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Abstract: Craniofacial development including palatogenesis is a complex process which requires an
orchestrated and spatiotemporal expression of various genes and factors for proper embryogenesis
and organogenesis. One such group of genes essential for craniofacial development is the homeobox
genes, transcriptional factors that are commonly associated with congenital abnormalities. Amongst
these genes, DLX4, HOXB3, and MSX2 have been recently shown to be involved in the etiology of
non-syndromic cleft lip and palate. Hence, we investigated the gene and protein expression of these
genes in normal and cleft affected mucosal tissue obtained from 22 children, along with analyzing
their role in promoting local-site inflammation using NF-κB. Additionally, we investigated the role of
PTX3, which plays a critical role in tissue remodeling and wound repair. We found a residual gene
and protein expression of DLX4 in cleft mucosa, although no differences in gene expression levels of
HOXB3 and MSX2 were noted. However, a significant increase in protein expression for these genes
was noted in the cleft mucosa (p < 0.05), indicating increased cellular proliferation. This was coupled
with a significant increase in NF-κB protein expression in cleft mucosa (p < 0.05), highlighting the
role of these genes in promotion of pro-inflammatory environment. Finally, no differences in gene
expression of PTX3 were noted.

Keywords: cleft lip and palate; inflammation; immunohistochemistry; in-situ hybridization; HOXB3;
DLX4; MSX2; PTX3

1. Introduction

The processes of embryogenesis, organogenesis, and subsequent cell differentiation
are highly regulated and tightly controlled by multiple genes which are expressed in an
orchestrated manner in different tissues. Homeobox genes are one such group which are
deeply involved in embryonic patterning and cell differentiation. These genes possess
a specific DNA sequence called the “homeobox” which encodes for proteins called the
“homeodomains” [1–3]. Homeodomains, when expressed, recognize, and bind to specific
DNA sequences which allows them to regulate the expression of other genes and control
the process of organogenesis [4]. Due to their role and functionality as a transcription
factor, several homeobox genes have been associated with congenital abnormalities [5].
About 230 homeobox genes have been discovered in the human genome [6,7] which are
classified into gene families (containing similar genes), which are further clustered into
11 gene classes (containing similar families) [3]. The largest and most relevant gene class
for craniofacial development is perhaps the ANTP (Antennapedia) class, comprising of
37 gene families divided into two subclasses based on the chromosomal location of the
genes—HOXL and NKL. The HOXL (HOX-linked) subclass consists of 14 gene classes
which are concentrated in two fourfold paralogous regions while the NKL (NK-linked)
subclass consists of remaining 23 gene classes which are rather more dispersed [3].
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Within the NKL subclass, two gene families—DLX (Distal-Less homeobox) and MSX
(Muscle segment homeobox homolog/Msh homeobox) have been implicated in non-
syndromic cleft lip and palate. Amongst the DLX family, the DLX4 gene is one of the latest
genes which have been shown to play a role in clefting. The gene has been shown in murine
models to be expressed in the mesenchyme derived from neural crest cells in the mandibular
arch, the lower jaw primordia [8]. In human tissues, the gene expression quantification and
identification has proven to be difficult due to non-expression in normal adult tissues [9].
However, the gene has been found to be expressed in different cancer cells including cells
from breast [10], lung [11], prostatic [12] and colorectal cancer [13]. Additionally, in two
recent studies, the gene has been associated with both non-syndromic [14] and syndromic
forms of cleft lip and palate [15].

In the MSX family, mutations in the MSX2 gene have been shown to be associated with
clefting in the Brazilian population [16]. Furthermore, in a sequencing study, point muta-
tions in the MSX2 gene were found to be common amongst patients with bilateral cleft lip
and palate and with a positive family history [17]. The gene expression is usually detectable
by the middle of the seventh embryonic week in the mandibular and maxillary bone primor-
dia, Meckel’s cartilage, and primordial tooth germs [18,19]. Moreover, the gene is essential
for skeletal bone growth and differentiation since the overexpression of the gene impedes
osteoblast differentiation while antisense inhibition promotes differentiation [19–21]. The
HOXB3 (homeobox B3) gene, another candidate gene for non-syndromic cleft lip and palate,
is a member of the HOX3 family (part of the HOXL subfamily) that has been shown to
transcriptionally regulate the expression of JAG1 gene (Jagged Canonical Notch Ligand
1) in a synergistic manner during pharyngeal arch development [22]. Furthermore, the
co-expression of HOXB3 and JAG1 has been demonstrated to affect the migration of the
neural crest cells into the pharyngeal arches, which leads to neural crest deficiency and
craniofacial defects [22].

Mutations and disruptions in the spatiotemporal expression of the above genes leads
to incomplete development of the orofacial structures which in turn disrupts the function-
ing of the immune system and reparative processes [23]. Such disruption promotes local
site inflammation due to an imbalance of the cytokines (pro vs. anti) which hinders normal
tissue remodeling during wound healing [24]. Additionally, proinflammatory cytokines
like IL17 and IL6, regulatory cytokine IFN-γ (interferon gamma) and anti-inflammatory
cytokine IL4 modulate immunosteogenesis by actively participating in the process of
osteogenesis [23]. Children with cleft lip and palate show disturbances in the immunos-
teogenesis during embryogenesis which affects the characteristics and the course of the
disease postnatally [25]. These disturbances also create certain difficulties in the rehabili-
tation of such patients, which makes it essential to investigate the role of the gene-gene
interactions, especially between causative genes and cytokine regulators. In one of our
previous studies with the same cohort as in the current study, we showed the precise
imbalance in the cytokine expression in the cleft mucosal tissue [26]. We reported an
increase and constant expression of pro-inflammatory cytokines like IL-2,6,13 and TNF-α
(tumor necrosis factor) which are known to stimulate osteogenesis. This was coupled
with a decrease in anti-inflammatory cytokines like IL-4 and IL-10, which are known to
downregulate osteogenesis. Interestingly, a strong correlation between IL-6 and IFN-γ
gamma expression was noted, which indicated preferential Th1 pathway activation [26].
However, in the previous study we didn’t investigate the role of the master regulator of
cytokine expression—NF-κB (Nuclear Factor Kappa Beta).

