0

131.0–

180.0

81.71 ± 1.8 M =

-5.32

0.37 (0.46) Yes

tibia 120 168.5–

194.4

165.0–

176.0

109.0–

139.0

F = -5.04

13 SEP 101-

L2.05

4yr ±12 m 3yr±11m humerus 121 151.0–

171.2

154.0–

159.0

107.0–

136.5

86.95 ± 2.0 M =

-5.05

0.38 (0.46) Yes

femur 153 209.7–

238.4

208.0–

218.0

131.0–

180.0

82.84 ± 2.2 F = -4.78

(Continued)
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individuals (7/16 males and 4/7 females; not recordable = 0). The most frequent lesions found

were periostitis in long bones, but there are three cases of osteomyelitis with fistulae or cloacae
(two in a femur and one in a tibia). Abscesses and other maxillofacial infectious lesions (regard-

less of their etiology) occurred in 9 adults (7/12 males and 2/6 females; not recordable = 5).

There is a significantly higher proportion of juveniles (10/12) than adults (9/20) affected

by CO (X2 = 4.569, p = 0.032) in our sample. Curiously, PH was significantly more prevalent

(X2 = 7.704, p = 0.005) among adults (14/21) than juveniles (4/18).

Table 3. (Continued)

N

˚

Individual Dental age� Bone Length

(mm)

Range of long bones lengths (mm) Estimated stature

(cm)

% of adult femur

length attained��
Compatible with

stunting?

Ubelaker

1999

Gaither

2004

EUA 20th

century1
Arikara2 Andean3 Ruff 2007 Z-score

14 SEP

119A-L6

4yr ±12 m 3yr±11m humerus 139 151.0–

171.2

154.0–

159.0

107.0–

136.5

94.27 ± 2.0 M =

-2.25

0.47 (0.46) No

femur 189 209.7–

238.4

208.0–

218.0

131.0–

180.0

94.59 ± 1.8 F = -2.05

tibia 160 168.5–

194.4

165.0–

176.0

109.0–

139.0

15 SEP 16B -

L1.05

4yr ±12 m 3yr±11m humerus 133 151.0–

171.2

154.0–

159.0

107.0–

136.5

91.83 ± 2.0 M =

-3.53

0.44(0.46) Yes

femur 175 209.7–

238.4

208.0–

218.0

131.0–

180.0

89.21 ± 1.8 F = -3.30

tibia 141 168.5–

194.4

165.0–

176.0

109.0–

139.0

16 SEP 38—

L2.05

7yr ±24 m 6yr±20m humerus 160 190.0–

215.5

187.5–

204.0

161.0–

163.9

104.4 ± 2.8 M =

-3.59

0.55 (0.59) Yes

femur 220 273.0–

308.2

252.0–

274.0

183.8–

222.0

103.08 ± 1.9 F = -3.31

tibia 178 215.8–

253.8

212.0–

229.5

178.0–

186.0

17 SEP 10A-

L1.25

7yr ±24 m 6yr±20m humerus 190 190.0–

215.5

187.5–

204.0

161.0–

163.9

117.75 ± 2.8 M =

-1.10

0.65 (0.59) No

femur 261 273.0–

308.2

252.0–

274.0

183.8–

222.0

115.87 ± 1.9 F = -0.90

tibia 216 215.8–

253.8

212.0–

229.5

178.0–

186.0

18 SEP 104A -

L1.85

15yr±36m 12yr

±21m

humerus 250 - - 237.0–

257.0

144.10 ± 3.8 M =

-3.67

0.89 (0.97) Yes

femur 355 - 345.0–

368.0

329.0–

338.0

tibia 297 - 294.0–

319.0

264 140.24 ± 2.9 F = -3.11

� The dental aging method by Ubelaker [90] was used to classify Arikara [90] and Andean [100] individuals. Dental aging of Gaither [91] figures in this study as

reference due to the possibility of precocious dental eruption in our samples.
1Maresh [98] included bone lengths between 10th and 90th percentiles (in this case the mean value from males and females). The tables by Maresh do not include an age

category for around 9 months, nor data of individuals older than 12 years. In this research, the Maresh’s age cohort of 6m includes individuals between 0–6 months.
2Ubelaker [98] includes the complete variability range for each bone
3Vega [100] includes the complete variability range for each bone. The Ubelaker’s phase NB-0.5 yrs equals the phases Nac±2m and 6m±3m by Vega [100]; the phase

0.5–1.5 yr equals the phases 9m±3m and 12m±4m. The tables by Vega [100] are applicable without sexing.

