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Abstract

Across the life sciences, processing next generation sequencing data commonly relies upon

a computationally expensive process where reads are mapped onto a reference sequence.

Prior to such processing, however, there is a vast amount of information that can be ascer-

tained from the reads, potentially obviating the need for processing, or allowing optimized

mapping approaches to be deployed. Here, we present a method termed FlexTyper which

facilitates a “reverse mapping” approach in which high throughput sequence queries, in the

form of k-mer searches, are run against indexed short-read datasets in order to extract use-

ful information. This reverse mapping approach enables the rapid counting of target

sequences of interest. We demonstrate FlexTyper’s utility for recovering depth of coverage,

and accurate genotyping of SNP sites across the human genome. We show that genotyping

unmapped reads can correctly inform a sample’s population, sex, and relatedness in a fam-

ily setting. Detection of pathogen sequences within RNA-seq data was sensitive and accu-

rate, performing comparably to existing methods, but with increased flexibility. We present

two examples of ways in which this flexibility allows the analysis of genome features not

well-represented in a linear reference. First, we analyze contigs from African genome

sequencing studies, showing how they distribute across families from three distinct popula-

tions. Second, we show how gene-marking k-mers for the killer immune receptor locus allow

allele detection in a region that is challenging for standard read mapping pipelines. The

future adoption of the reverse mapping approach represented by FlexTyper will be enabled

by more efficient methods for FM-index generation and biology-informed collections of refer-

ence queries. In the long-term, selection of population-specific references or weighting of

edges in pan-population reference genome graphs will be possible using the FlexTyper

approach. FlexTyper is available at https://github.com/wassermanlab/OpenFlexTyper.
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Author summary

In the past 15 years, next generation sequencing technology has revolutionized our capac-

ity to process and analyze DNA sequencing data. From agriculture to medicine, this tech-

nology is enabling a deeper understanding of the blueprint of life. Next generation

sequencing data is composed of short sequences of DNA, referred to as “reads”, which are

often shorter than 200 base pairs making them many orders of magnitude smaller than

the entirety of a human genome. Gaining insights from this data has typically leveraged a

reference-guided mapping approach, where the reads are aligned to a reference genome

and then post-processed to gain actionable information such as presence or absence of

genomic sequence, or variation between the reference genome and the sequenced sample.

Many experts in the field of genomics have concluded that selecting a single, linear refer-

ence genome for mapping reads against is limiting, and several current research endeavors

are focused on exploring options for improved analysis methods to unlock the full utility

of sequencing data. Among these improvements are the usage of sex-matched genomes,

population-specific reference genomes, and emergent graph-based reference pan-

genomes. However, advanced methods that use raw DNA sequencing data to inform the

choice of reference genome and guide the alignment of reads to enriched reference

genomes are needed. Here we develop a method termed FlexTyper, which creates a

searchable index of the short read data and enables flexible, user-guided queries to provide

valuable insights without the need for reference-guided mapping. We demonstrate the

utility of our method by identifying sample ancestry and sex in human whole genome

sequencing data, detecting viral pathogen reads in RNA-seq data, African-enriched

genome regions absent from the global reference, and killer-cell immune receptor alleles

that are complex to discern using standard read mapping. We anticipate early adoption of

FlexTyper within analysis pipelines as a pre-mapping component, and further envision

the bioinformatics and genomics community will leverage the tool for creative uses of

sequence queries from unmapped data.

This is a PLOS Computational Biology Methods paper.

Introduction

Short-read DNA sequencing enables diverse molecular investigations across life science appli-

cations spanning from medicine to agriculture. Obtaining useful information from a data set

of raw reads (short pieces of DNA read outs from the DNA sequencer) typically involves per-

forming either de novo assembly, or mapping the read sequences against one or more reference

genomes. Whether the focus is on quantification (e.g. observed gene expression in RNA

sequencing data), or identifying sequence differences between a sample and a reference

genome (e.g. genotyping), the availability of a curated reference genome has led to a large pro-

portion of data analysis pipelines leveraging an indexed reference genome to perform efficient

read mapping as a primary analysis component.