NF-κB is a family of five inducible transcription factors (p50/p105, p52/p100, p65 or
RelA, c-Rel, and RelB) which regulates the immune and inflammatory responses [27,28].
These transcriptional factors are normally sequestered in the cytoplasm by a family of
inhibitory proteins called IκB family members [29] and can be activated by two pathways—
classical or canonical pathway and alternative or non-canonical pathway. In the classical
pathway, when cells are stimulated by agents like inflammatory cytokines (TNF-α and IL-1),
growth factors, mitogens, microbial components, and stress, IκB undergo phosphorylation
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which frees NF-κB (predominantly p50/RelA and p50/c-Rel dimers) to translocate into
the nucleus and bind to specific DNA sequences [30,31]. In the non-classical pathway,
very specific stimulants (ligands of a subset of tumor necrosis factor receptor superfamily
members) stimulates p100, the NF-κB2 precursor protein [29,32]. The stimulants lead
to phosphorylation and ubiquitination of p100, which then leads to the formation of a
heterodimer of RelB/p52 which also translocate into the nucleus.

Finally, the soluble pattern recognition receptor PTX3 (long-pentraxin 3) has been gain-
ing traction and attention for the role it plays in innate immunity, tissue remodeling, and tu-
morigenesis. Like NF-κB, PTX3 expression is also inducible by the same pro-inflammatory
cytokines (whilst being downregulated by IL-4) in a variety of different cell types, includ-
ing fibroblasts and endothelial cells, myeloid cells such as monocytes, macrophages, and
dendritic cells (DCs), adipocytes, epithelial cells etc. [33–35]. In fact, epigenetic studies
have demonstrated that NF-κB (especially RelA) binds specifically to an upstream enhancer
(called Enhancer 2) of the PTX3 gene after TNF-α stimulation in macrophages, highlighting
the regulatory connection between the two [36]. Apart from mediating inflammatory re-
sponses, PTX3 is heavily involved in the FGF/FGFR (fibroblast growth factor/FGF receptor)
pathways [37]. It is known that PTX3 possess FGF2-binding and inhibitory capacity (basic
fibroblast growth factor/bFGF) which confers it anti-angiogenic properties [38,39]. In our
last study (again, with the same cohort as the present study) we showed that FGF2 was
over-expressed in cleft mucosal tissue and hypothesized on the possible interaction and
role of PTX3 in cleft tissue [40].

Hence, in the present study, we investigated the gene (using CISH—chromogenic
in-situ hybridization) and protein (using IHC—immunohistochemistry) expression of
three recently implicated homeobox genes (DLX4, MSX2, and HOXB3) in normal and
cleft affected mucosal tissue. Further, we investigated the interactions of these genes with
NF-κB to understand the underlying mechanisms of local-site inflammation. Addition-
ally, we aimed to understand the role and interactions of PTX3 in cleft-affected mucosal
tissue, providing us with better insights in the pathogenesis and manifestations of cleft lip
and palate.

2. Results
2.1. Gene and Protein Expression Analysis of DLX4 Gene in Control and Cleft Tissue

Since DLX4 is not expressed in normal adult tissues [9], the CISH assay also showed no
positive results in the control tissues (Figure 1C). However, in the cleft mucosal tissue, gene
expression was detectable by CISH, though no gene amplification was seen (Figure 1D).
In terms of protein expression, as expected controls again showed no positive IHC results
(Figure 1A; Supplementary Table S1) whilst the cleft affected mucosal samples showed a
significant increase in protein expression in both epithelium (p = 0.000) and connective tis-
sue cells (p = 0.001) with a mean IHC semi-quantitative grade of 1.7+ and 1.6+, respectively
(Figure 1B and Table 1; one-sample Wilcoxon signed rank test). No significant differences
in terms of protein expression were observed between epithelium and connective tissue
cells in cleft tissue (p = 0.565; paired Wilcoxon signed rank test).

2.2. Gene and Protein Expression Analysis of HOXB3 Gene in Control and Cleft Tissue

There were no notable differences in the genetic expression of HOXB3 between normal
and cleft affected mucosa. In both the tissues, all cell types (epithelial, endothelium
and connective tissue cells) showed no gene amplification though gene expression was
noted (Figure 2C,D; Supplementary Table S2). In terms of protein expression, like DLX4,
controls showed no protein expression (Figure 2A; IHC). However, in the cleft tissue,
there was a significant increase in protein expression in both epithelium (p < 0.001) and
connective tissue cells (p < 0.001) with a mean IHC semi-quantitative grade of 2.1+ and
1.1+, respectively (Figure 2B and Table 1; Mann-Whitney U test). Further, epithelial cells
showed a significantly higher expression of HOXB3 when compared with connective tissue



J. Pers. Med. 2021, 11, 1135 4 of 19

cells in the cleft tissue in terms of protein expression (p = 0.000; paired Wilcoxon signed
rank test).
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Figure 1. Expression of DLX4 gene visualized using IHC and CISH methods in controls and cleft patients. Protein expres-
sion of the DLX4 gene was visualized using immunohistochemistry (IHC) in (A) controls and (B) cleft affected children. 
(A) No positively stained (0) structures are visible in tissue obtained from controls; (B) Moderate number (++) of weakly 
stained epitheliocytes and distinctly stained connective tissue cells are seen in the cleft tissue obtained from a five-month-
old girl. Original magnification, 200×. Gene amplification levels of DLX4 gene was visualized using chromogenic in-situ 
hybridization (CISH) in (C) controls and (D) cleft affected children. (C) No gene expression and amplification (0) are seen 
in the tissue obtained from controls; (D) No gene amplification (0) is seen; however, gene expression is seen by brown 
dots in the nucleus of the epithelium and endothelium cells in the cleft tissue obtained from an eight-month-old boy. 
Original magnification, 1000×. Red star indicates epithelium; green star indicates connective tissue, while purple star in-
dicates endothelial cells. 