�� % femur length attained [103] = individual femur length / average femur length of adults (pooled sample). In brackets the expected value calculated from Denver

Growth Study data [98].

https://doi.org/10.1371/journal.pone.0229684.t003
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Adults (14/21) also show significantly higher proportions (X2 = 9.854 p = 0.001) of PR than

juveniles (3/18). This can be related to the cumulative effect of recurrent metabolic insults dur-

ing adulthood, but also with more severe or chronic morbidity processes in juveniles that did

not allow the development of PR [7,11,14].

The results from adults in Jabuticabeira II are not entirely compatible with the statement

that individuals exposed to early-life stress and early weaning age present higher morbidity

and lower survival expectations. The Spearman’s coefficient did not detect significant correla-

tions between stress markers in any of the other comparative scenarios. Although this could be

the result of a sample size bias, it also agrees with the non-specific etiology of stress markers

outlined by other bioarchaeological studies [40,105].

Logistic Regression models performed in adults and juveniles were unable to demonstrate

predictive relationships between variables. The only significant model (S3 File) shows that

Table 4. Correlations between variables in adults from Jabuticabeira II (females and males pooled).

Z-scores of adult heights (by sex) vs. n Spearman’s ρ Sig. (2-tailed)

First LEH 13 -.350 .240

LEH incidence period 13 .223 .464

# LEH 19 -.052 .833

# stress markers in adulthood 23 -.259 .232

In females 7 -.764 .046

Age-at-death in adulthood 23 .409 .053

First LEH (adults) vs.

LEH incidence period 13 -.946 .001

in males 10 -.938 .001

in males 10 -.979 .001

# LEH 13 -.635 .020

# stress markers in adulthood 13 -.093 .763

Age-at-death in adulthood 13 -.003 .992

LEH incidence period (adults) vs.

# LEH 13 .765 .002

# stress markers in adulthood 13 .180 .557

Age-at-death in adulthood 13 -.069 .824

# LEH (adults)

# stress markers in adulthood 19 .367 .122

Age-at-death in adulthood 19 -.231 .341

Age-at-death in adulthood vs.

# Periapical lesions 23 .493 .038

Maximum number of stress markers vs.

Age-at-death in adulthood 23 .152 .489

Age-at-death in childhood 18 .384 .115

Weaning age vs.

# stress markers in adulthood 23 -.203 .304

# stress markers in childhood 18 -.617 .140

Age-at-death in adulthood 23 .145 .508

Age-at-death in childhood 18 .529 .222

#: number of. # stress markers in adulthood = maximum number of stress markers present per individual (the sum of

CO, HO, LEH, PR and PL).

https://doi.org/10.1371/journal.pone.0229684.t004
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adult short height is a significant predictor of age-at-death < 35 years (X2 = 6.964; p = 0.008;

R2 Nagelkerke = 0.350; OR = 14.400; CI (95%): 1.375–150.808).

Morbidity processes (CO, HP, PR and infectious diseases markers) in adults -“survivors”-

are frequent and could, in theory, be associated with the causes of death. The association, how-

ever, is not so clear: among those who exhibited two or more stress markers (13/23 individu-

als), three deaths occurred before age 35, and seven after age 35, while in the remaining three

cases it was not possible to define age of death.

Nevertheless, there is a significant negative correlation between adult height and adult mor-

bidity (the total number of stress markers) in females (ρ = -0.764 p = 0.046), which supports

Fig 3. Height-for-age in individuals from Jabuticabeira II in the WHO developmental charts. a) Male individuals aged 0–5 years; b) Female individuals aged 0–5 years;

c) Male individuals aged 5–19 years; d) Female individuals aged 5–19 years. Points show height-for-age when age-at-death was estimated according to Ubelaker [90] dental

chart. Arrows show height-for-age when age-at-death was estimated using the Gaither [91] chart. Red line: 2σ; Blue line: 3σ.

https://doi.org/10.1371/journal.pone.0229684.g003
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the idea of higher frailty in short height females (Table 5). This could be explained by sex-dif-

ferences in the distribution of labor (as suggested by activity markers) less access to protein by

women than men, among other unknown possible causes.