Recently a plethora of large-scale, population-specific sequencing projects have highlighted

the numerous deficiencies and biases inherent to a single haploid reference [1,2]. Examples

include the large amount of structural variation that exists between populations [3–5], the

identification of unique sequences missing from the current reference genome [6], and
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population specific difference in common genetic variants. Static linear reference genomes

which do not capture these large differences between populations impose challenges for accu-

rate genotyping, with implications in medicine and association studies [1,2]. Global efforts to

enrich the linear reference genome have led to the development of graph based representations

of pan-genomes, for a comprehensive review of current approaches see [7,8]. As highlighted in

an earlier review by [9], a key challenge in the future will be to determine the most appropriate

reference genome(s), or path(s) through a graph pan-genome, to maximize genotyping perfor-

mance. Knowledge regarding the genotypes of single nucleotide polymorphisms (SNPs) or

other makers present in a read data set can be used to guide the choice of reference.

Currently, the approach of identifying SNP genotypes across the genome primarily involves

computationally expensive reference-based read mapping and variant calling strategies [10].

Recently published tools have highlighted the expanse of information that can be obtained from

short read datasets. Inferring ancestry from specific, population-discriminating SNPs can be per-

formed rapidly with Peddy, which uses fewer than 25,000 SNPs to identify ancestry through prin-

cipal component analysis [11]. Somalier [12] avoids the final stage of variant calling and evaluates

relatedness in aligned sequencing datasets. However, the accuracy of both of these tools is affected

by the underlying alignment. Previous work has shown that it is possible to genotype predefined

SNPs from unmapped sequence data, circumventing the read mapping and variant calling pro-

cess [13–15]. Some approaches focus on k-mer (short sequences of length k) hashing and match-

ing to predefined target k-mers to perform genotyping of known SNPs, as demonstrated in the

VarGeno and LAVA frameworks [14,15]. These approaches are fast, but rely upon indexes of k-

mers extracted from the reference genome and SNP databases, thus reducing their flexibility for

k-mers of different length and source. As we move into the era of precision medicine, avoiding

inherent reference bias is crucial in obtaining accurate results. A separate approach is taken by

Dolle et al., wherein the entire 1000 Genomes dataset is compressed into an FM-index and que-

ried with k-mers spanning polymorphic sites, thus demonstrating the utility of scanning

unmapped reads for predefined k-mers of interest. The “reverse mapping” highlighted in their

approach was applied to aggregated data, but the concept can be extended to the analysis of indi-

vidual genomes if implemented in a flexible way for diverse types of queries.

The reverse mapping approach switches the focus onto querying for sequences of interest

within a read set, rather than a reference genome or database. This approach allows for a flexi-

ble exploration of the information content of the reads by allowing the read set to be queried

for different parameters and across diverse sets of informative sequences. One example of this

is within RNA sequencing (RNA-seq), where analysis of cancer RNA-seq datasets can reveal

the presence of viral pathogens within patient data [16]. Several tools have been developed to

specifically detect these viral pathogens from sequencing data including viGEN [17] and Vir-

Tect [18]. However, as with the tools mentioned earlier, they are hampered by a mapping pro-

cedure which first maps against the human reference genome and then subsequently maps

against viral genome collections. Other methods, such as Centrifuge [19] and Kraken2 [20],

rely upon probabilistic or exact k-mer searches against large viral and bacterial databases. Both

of these methods are powerful, but lack flexibility and rely upon phylogenetic relationships

between target sequences. Specifically, they require the index for a search database to be recre-

ated for different k-mer lengths or when additional target sequences are added to the database.

Nevertheless, these tools are broadly used and thus serve as good comparators for efficacy, as

they have both been demonstrated to have utility in detecting viral pathogens within cancer

RNA-seq datasets by examining k-mer content. (https://www.sevenbridges.com/centrifuge/).

Combining the current drive to decrease our reliance upon linear reference genomes, and

the wealth of demonstrated utility of reverse mapping approaches, we developed FlexTyper.

FlexTyper is a computational framework which enables the flexible indexing and searching of
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raw next generation sequencing reads. We show example usage scenarios for FlexTyper by

demonstrating the high accuracy of reference-free genotyping of SNPs in single samples, and

the ability to identify foreign pathogen sequences within short-read datasets. We further

explore the utility of FlexTyper within challenging genomic regions hampered by hyper-vari-

ability, and test its capacity to detect population-specific sequences missing from the reference

genome. We hope the flexibility afforded by the framework underpinning FlexTyper will fuel

the emerging trend away from the necessity for a static reference genome that currently lies at

the heart of the majority of genomic analysis tools.