Table 1. Average semi-quantitative score of the results obtained from IHC and CISH. 

Groups 
Immunohistochemistry (IHC) Chromogenic In-Situ Hybridization (CISH) 

DLX4 HOXB3 MSX2 NF-κB DLX4 HOXB3 MSX2 PTX3 
Controls 

Epithelium 0 0 0 0 ND * 0 0 0 
Connective Tissue 0 0 0 0 ND * 0 0 0 

Endothelium NT NT NT NT ND * 0 0 0 
Cleft affected children 

Epithelium 1.7+ 2.1+ 1.4+ 1.7+ 0 0 0 0 
Connective Tissue 1.6+ 1.1+ 0.6+ 1.1+ 0 0 0 0 

Endothelium NT * NT * NT* NT * 0 0 0 0 
* NT stands for not tested while ND stands for not determined (refer to Supplementary Tables S1 and S2 for interpretation). 
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There were no notable differences in the genetic expression of HOXB3 between nor-

mal and cleft affected mucosa. In both the tissues, all cell types (epithelial, endothelium 
and connective tissue cells) showed no gene amplification though gene expression was 

Figure 1. Expression of DLX4 gene visualized using IHC and CISH methods in controls and cleft patients. Protein expression
of the DLX4 gene was visualized using immunohistochemistry (IHC) in (A) controls and (B) cleft affected children. (A) No
positively stained (0) structures are visible in tissue obtained from controls; (B) Moderate number (++) of weakly stained
epitheliocytes and distinctly stained connective tissue cells are seen in the cleft tissue obtained from a five-month-old
girl. Original magnification, 200×. Gene amplification levels of DLX4 gene was visualized using chromogenic in-situ
hybridization (CISH) in (C) controls and (D) cleft affected children. (C) No gene expression and amplification (0) are seen in
the tissue obtained from controls; (D) No gene amplification (0) is seen; however, gene expression is seen by brown dots
in the nucleus of the epithelium and endothelium cells in the cleft tissue obtained from an eight-month-old boy. Original
magnification, 1000×. Red star indicates epithelium; green star indicates connective tissue, while purple star indicates
endothelial cells.

Table 1. Average semi-quantitative score of the results obtained from IHC and CISH.

Groups Immunohistochemistry (IHC) Chromogenic In-Situ
Hybridization (CISH)

DLX4 HOXB3 MSX2 NF-
κB DLX4 HOXB3 MSX2 PTX3

Controls
Epithelium 0 0 0 0 ND * 0 0 0

Connective Tissue 0 0 0 0 ND * 0 0 0
Endothelium NT NT NT NT ND * 0 0 0

Cleft affected children
Epithelium 1.7+ 2.1+ 1.4+ 1.7+ 0 0 0 0

Connective Tissue 1.6+ 1.1+ 0.6+ 1.1+ 0 0 0 0
Endothelium NT * NT * NT* NT * 0 0 0 0

* NT stands for not tested while ND stands for not determined (refer to Supplementary Tables S1 and S2 for
interpretation).
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from controls; (D) No gene amplification (0) is seen; however, gene expression is seen by brown dots in the nucleus of the 
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fication, 1000×. Red star indicates epithelium; green star indicates connective tissue, while purple star indicates endothelial 
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2.3. Gene and Protein Expression Analysis of MSX2 Gene in Control and Cleft Tissue 
As with HOXB3, no notable differences in genetic expression of MSX2 between nor-

mal and cleft affected mucosa was noted in any of the cell types (Figure 3C,D; Supplemen-
tary Table S2). In terms of protein expression, like the other two homeobox genes, no ex-
pression was visualized in controls using IHC (Figure 3A). However, there was a signifi-
cant increase in protein expression in both epithelium (p = 0.000) and connective tissue 
cells (p = 0.010) in cleft tissue with a mean IHC semi-quantitative grade of 1.4+ and 0.6+, 
respectively (Figure 3B and Table 1; Mann-Whitney U test). Further, there were significant 

Figure 2. Expression of HOXB3 gene visualized using IHC and CISH methods in controls and cleft patients. Protein
expression of the HOXB3 gene was visualized using immunohistochemistry (IHC) in (A) controls and (B) cleft affected
children. (A) No positively stained (0) structures are visible in tissue obtained from controls; (B) Moderate number (++)
of weakly stained epitheliocytes and connective tissue cells are seen in the cleft tissue obtained from a five-month-old
girl. Original magnification, 200×. Gene amplification levels of HOXB3 gene was visualized using chromogenic in-situ
hybridization (CISH) in (C) controls and (D) cleft affected children. (C) No gene amplification (0) is seen in the tissue
obtained from controls; (D) No gene amplification (0) is seen; however, gene expression is seen by brown dots in the nucleus
of the epithelial, endothelial, and connective tissue cells in the cleft tissue obtained from a three-month-old girl. Original
magnification, 1000×. Red star indicates epithelium; green star indicates connective tissue, while purple star indicates
endothelial cells.