Discussion

Small data sets like the one used herein (41 juveniles and adults from the sambaqui Jabutica-

beira II) may constrain data interpretation, and therefore undermine straightforward conclu-

sions. However, they do not preclude valuable knowledge if used appropriately. The strength

of the approach used in the present study lies in the detailed osteobiographic integration of

multiple lines of evidence. However, because the sample is not large and complete enough to

support extensive generalizations, our interpretations should be considered with caution for

extrapolations.

In this study we aim to identify periods of higher vulnerability to health hazards and causes

of differential frailty among fisher-hunter-gatherers from Jabuticabeira II. The results indicate

that: 1) Jabuticabeira II adults are, in general, of relative short stature; 2) most of the juveniles

show statures suggestive of stunting; 3) early stress (LEH in adults and juveniles) is mainly

associated with the end of the weaning process or later childhood stages; 4) non-specific physi-

ological stress markers affect high proportion of juveniles and adults suggesting recurrent peri-

ods of stress along lifetime; 5) a high proportion of individuals who died during the juvenile

Fig 4. Physiological stress markers per individual in adults from Jabuticabeira II.

https://doi.org/10.1371/journal.pone.0229684.g004
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period (< 20 years) show cribra orbitalia and porotic hyperostosis; 6) in adults shorter stature

is correlated with higher morbidity; and finally, 7) shorter adult stature is a significant predic-

tor of early age-at-death.

“Stunting” and early stress

Establishing causes for the “short stature” observed in adults from Jabuticabeira II is difficult

because many South American indigenous groups (ethnographical and archeological) also

show short stature and a high prevalence of stunting [49,56,100]. Several ecological-adaptive

hypotheses (and several selective factors) have been postulated to explain the small body size

observed in these groups [106–108]. Considering the high heritability of body height, only

future paleogenetic research can clarify if the short stature observed was the result of popula-

tion wide stunting events or the outcome of genetic traits. However, our results suggest, given

the high prevalence of bone stress markers, that non-genetic factors such as malnutrition and

poor health conditions played an important role in the stature expression in Jabuticabeira II.

The juveniles of Jabuticabeira II show evidence consistent with stunting (short bone length,

lower limbs shorter than upper limbs, and short stature), always associated with physiological

stress. When we compare the lengths of the long bones of juveniles from Jabuticabeira II to

those of modern affluent populations, all individuals, with no exception, are either shorter or

at the lower end of the range of variability. When compared to Arikara and Andean individu-

als, our individuals cluster mainly at the lower limit of the range.

Fig 5. Physiological stress markers by individual in juveniles from Jabuticabeira II.

https://doi.org/10.1371/journal.pone.0229684.g005
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In the Jabuticabeira II individuals who died within their first year of life, height (and possi-

bly also weight) is variable, but always well below the median of the WHO reference curve

(HAZ� -2). This growth delay lasts until at least 3–4 years of age, the most sensitive period of

growth, when it is more difficult to recover the normal growth trajectory by catch-up growth

[49,56]. Some individuals died with more than one year of age, showing Z-scores inside the

expected range, could be the evidence of catch-up growth processes [56]. If stunting occurs up

to 4 years or later, which seems to be the case in most individuals from Jabuticabeira II, there

was no possibility of catch up growth and short adult stature would be an expected consequence.

However, some issues need to be raised. With or without environmental influences, there

will be variation in child growth when plotted by biological age, mainly in individuals below

Table 5. Osteobiographic aspects in juveniles from Jabuticabeira II (n = 18).

N

˚

Individual Dental age� Compatible with

Stunting?

Subadult diet Age at the end of

weaning

# LEH (age

range)

LEH

incidence†
CO PH PR

Ubelaker

1999

Gaither

2004

1 SEP 35A -

L2.05

6±3 m 6±2 m Yes breastfeeding,

supplementary?

not weaned nr CO

2 SEP 17D1—

L1.05

6±3 m 6±2 m Yes breastfeeding,

supplementary?

nd nr nr

3 SEP 17B-

L1.05

6±3 m 6±2 m No breastfeeding,

supplementary?

not weaned nr nr

4 SEP 41B -

L2.05

9±3 m 6±2 m Yes breastfeeding,

supplementary?

weaned? nr CO

5 SEP 3F - L6 9±3 m 6±2 m Yes breastfeeding,

supplementary?

not weaned nr nr

6 SEP 115A-L6 9±3 m 6±2 m No breastfeeding,

supplementary?