Methods

Overview of FlexTyper

Usage can be broken down into three steps: 1) query generation, 2) indexing the raw reads,

and 3) querying against the FM-index (Fig 1). For query generation, we allow for both custom

user query generation, as well as pre-constructed queries from useful databases, such as CytoS-

canHD array probe queries. Custom queries designed to capture genomic loci can be gener-

ated by pairing a user-provided VCF (format v4.3) with a reference genome fasta file. For the

capture of potential pathogen sequences, we also allow query generation from one or more

fasta files. The files produced from query generation are used as input for subsequent index

query operations. The second step is the production of an FM-index from a set of short-read

sequences in fastq, gzipped fastq or plain text format. There is the option to include the reverse

complement of the reads within the index, however this increases the compute burden of

indexing, without the same reduction in search times. The read set is concatenated using a sen-

tinel character and passed as a single string into the indexing algorithm. The third step is the

core FlexTyper search algorithm which takes the query input file, generates search k-mers, and

scans the FM-index for matches. This step creates an output with matching format to the

input query file, with appended counts of matching reads for each query. A detailed break-

down of these three components is described below.

Query generation

FlexTyper supports flexible query generation giving users the capacity to query for any target

sequence or allele within their read dataset. Query files can be generated from an input fasta

and VCF file (VCF2Query.py), or directly from a fasta file (Fasta2Query.py). Potentially useful

queries, including those presented here, are provided online and include all sites from the

CytoScanHD chromosomal microarray, and ancestry discriminating sites [11]. These prede-

fined query sets are available through git-lfs in the online FlexTyper Github repository

(https://github.com/wassermanlab/OpenFlexTyper). If users wish to directly query a short-

read dataset with a set of predetermined k-mers, we provide a separate function, ksearch, that

will directly search for k-mers from a given text file within an indexed read set.

FM-index creation

Generating the FM-index from short-read sequencing datafiles is performed in two steps: pre-

processing and indexing. The focus of our work is not on the algorithms used to construct the

FM-index, and hence we use two existing utilities to generate a compatible FM-index for Flex-

Typer. The toolkit Seqtk is used for reformatting the input read files by removing quality

scores and non-sequence information to create a sequence-only fasta format. The output fasta

file is processed using the SDSL-Lite library to generate the FM-index. SDSL builds a suffix

array that is used to generate the BWT of the input string, which is then compressed using a
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Fig 1. Overview of FlexTyper. FlexTyper has three primary components: query generation, read indexing, and searching against the FM-index. Query generation

includes the capacity to translate VCF files into query files given a reference genome file (e.g. Genome Fasta), or to directly create queries from fasta sequences

including pathogen genome sequences. Modules VCF2Query.py and Fasta2Query.py facilitate this process. The second component involves creating an FM-index

of the raw reads, after optional preprocessing steps. The third component searches the queries against the FM-index to produce output files with counts of query

sequences within the query files.

https://doi.org/10.1371/journal.pcbi.1008815.g001
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wavelet tree and subsampled. The resulting compressed suffix array is streamed to a binary

index file. As the memory requirements for indexing large files can be burdensome, we sup-

port an option to split the input file and index each chunk of reads independently. Down-

stream search operations support the use of multiple indexes.

Query against FM-index

Querying the FM-index for user selected sequences can be conceptually divided into four

steps: 1) k-mer generation; 2) k-mer filtering; 3) k-mer searching; and 4) result collation (Fig

2). There are two primary methods of k-mer generation for a query; a centered search where

the middle position of the query is included in all k-mers, and a sliding search which starts at

one end of the query and uses a sliding window approach to generate the k-mers (Fig 2). Cen-

tered search can be used for genotyping or estimating coverage over a single position, and the

sliding search can be used to count reads which match to any part of a query sequence. All

parameters for the search are specified in the settings.ini file, with a small number of key

parameters able to be overridden directly from the command line. After filtration, the k-mers

are searched for within the FM-index using C++ multithreading and asynchronous program-

ming, using either a single thread on a single index, multiple threads on a single index, a single

thread on multiple indexes, or multiple threads on multiple indexes (Fig 2). Importantly, asyn-

chronous programming allows the number of threads used during searching to be increased

beyond the number of available CPUs. The output from this search process is a collated results

map containing the positions of each k-mer within the FM-index. These positions are trans-

lated to read IDs, and finally collapsed into query counts using the k-mer-query map. Impor-

tantly, if multiple k-mers from the same query hit the same read, they are recorded as a single

count at the query level. For cases of multiple indexes being searched in parallel, the k-mer

searching is performed independently for each index, and then the search results from all

indexes are merged and reconciled to produce a final query count table. For a detailed explana-

tion of the effects of key parameters, please see S1 Supplemental Methods, and our documenta-

tion on Github pages (https://wassermanlab.github.io/OpenFlexTyper/)