2.3. Gene and Protein Expression Analysis of MSX2 Gene in Control and Cleft Tissue

As with HOXB3, no notable differences in genetic expression of MSX2 between normal
and cleft affected mucosa was noted in any of the cell types (Figure 3C,D; Supplementary
Table S2). In terms of protein expression, like the other two homeobox genes, no expression
was visualized in controls using IHC (Figure 3A). However, there was a significant increase
in protein expression in both epithelium (p = 0.000) and connective tissue cells (p = 0.010)
in cleft tissue with a mean IHC semi-quantitative grade of 1.4+ and 0.6+, respectively
(Figure 3B and Table 1; Mann-Whitney U test). Further, there were significant differences
noted in protein expression between the epithelium and connective tissue cells in cleft
tissue (p = 0.003; paired Wilcoxon signed rank test).
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rank test revealed no significant differences between NF-κB expression in epithelial and 
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Figure 3. Expression of MSX2 gene visualized using IHC and CISH methods in controls and cleft patients. Protein expression
of the MSX2 gene was visualized using immunohistochemistry (IHC) in (A) controls and (B) cleft affected children. (A) No
positively stained (0) structures are visible in tissue obtained from controls; (B) Moderate number (++) of weakly stained
epitheliocytes and endotheliocytes are seen in the cleft tissue obtained from a six-month-old girl. Original magnification,
200×. Gene amplification levels of MSX2 gene was visualized using chromogenic in-situ hybridization (CISH) in (C)
controls and (D) cleft affected children. (C) No gene amplification (0) is seen in the tissue obtained from controls; (D) No
gene amplification (0) is seen; however, gene expression is seen by brown dots in the nucleus of the epithelial, endothelial,
and connective tissue cells in the cleft tissue obtained from a five-month-old boy. Original magnification, 1000×. Red star
indicates epithelium; green star indicates connective tissue, while purple star indicates endothelial cells.

2.4. Protein Expression Analysis of NF-κB in Control and Cleft Tissue

For NF-κB, control tissues showed no protein expression (Figure 4A), while there
was a significant increase in the expression in cleft tissue (Figure 4B) in both epithelial
(p = 0.0001) and connective tissue cells (p = 0.003), with a mean IHC semi-quantitative
grade of 1.7+ and 1.1+, respectively (Table 1; Mann-Whitney test). A paired Wilcoxon
signed rank test revealed no significant differences between NF-κB expression in epithelial
and connective tissue cells in the cleft tissue (p = 0.051).

2.5. Gene Expression Analysis of PTX3 Gene in Control and Cleft Tissue

For PTX3, no changes in gene amplification or expression were noted between the
control and cleft tissue (Table 1; Supplementary Table S2). All three cell types—epithelial,
connective tissue, and endothelial cells showed equal expression of PTX3 gene in both
tissues (Figure 5A,B, respectively).
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between epithelial expression of DLX4 and HOXB3 in cleft tissue (ρ = 0.472; p = 0.044). 
Similarly, a significant moderate positive correlation between connective tissue expres-
sion of HOXB3 and NF-κB was noted (ρ = 0.455; p = 0.028). Interestingly, epithelial cells 
showed a non-significant strong negative correlation between HOXB3 and NF-κB (ρ = 
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Figure 4. Expression of NF-κB protein complex visualized using IHC in controls and cleft patients. Protein expression
of NF-κB was visualized using immunohistochemistry (IHC) in (A) controls and (B) cleft affected children. (A) No
positively stained (0) structures are visible in tissue obtained from controls; (B) Moderate number (++) of positively stained
inflammatory cells are seen in the cleft tissue obtained from a three-month-old boy. Original magnification, 200×. Red star
indicates epithelium while green star indicates connective tissue.
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Figure 5. Expression of PTX3 gene visualized using CISH in controls and cleft patients. Gene amplification levels of the
PTX3 gene was visualized using chromogenic in-situ hybridization (CISH) in (A) controls and (B) cleft affected children.
(A) No gene amplification (0) is seen in the tissue obtained from controls; (B) No gene amplification (0) is seen; however,
gene expression is seen by brown dots in the nucleus of the epitheliocytes and connective tissue cells in the cleft tissue
obtained from a five-month-old girl. Original magnification, 1000×. Red star indicates epithelium; green star indicates
connective tissue, while purple star indicates endothelial cells.

2.6. Correlation between Protein Expression of Homeobox Genes and NF-κB (IHC)

Correlation analysis (Figure 6) revealed a significant positive moderate correlation
between epithelial expression of DLX4 and HOXB3 in cleft tissue (ρ = 0.472; p = 0.044).
Similarly, a significant moderate positive correlation between connective tissue expression
of HOXB3 and NF-κB was noted (ρ = 0.455; p = 0.028). Interestingly, epithelial cells showed
a non-significant strong negative correlation between HOXB3 and NF-κB (ρ = −0.586;
p = 0.102), indicating the differential expression and correlations between different types of
cells in the cleft tissue.
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3. Discussion
3.1. DLX4 Overexpression Leads to Increased Cellular Proliferation and Chronic Tissue Inflammation

Studies in mouse models have demonstrated that DLX4 is expressed in the mesenchy-
mal tissue of the maxilla just prior to the time of palatal closure [14]. The expression levels
then undergo significant reduction at later stages of palatal closure, highlighting the crucial
regulatory role played by the gene in palatogenesis [14]. Additionally, the DLX genes have
been shown to be closely related to normal tooth development. In a study on dental pulp
cells isolated from human wisdom teeth (which are still under development after birth),
the authors reported the presence of a high expression of DLX4 in crown completed and
root completed stages of odontogenesis [41].

Apart from the oral cavity, DLX4 expression has been hugely discussed in the context
of the human placenta and endometrium. The expression of the gene has been reported
to be differentially elevated in the proliferative human endometrium, especially in the
epithelium cells, which then reduces during the secretive phase [42]. This is quite inter-
esting since a similar analogy can be attributed during palatogenesis, with preferential
expression of DLX4 in the epithelium cells (as reported in our results as well). Additionally,
ectopic (or residual in case of clefting) expression of DLX4 has been shown to increase
cell proliferation by the inhibition of TGF-β/Smad signaling in cells, thereby causing p15
and p21 expression inhibition [9,43], which correlates with our previous findings whereby
we found an increased detection of the proliferative marker Ki-67 [44], coupled with a
pathological reduction in TGF-β1 expression in the cleft mucosa (Figure 7) [26].
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ing, and wound repair. In terms of inflammation regulation, DLX4 interacts directly with 
IL-1β that further leads to the downstream stimulation of NF-κB [49,50]. Moreover, IL-1β 
and NF-κB axis furthers stimulates multiple other targets including IL-6 and IL-8 (Figure 
7) [51]. In the present study we also found an elevated NF-κB protein expression, which 
can be coupled with our previous results where we reported an elevated and consistent 
expression of IL-6 and elucidated its pro-inflammatory role in cleft tissue [26]. Addition-
ally, stimulation of NF-κB by IL-1β and TNF-α causes suppression of TGF-β/Smad signal-
ing which further exacerbates the pro-inflammatory environment [52]. 