not weaned nr CO PH PR

7 SEP 17D2—

L1.05

9±3 m 6±2 m No breastfeeding,

supplementary?

not weaned nr nr

8 SEP 120—

L2.05

12±4 m 9±2 m No breastfeeding,

supplementary?

not weaned nr CO PR

9 SEP FS30—

L1.70

12±4 m 9±2 m Yes breastfeeding,

supplementary?

nd nr nr

10 SEP 17D -

L1.05

12±4 m 9±2 m Yes breastfeeding,

supplementary?

not weaned nr nr

11 SEP BEBÊ -

L1/L2

12±4 m 9±2 m No breastfeeding,

supplementary?

not weaned nr CO

12 SEP 35B -

L2.05

4yr±12 m 3yr±11m Yes marine ~3yr 2 (2.2–3.7) 1.5 CO PR

13 SEP 101-

L2.05

4yr±12 m 3yr±11m Yes terrestrial ~3yr 3 (2.8–4.0) 2.1 CO PH

14 SEP 119A-L6 4yr±12 m 3yr±11m No mixed ~3yr nr

15 SEP 16B -

L1.05

4yr±12 m 3yr±11m Yes mixed < 3yr no hypoplasia CO PH

16 SEP 38—L2.05 7yr±24 m 6yr±20m Yes mixed > 3yr? 2 (3.7–5.6) 0.5 CO

17 SEP 10A-

L1.25

7yr±24 m 6yr±20m No mixed > 3yr? no hypoplasia

18 SEP 104A -

L1.85

15yr±36m 12yr±21m Yes mixed < 3yr 6 (2.8–5.6) CO PH

�ND: individuals without isotopic data for weaning. NR: not recordable or teeth not-erupted. Mixed diet means a different diet from the marine diet typical for

Jabuticabeira II adults. CO: cribra orbitalia; PH: porotic hyperostosis; PR: periosteal reactions and bone infections.
†Maximum number of years between the first and last hypoplasia events according to Reid and Dean 2006 [67].

https://doi.org/10.1371/journal.pone.0229684.t005
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one year of age because of the high developmental variability within this age group. Reliable

methods to estimate age at death in this age-range are based on histological approaches [109]

that we did not use in this research, and caution is necessary when comparing archaeological

groups with data retrieved from modern populations [110]. Underestimated stature in all age

groups, especially in lower limbs, due to constraints of the methods is also possible [102].

On the other hand, the length of long bones from Jabuticabeira II juveniles, which are

shorter in comparison to reference populations, could also indicate precocious dental develop-

ment. Studies by Gaither [91] and Vega [100] have shown that the Ubelaker method [90]

underestimates dental age of South American Indians (which would present an earlier than

predicted dental eruption). Despite those considerations, the integration of so many different

lines of evidence leads to claim that most Jabuticabeira II juveniles analyzed herein show stat-

ures compatible with stunting.

What are the possible causes of the high proportion of deaths in stunted juveniles? There

are several factors related to stunting that could be among direct and indirect causes of death.

The number of juveniles with HAZ� 2SD in our sample is 72.7% (13/18). In most of the

reported ethnographic groups of Amazonian fisher-hunter-gatherers and horticulturists ana-

lyzed with the same WHO parameters the frequencies of diagnosed stunted children (� -2SD)

range from 20 to ~80% [49,56]. In all those extant populations, with either more or less inser-

tion to market systems, the HAZ mean was invariably negative in comparison to the reference

standards [49, 56, 109], and lower prevalence of stunting was associated with greater protein

intake [111]. In contrast, the available archaeological evidence does not support lack of protein

in Jabuticabeira II [25, 27]. This could indicate a genetic background for shorter statures as

possible cause. However, other markers suggest different explanations.

In Jabuticabeira II, the high prevalence of CO and PH (anemia-related markers), in chil-

dren who died before 1 year of age and were very small compared to their counterparts from

reference populations, suggest shortcomings in child feeding and parental investment strate-

gies, as well as increased exposure to environmental threats [112]. On the other hand, since a

proportion of all humans will die during the perinatal interval [53], the presence of bone

response to environmental challenges and delayed death in Jabuticabeira II children >1 year

old could be interpreted as a social ability to keep newborns alive despite stressors.