Interestingly, interactions between DLX4 and bFGF/FGF2 have been reported in ovar-
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and high molecular weight isoforms of FGF2 (Figure 7) which in turn stimulate VEGF 
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Figure 7. Protein-protein interactions between candidate genes and cytokines in non-syndromic
cleft palate and lip. A non-comprehensive simplified overview of the protein-protein interactions
as obtained using STRING (adapted and modified from https://www.string-db.org/, accessed
on 28 September 2021) is shown. Light blue bubbles indicate cytokines, green bubbles indicate
proteins encoded by homeobox genes, orange bubbles indicate FGF/FGFR pathway proteins, pink
bubbles indicate FOX pathway proteins, dark blue bubble indicates Ephrin A1 while yellow bubble
indicates the PTX3 protein. Solid lines indicate interactions obtained from STRING database. Dashed
lines indicate potential interactions obtained from literature. Arrow heads indicate the direction of
interaction. Crossed head indicate negative regulation.

While DLX4 gene expression has been associated with stimulatory effects on cell mo-
bility, migration, and invasion abilities in breast tumor and preeclampsia placenta [45,46],
other lung cancer studies have shown the opposite [47], which makes it difficult to elucidate
its role in cleft tissue. Future studies investigating this role may prove to be instrumental in
understanding neural crest cell migration patterns and regulation. Furthermore, the gene
has been shown to be in involved in epithelial-mesenchymal transition (EMT) whereby
the epithelial cells lose their polarity and assume a mesenchymal phenotype [46,48]. Such
transition is necessary for normal embryonic development, tissue remodeling, and wound
repair. In terms of inflammation regulation, DLX4 interacts directly with IL-1β that further
leads to the downstream stimulation of NF-κB [49,50]. Moreover, IL-1β and NF-κB axis
furthers stimulates multiple other targets including IL-6 and IL-8 (Figure 7) [51]. In the
present study we also found an elevated NF-κB protein expression, which can be coupled
with our previous results where we reported an elevated and consistent expression of IL-6
and elucidated its pro-inflammatory role in cleft tissue [26]. Additionally, stimulation of
NF-κB by IL-1β and TNF-α causes suppression of TGF-β/Smad signaling which further
exacerbates the pro-inflammatory environment [52].

Interestingly, interactions between DLX4 and bFGF/FGF2 have been reported in ovar-
ian cancer tissue. DLX4 has been shown to directly stimulate expression of both the low
and high molecular weight isoforms of FGF2 (Figure 7) which in turn stimulate VEGF (vas-
cular endothelial growth factor) and promote an angiogenetic environment [53]. We also
reported an increase in FGF2 expression in cleft tissue [40] which can lead to accelerated

https://www.string-db.org/
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wound healing (FGF2 can further promote EMT and wound closure). Another possible
pathway for angiogenetic promotion has been postulated by the means of DLX4 induced
expression of iNOS (inducible nitric oxide synthetase) [54]. This promotion of angiogenetic
and pro-inflammatory environment by DLX4 gives it a rather unusual protective role in
the cleft tissue.

Finally, a regulatory mechanism between TGF-β and DLX4 has been reported. In-
duction of TGF-β1 has been shown to reduce DLX4 levels in human dental pulp cells,
which leads to impaired iPSC (induced pluripotent stem cells) generation [41]. These
findings are quite interesting, since we suspect the loss (or significant reduction) of TGF-β
expression (which could be due to non-attenuation of DLX4 expression at the time of
palatal closure) leads to sustained residual expression of DLX4, which ironically suppresses
TGF-β signaling even more, thereby creating an auto-sustained loop (Figure 7).

3.2. Overexpression of HOXB3 Co-Stimulates Cellular Proliferation and Angiogenesis

The HOXB3 gene has been implicated in the promotion of angiogenesis via upregu-
lating the expression of Ephrin A1 (EFNA1; Figure 7) and is needed to induce capillary
morphogenesis in the endothelial sprouts [55]. Interactions between the EFNA1 and
FGF/FGFR pathways have been shown by many authors in the past [56–58], which would
make it an interesting link to investigate in the context of the cleft lip and palate. The
expression of HOXB3 has also been implicated in the hematopoietic pathways, wherein its
expression is significantly higher in primitive CD34+ cells, which eventually gets downreg-
ulated as the cells differentiate into committed progenitors [59]. In a study in knockout
mice, the authors demonstrated that the HOXB3 gene plays a direct physiological role in
regulating stem cell regeneration in which its expression was critical to the achieving of
maximum proliferation rates of these progenitor cells [60].

This role of HOXB3 in controlling cell proliferation has also been established in the
context of cleft lip and palate. In a study on regulatory network analysis of cleft genes,
Li et al., reported that HOXB3 was enriched in the process of positive regulation of cell
division, which is an important process in lip development [61]. Furthermore, the authors
found that the downstream targets of the gene were involved in the wound healing
processes and in the positive regulation of transcription from RNA polymerase II promoter,
processes which are critical for palatogenesis [61].

Although in our study we found no significant differences in the genetic expression of
the gene, protein expression analysis using IHC did show us a significant increase in the
expression levels in cleft tissue. A critical moment in lip formation occurs just before the
completion of the upper lips whereby the lateral nasal processes show a heightened session
of cell division [62,63]. Disturbances in this process can result in clefting. Since both HOXB3
and DLX4 appear to accelerate cell proliferation, it is interesting to find a moderate positive
correlation between the expression of the two genes in the cleft epithelial tissue, indicating
some underlying signaling between the two genes which requires further investigation.

3.3. MSX2 Overexpression Causes Disturbances in Normal Tooth and Bone Development

In odontogenesis (formation of teeth), amelogenesis is a key process through which
the enamel is formed. For successful amelogenesis to occur, dentinogenesis (formation of
dentin) must occur. A precursor event to both these processes is the interaction between the
epithelial and mesenchymal cells that allows the former to differentiate into ameloblasts
which produce the enamel while the later differentiates into odontoblasts which produce the
dentin [64,65]. Multiple case reports have been published showcasing the high prevalence
of tooth anomalies in cleft affected children [66–68]. In cleft children predominantly enamel
defects have been reported in the maxillary permanent central incisors which are adjacent
to the clefts, with the intensity of defects correlating strongly with the severity of the
clefting [66–68]. Studies in mice and humans have shown that silencing of the MSX2 gene
due to mutations leads to amelogenesis imperfecta [69–71]. Furthermore, overexpression
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of MSX2 also leads to dental anomalies [72], which highlights the crucial role of the gene
in cleft patients.

Apart from its role in tooth development, MSX2 also plays a crucial role in bone
formation. Overexpression of MSX2 (as seen in our study using IHC) caused by sustained
TNF-α levels (shown in previous study; Figure 7) [26] leads to NF-κB activation which
in turn inhibits the bone morphogenetic protein 2 (BMP2)-induced expression of alkaline
phosphatase (ALP) enzyme [73], thereby hindering bone formation. Interestingly, in
another study we found a statistically significant decrease in BMP2 and BMP4 expression
in bilateral cleft lip and palate tissue [74], which highlights the role of MSX2 in alveolar bone
regeneration and the remodeling process. Additionally, interactions between MSX2 and
FGF2 in bone formation abnormalities have also been reported [75,76]. In a study in mouse
mammary epithelial cells, Bari et al., demonstrated that MSX2 expression downregulated
epithelial marker E-cadherin expression and caused an upregulation of the mesenchymal
markers vimentin and N-cadherin [77]. Furthermore, the authors showed that MSX2
promoted EMT in epithelial cells [77], which is essential during midline fusion of the
palatal shelves.

3.4. Overexpression of NF-κB Promotes Chronic Inflammation and Bone Resorption

Apart from the known role of NF-κB in inflammation promotion, it has also been
implicated in other processes seen in cleft patients. Bone formation and maintenance
is a dynamic process that is under the regulatory control of various factors. While we
noted previously an increase in FGF/FGFR pathways [40] which promote osteoblast dif-
ferentiation, a chronic inflammatory state coupled with decrease in BMPs and TGF-β1/3
expression [26,74] usually results in greater bone resorption in cleft patients. This process
is further compounded by an increase in the NF-κB expression due to activation of the
classical pathway by TNF-α, IL-1β, IL-6, and IL-17 produced by T cells and other cells, all
of which have been reported to be elevated in cleft tissue [26].

Like MSX2, NF-κB overexpression has also been associated with dental anomalies. In
a study using the mice model, Blackburn et al., showed that NF-κB overexpression induces
an ectopic odontogenesis program that is usually suppressed under physiological condi-
tions [78]. Furthermore, they found that mice overexpressing NF-κB show supernumerary
teeth [78], a complication which was found to be the third most common dental anomaly
affecting as much as 16% of cleft affected children [79].

3.5. PTX3 Overexpression can Lead to Dysregulated Wound Healing

The pentraxins are a large highly conserved superfamily of pattern recognition pro-
teins that are major components of the humoral arm of the innate immune system [80].
The commonly known pentraxins include the C-reactive protein (CRP) and serum amyloid
P component (SAP), both of which unlike PTX3, are short pentraxins produced in the
liver [80]. PTX3 has been shown to be upregulated in response to a rise in transcriptional
factors such as NF-κB in monocytes, macrophages, and endothelial cells (Figure 7) [80].
Furthermore, it has been shown to attenuate excessive macrophage-mediated inflammatory
activity, thereby promoting the wound healing processes [80]. Additionally, overexpression
of PTX3 gene has been demonstrated in mice to be associated with severe tissue injury
and lethality, especially after ischemic events [81]. This enhanced lethality has been at-
tributed to the exacerbated inflammatory response and the production of PTX3 mediated
pro-inflammatory cytokines, especially TNF-α [81]. In the present study, although no
change in gene expression was noted, there may be differences in protein expression that
need further evaluation.

Apart from regulating the inflammatory responses, PTX3 has also been shown to
play a crucial role in tissue remodeling following an injury. In mice models it has been
demonstrated that deficiency of PTX3 leads to altered thrombotic responses coupled
with increased deposition of both fibrin and collagen [82–84]. Moreover, PTX3-deficient
macrophages and fibroblasts were associated with defective fibrinolytic activity [82]. The
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deficiency of the gene has been further shown to suppress osteoblast function leading to
a lower bone volume in mice models [85]. Due to its FGF2 binding properties, it acts as
a bone protective factor which is important for osteoblast maturation by antagonizing
the negative effects of FGF2 during early stages of bone formation [85]. PTX3 expression
has also been linked to promote EMT in human proximal tubular epithelial cells, thereby
inducing fibrotic changes in the renal tissue [86].