Adolescent or extremely malnourished pregnant women can generate low birth weight in

infants, who then show an increased risk of neonatal, perinatal or infant morbidity and mortal-

ity [40, 113]. Although mothers with nutritional deficiencies could transmit such depletions

during breastfeeding [72], in Jabuticabeira II these cases appear to be associated with extrinsic

factors and not to breastfeeding restrictions. Despite an expected intra-population variation of

isotope values, individuals� 1 year old revealed δ15N isotopic values compatible with breast-

feeding (up to 2σ above the mean values of the female population: [87]). However, recent pub-

lications show that high δ15N values from collagen (particularly from dentine) do not

necessarily reflect breastfeeding and may reflect maternal/infant stress [114–117]. Although

occur more frequently in children rather than adults [54], the presence of CO in most of

individuals� 1 year suggests a possible association between juvenile mortality and anemia-

producing factors (or stress of any etiology) and makes this hypothesis also plausible. Our

results do not suggest a unique etiology for CO and PH. Although both conditions appear in

juveniles and adults, CO is highly age-specific for young children [54:41,73]. The hypothesis

that CO is an early expression of the process that produces HP is disputable in Jabuticabeira II.

Several cases of CO are not concomitant with HP. According to Rivera and Lahr [75:92], asso-

ciations between CO and PH are likely related to anemias such as iron-deficiency, hereditary

or some acquired anemias, whereas CO only is related with anemia of chronic disease, anemia

of chronic renal failure (a very disputable etiology in this case), or scurvy.
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Considering the proximity to the Atlantic rainforest ecosystem, an environment rich in

fruiting trees, and anthracological evidence in Jabuticabeira II of many botanical species that

provide edible fruits rich in vitamin C [30:156], the diagnosis of scurvy seems unlike. Thus, the

most plausible etiology is anemia of chronic disease, related to bacterial, viral and parasitic

infections. The proposed etiology for PH, which appears mainly in adults, is anemia related

with iron deficiency or megaloblastic anemia produced by vitamin B12 and folic acid deple-

tions linked to chronic diarrheic diseases [72,75]. This etiology seems also plausible for the

adults of Jabuticabeira II.

The introduction of a supplementary diet based on marine resources [87] should not be

underestimated as a modulating factor for child morbidity-mortality. A marine diet could

have represented important risks in terms of parasitic and bacterial infection [118–121], espe-

cially in pre-ceramic times. In addition, archaeological evidence suggests that sambaqui popu-

lations were able to exploit their ecosystem with remarkable efficacy, allowing the

establishment of dense sedentary settlements [18,21]. Deficiencies in sanitation, agglomeration

of people and consumption of contaminated drinking water therefore cannot be ruled out as

explanations for stunting, anemia-related markers or premature death. That is due to the asso-

ciation of all these factors with chronic or recurrent gastrointestinal infections [47,51,121].

In Jabuticabeira II, the introduction of infectious agents along with the supplementary diet

seems to have had an immediate lethal effect in some individuals [63]. Considering an

expected delay between the introduction of infected foods and the period of effective deteriora-

tion of health, the age pattern of infant mortality approximately coincides with the introduc-

tion of the supplementary diet (between 4 and 6 months) and the adult diet (after 2–3 years),

as estimated by isotopic analyses [87]. A slow height growth throughout the first 3 years of life

can also be attributed to diets with low energetic quality, regardless of enough protein intakes

[122].

Supporting these inferences, LEH observed in adults and juveniles indicate that children of

both sexes were exposed to non-specific physiological stress factors between 1.5 and 5.6 years

of age, more severely between 2.5 and 4.8 years. Although is complex correctly correlate age at

death in juveniles (characterized by a 6 to 12 months of error) with the onset/end of a disrup-

tion of ameloblasts activity that is visible only after enamel maturation [67–69], a clear trend is

noticeable. In the cases examined in this study, LEH either begins a few months around the

end of weaning (10/17) or much later (7/17).

Considering that hypoplasias are more strongly associated with acute systemic infections

(with fever episodes [123:186;124]) than with malnutrition [125], those physiological stressors

possibly were infectious diseases such as diarrhea, gastrointestinal parasites, respiratory infec-

tions, and non-specific infant infections), maybe linked to the introduction of adult diet, poor

hygiene and fatal outcomes [40,51]. Thus, although a link between morbidity and mortality is

possible, the definitive causes of death in these children remain obscure, as in most archeologi-

cal human remains.

Evidence of a relation between infant malnutrition and LEH coincident with weaning pat-

terns has been reported for contemporary populations [71,126]. However, high frequencies of

LEH have also been reported for post-weaning ages in historical populations, suggesting that

hypoplasia reflect stress produced by the introduction of the adult diet or other nutritional

threats [40, 72, 127].