3.6. Limitations of the Present Study

The relevance and importance of the studies like the present one has been discussed
and reported previously [40]. However, the results obtained in the present study are
constrained by certain limitations. First, the limited number of control and cleft patients in
the present study limits our ability to generalize our findings. This is rather understandable
due to genuine concerns of the parents, given the tender age at which corrective surgery is
undertaken [26,40]. Secondly, the complex etio-pathogenesis of cleft lip and palate makes
it difficult to predict or state whether neonatal gene expression resembles embryonic gene
expression, especially during the events just prior and during the palatal closure. Thirdly,
there is extremely limited data in terms of comparison with the two stages of dentition in
humans—the primary or milk dentition and the mixed dentition stages, which makes it
difficult to analyze the gene expression and interactions. Fourth, gene-gene interactions
(including gene products and transcriptional factors) are difficult to elucidate completely,
even more so in the setting of a polyfactorial etiology. Finally, the role of environmental
factors like maternal and paternal family history, lifestyle etc. have profound effects on the
manifestations and clinical course of the condition, both of which are difficult to ascertain.
Nonetheless, the results obtained in the present study can serve as a baseline for future
studies to explore the molecular and phenotypic connections between various cytokines,
candidate genes, and tissue repair genes.

4. Materials and Methods
4.1. Demographic Profile of the Study Participants

In the present study, lip mucosal tissue samples were obtained from 15 pediatric
children (seven female children and eight male children) who reported at the Department
of Oral and Maxillofacial Surgery, Institute of Stomatology, Riga Stradin, š University (RSU),
Latvia, for consultation and treatment of unilateral non-syndromic congenital cleft lip
and/or palate (Table 2). The tissue material was collected during the corrective plastic
surgery from the site of clefting by the same surgeon. None of the children were previously
diagnosed with coexisting genetic syndromes, chromosomal abnormalities, or immune
deficiencies. Additionally, seven (three female children and four male children) control
pediatric patients were enrolled. These children reported to the department for correction
of low attached upper lip frenulum. The lip mucosal tissue material was obtained dur-
ing upper labial frenectomy and was free of any pathology (including clefting) and/or
inflammation. The control children were aged between five and six years.

4.2. Ethical Permission and Consent for Participation

The study design and protocol were approved by the Research Ethics Committee
(REC) of RSU wide approval no. 5/28.06.2018, per the guidelines in the 1975 Declaration of
Helsinki (revised in 2008). The study protocol additionally complied with the frameworks
of the local and EU ethical norms. Written and oral consents from all pediatric patients were
obtained from the parents/legal guardians for participation in the study. Simultaneous
consent for publication of the study data was also obtained.

4.3. Sample Collection and Processing

Tissue samples collected during the corrective surgery (plastic surgery for cleft affected
children and frenectomy for control children) were fixed for a day in a mixture of 2%
formaldehyde and 0.2% picric acid in 0.1M phosphate buffer (pH 7.2). Prior to paraffin
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embedment, the samples were treated and rinsed with 10% saccharose containing Tyrode
buffer for 12 h. The samples were then registered and assigned randomized internal codes.
Only the internal codes and patient history (as shown in Table 2) was kept and disclosed to
the researchers and/or lab assistants.

Table 2. Clinical diagnosis and demographic profile of the cleft affected children.

Patient Number Age (Months) Gender Clinical Diagnosis † Anamnesis

1 3 Fc Cheilognathouranoschisis sinistra -

2 3 Mc Cheilognathouranoschisis dextra -

3 3.5 Mc Cheilognathouranoschisis sinistra

Mother reported use of paracetamol
during pregnancy; father was
smoker and partially alcoholic.

Epilepsy in the family tree. Child
was born overweight

4 4 Mc Cheilognathouranoschisis sinistra

There was a reported threat of
miscarriage in the 36th gestational

week; history of clefts in the
family tree.

5 4 Fc Cheilognathouranoschisis dextra -

6 4 Fc Cheilognathouranoschisis sinistra
Born in the 42nd gestational week;

mother reported use of paracetamol
during pregnancy

7 4 Mc Cheilognathouranoschisis sinistra
Born in the 41st gestational week;

mother reported use of paracetamol
during pregnancy

8 4 Fc Cheilognathouranoschisis sinistra -

9 4 Mc Cheilognathouranoschisis sinistra -

10 4 Fc Cheilognathouranoschisis sinistra -

11 4.5 Mc Cheilognathouranoschisis sinistra History of Down syndrome in the
family tree

12 5 Mc Cheilognathouranoschisis sinistra
History of clefts in the family tree;
mother reported use of Amoxiclav

during pregnancy

13 5 Fc Cheilognathouranoschisis sinistra Mother developed gestational
diabetes during the pregnancy

14 6 Fc Cheilognathouranoschisis sinistra -

15 8 Mc Cheilognathouranoschisis sinistra Both parents were regular smokers
† Clinical diagnosis is provided in Latin; cheilognathouranoschisis—cleft lip, alveolar ridge, and palate; sinistra—left; dextra—right.
Fc—female child; Mc—male child.

4.4. Slide Preparation and Visualization of Routine Histological Staining

Serial tissue sections of 3–4 µm were prepared from the solidified paraffin block for
routine hematoxylin and eosin staining (H&E) and immunohistochemistry (IHC). Tissue
sections were loaded on the slides and kept for 20–60 min in a thermostat at 56 ◦C. De-
paraffinization of the sections was done using 96% ethanol and xylene solutions before H&E
staining (Mayer’s; Bio Optica Milano, Milan, Italy). Slides were dehydrated with ethanol
and clarified with carboxylol and xylene. A drop of histological Pertex glue (Histolab
Products AB, Askim, Sweden) was applied and slides were covered with a cover glass.
Visualization of the slides was done using Leica DC 300F brightfield light microscope (Leica
DM500RB; Leica Biosystems Richmond, Richmond, IL, USA).
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4.5. Biotin-Streptavidin Immunohistochemistry (IHC)

Prepared tissue sections (de-paraffinized, washed, and cleared) were rinsed for 10 min
with TRIS wash buffer (Diapath, Martinengo, Italy) and then boiled in EDTA buffer for
10 min. The tissue sections were then cooled to 65 ◦C before second placement in TRIS wash
buffer. 3% peroxidase (Dako, Naestved, Denmark) was used to block the activity of the
endogenous peroxidase. Antibody diluent (Cell MarqueTM, Rocklin, CA, USA) was used
to dilute the antibodies. The tissue sections were incubated with primary antibodies for
2 h in accordance with manufacturer’s protocols (Table 3). The sections were then washed
with TRIS wash buffer. The HiDef DetectionTM HRP polymer system (Cell MarqueTM,
Rocklin, CA, USA) was used for rabbit antibodies as per the manufacturer’s guidelines.