In summary, apart from some reservations about the accuracy of isotopically-determined

weaning ages and other potential confounding factors related with inter-individual variability

and the constrains of the methods used for age estimations [69, 100, 117], our results show

shared patterns among several individuals.
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The “intermittent stress of low lethality” model

Our data suggest that the juveniles from Jabuticabeira II would have experienced recurrent

periods of stress (possibly in the form of infectious, diarrheal and parasitic diseases) associated

with the introduction of a “high risk” diet (possibly contaminated marine food in form of sup-

plementary and adult diets). LEH recorded in adults indicate that the individual survived

early-life insults, whereas in juveniles LEH suggest an association with (unknown) cause of

death. In Jabuticabeira II, the “survivors” would have lived a life of recurrent periods of mor-

bidity (anemia, infections, and non-specific stress), most likely associated with the parasitic

burden of the ecosystem and limited sanitation as the main etiological factors, and less proba-

bly due to malnutrition.

It has been hypothesized that individuals with more stress episodes during childhood are

more prone to higher morbidity and early mortality [4,10,11,13], in agreement with the “plas-

ticity/constrain” model [4,15]. According to Temple [4], this model would be confirmed by a

negative correlation between the age at the first LEH and the number of LEH episodes, and by

a positive correlation between the age at the first LEH and age-at-death. In Jabuticabeira II the

influence of early stress in adult mortality has not been categorically proven and only the first

condition (recurrent early stress) was confirmed.

According to the Osteological Paradox, a positive correlation between high prevalence of

bone lesions and increased age would reflect increased resilience and low underlying relative

frailty [7,128]. CO and PH are most likely developed in the first few years of life, but their pres-

ence in adulthood (affecting between 70–90% of the entire population of Jabuticabeira II:

[104]), as active or healed lesions, suggest incidence of metabolic stress possibly related to

anemia.

In Jabuticabeira II, the only statistically significant correlation was detected between peria-

pical lesions and age-at-death. This suggests more frequent lesions in groups of older individu-

als, which is normally associated with less frailty [7]. However, pericapical lesions could be also

interpreted as age-related effect of poor oral health, linked to several idiosyncratic and/or local

conditions (carious lesions, severe dental wear, osteoporosis, underlying disease, etc.

[32,85,86]). This pattern was associated with more frailty in older ages in medieval dense pop-

ulations [129].

Based on our skeletal analyses, it is impossible to know if PR and infections were recurrent

or a one-time event, but some of them (multifocal periosteal reactions related with specific

infections such as treponematoses: [36]) suggest “chronicity” or “non-lethality” [7]. The cumu-

lative effect of these metabolic insults could be related to the premature or delayed death of

adults. However, we could also not categorically show this in our sample.

Adult mortality would also be modulated by life-threatening acute infections (for those

adults who exhibit osteomyelitis or even some potentially fatal dental abscesses), and other

imponderable causes, which are not necessarily traceable when analyzing bones. Infection

could have happened at any point in individual’s life.

Because we could not categorically prove the relation between early stress and premature

death, and higher morbidity (the sum of stress indicators in individuals) is apparently not

related to younger ages-at-death, the data obtained in this study are not entirely consistent

either with the “plasticity/constrain” model nor the “predictive adaptive response” model

[4,15,17]. Instead our data best fits to a model of “intermittent stress of low lethality”: the adap-

tation to recurrent metabolic insults of low impact that allows survival to reproductive age

with relative success, overcoming environmental aggressions in physiological, physical and

cognitive terms. This “intermittent stress of low lethality” is the new model we propose as

working hypothesis to be tested in populations similar to Jabuticabeira II.
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Jabuticabeira II individuals survive significant growth disorders, recurrent juvenile stressors

(possibly anemia-related factors more likely associated with infections linked to high parasitic

loads rather than malnutrition), and repetitive infections along their adult life, but not neces-

sarily die at earlier ages.

The adaptation to recurrent stressors of relative low lethality imposed by the environment,

although generous, does not disagree with previous studies that conclude that sambaqui
were constructed and inhabited by flexible, successful, stable and growing populations [18,

27]. The high amount of available protein, a stable environment and/or other unknown cul-

tural buffers could explain their relative individual success and the enormous longevity of their

culture.
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