Table 3. Description and characteristics of the primary antibodies.

Primary Antibody * Antibody
Characteristics ** Clone Dilution Catalogue No. Manufacturer

DLX4 Polyclonal rabbit AB
against human AG - 1:100 orb626417 Biorbyt Limited (UK)

HOXB3 Polyclonal rabbit AB
against human AG H-50 1:100 sc-28606 Santa Cruz (USA)

MSX2 Polyclonal rabbit AB
against human AG - 1:100 ab223692 Abcam (UK)

NF-κB (p50/p105) Monoclonal rabbit AB
against human AG E381 1:100 ab32360 Abcam (UK)

* Abbreviations: DLX4—Distal-Less homeobox 4; HOXB3—homeobox B3; MSX2—Msh homeobox 2 and NF-κB—nuclear factor kappa-
light-chain-enhancer of activated B cells. ** Abbreviations: AB, antibody; AG, antigen.

Tissue sections were subsequently incubated with biotin-containing secondary an-
tibody for 30 min followed by rinsing for 10 min in TRIS wash buffer. This step was
repeated for incubation with tertiary antibody. DAB+ chromogenic liquid was used to
coat the tissue sections (DAB Substrate Kit, Cell MarqueTM, Rocklin, CA, USA). Finally,
the sections were incubated at room temperature for 10 min to obtain brown staining of
immunoreactive structures. The sections then underwent washing using distilled water
and were counter-stained with haematoxylin for 2 min. Dehydration was performed using
ethanol solution followed by clarification using carboxylol and xylene. The slides were
then visualized using a light microscope (described in previous section). Negative and
positive IHC controls were also prepared for each sample in the study.

4.6. Chromogenic In-Situ Hybridization (CISH)

Pretreatment and denaturation of the sections was done following standard laboratory
protocol using the ZytoDot 2C CISH Implementation Kit (ZytoVision GmbH, Bremerhaven,
Germany). CISH probes of DLX4, HOXB3, MSX2, and PTX3 genes were used in the present
study (Empire Genomics, Williamsville, NY, USA). Hybridization was done using 10 µL of
each probe followed by covering of the slides using coverslip. The slides were then placed
on a hot plate for 5 min at 79 ◦C, and transferred to a humidity chamber overnight at 37 ◦C.
On the following day, the coverslips were removed, and DAB solution was applied to the
slide per the manufacturer’s protocol. The nucleus was counterstained with a nuclear dye
and dehydration using increasing gradients of ethanol was done. Cover slip was placed,
and the hybridized probe fragments were visualized using brightfield microscope. Under
the microscope, two brown coloured dots (signals) were expected per nuclei of normal
cells in interphase or metaphase without aberrations of the examined chromosomes. Due
to limited availability of tissue material, only three control samples were used for CISH
(1 female child and 2 male children).
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4.7. Semi-Quantitative Grading and Statistical Analysis

The slides were analyzed under the microscope and with Image Pro Plus 6.0 (Media
Cybernetics, Rockville, MD, USA). For IHC reactions, cells with brown nucleus/cytoplasm
were considered as immunoreactive or immunopositive. Semi-quantitative grading of the
epitheliocytes and connective tissue cells was done by two independent morphologists in
at least five randomly selected vision fields at 400× magnification. For CISH, brown signals
were evaluated per nuclei in at least 30 cells of each type (epitheliocytes, endotheliocyte,
and connective tissue cells) at 1000× magnification using immersion oil. A grading scale
interpretation table developed in our previous study was used for evaluating IHC and
CISH results (Supplementary Tables S1 and S2) [40].

Statistical analysis was performed using non-parametric related samples Wilcoxon
signed rank test for comparison within different cells (intra-group analysis). For control
vs. cleft tissue comparison, a Mann Whitney U test and one-sample Wilcoxon signed rank
test were used (inter-group analysis). Spearman’s rho was used for correlation analysis.
Statistics were done using SPSS v26.0 (IBM Corp., Armonk, NY, USA). For statistical
analysis, the numbers of “+” values were considered as equivalent to absolute whole
numbers (e.g., “+” corresponded to 1; “++” corresponded to 2, and so on). Statistical
significance was set at p < 0.05.

5. Conclusions

The following three conclusions are noteworthy from our present study:

1. Residual expression of DLX4 upregulates the expression of NF-κB in cleft mucosa
leading to increased cellular proliferation and promotion of a pro-inflammatory
environment. This accelerated proliferative state is further stimulated by the elevated
HOXB3 expression.

2. Elevated expression of MSX2 and NF-κB in the cleft-affected lip tissue seems to
negatively affect critical developmental pathways, resulting in the formation and
persistence of a dysregulated hard tissue postnatally, a finding commonly reported in
the cleft patients.

3. The PTX3 gene plays a crucial role in regulating and fine-tuning the persistent inflam-
matory responses characteristically seen in the postnatal cleft affected lip mucosa.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jpm11111135/s1, Table S1: Summarized dataset of results obtained from immunohistochem-
istry (IHC), Table S2: Summarized dataset of results obtained from chromogenic in-situ hybridization
(CISH), Figure S1: Positive and negative controls for DLX4 IHC antibody, Figure S2: Positive and
negative controls for HOXB3 IHC antibody, Figure S3: Positive and negative controls for MSX2 IHC
antibody, Figure S4: Positive and negative controls for NF-κB IHC antibody.
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