Post-processing of results into downstream formats

The output tables from the search process for genotyping can be translated into useful formats

for downstream analysis using the fmformatter scripts (https://github.com/wassermanlab/

OpenFlexTyper/tree/master/fmformater). Currently, there is the capacity to output genotype

calls in VCF, 23andMe, or Ancestry.com format. Genotype calls are derived here using a basic

approach which assigns genotypes given a minimum read count parameter as follows:

Alt< minCount && Ref> minCount: Homozygous reference, 0/0

Alt> minCount && Ref> minCount: Heterozygous alternate, 0/1

Alt> minCount && Ref< minCount: Homozygous alternate, 1/1

For searches which do not pertain to genotyping, the output tab-separated files can be used

as count tables for observed query sequences.

Results

Observations about FlexTyper system requirements and performance

The generation of a full text index of the reads is a key step and we are able to generate indexes

of human whole genome sequencing reads with ~800 million reads utilizing less than 150Gb
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Fig 2. Query Search Workflow. Workflow for query search against the FM-index, starting with input queries and settings defined in Settings.ini file. In this figure, the

example shows a centered search with ignoreNonUniqueKmers enabled. 1) K-mer generation has two modes centered search and sliding search. For a centered search,

the position of interest lies in the middle of the query, and k-mers are designed to overlap that central position with defined length (k) and step (s). 2) If the ignore-
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of RAM on a single compute node within a higher performance compute (HPC) cluster. (S1

Table). Although read indexing is slower than a traditional alignment, sorting, and variant call-

ing pipeline, FlexTyper can index whole genome sequencing samples in roughly 24 hours (S1

Table). The flexibility for creating sub-indexes allows the user to adjust parameters to fit their

system, accommodating most modern HPC architectures. In comparison to the tools that uti-

lize prebuilt indexes, such as BWA-MEM, or generate probabilistic indexes, such as Kraken2,

FlexTyper is significantly slower, however, the non-approximate full text implementation

allows the read set to be queried for diverse sequences, across the full parameter space, without

reindexing unlike Kraken2. The index of a high depth paired-end (2x250bp) WGS read set for

sample HG002 uses only 155 Gb RAM, and with no information loss in the read sequences, it

is not necessary to retain the original fastq files once indexed. While FlexTyper does remove

quality scores, the tuning of k-mer length and step size allows counting of a read even in the

presence of errors, and filtering the fastq file to remove low-quality/high-error reads can be

done prior to read indexing. The complex interplay of the different search parameters makes

generalized performance statements challenging, so to inform the user of FlexTyper’s use-case

performance we provide runtime metrics and read recovery for a variety of different search

settings and scenarios in the following sections.

Testing for the presence of pathogen sequences in RNA-seq

To demonstrate the capacity of FlexTyper to detect pathogens from RNA-sequencing data, we

generated synthetic reads from four relevant viral genomes including Epstein-Barr virus

(EBV), Human Immunodeficiency virus type 1 (HIV-1), and two Human Papilloma virus

strains 68b (HPV FR751039) and 70 (HPV U21941) (S1 Supplemental Methods). We first

examined the impact of various FlexTyper parameters on the recovery rate of pure, simulated

read sets for each of the four viruses and one human blood RNA-seq dataset from the Genome

England project (https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-6523/samples/)

(S2 Table). Importantly, varying the parameters k (length of the k-mer search substring) and s
(step-size) change the specificity and sensitivity of read recovery. When k is set to 15 (a short

k-mer), there were roughly 1 million off-target hits to the viral genomes for the pure human

RNA-seq file, and the increased search space leads to increased run times (S2 Table). Next, we

explored the effect of two uniqueness settings, the first for k-mers, (ignoreNonUniqueKmers),

where a given k-mer cannot map across multiple queries, and secondly for reads, (unique-

Reads), where a read cannot be counted across multiple queries. We provide both parameters

to the users, as there may be instances where reads are allowed to be counted across queries,

but the k-mers must be independent. By exploring these parameters, we show that all simu-

lated reads can be recovered with parameters of k = 30 and s = 5, and off-target assignment

can be controlled with the uniqueness settings. For more details about the parameter explana-

tions or the impact of parameterizations on read recovery, see S1 Supplemental Methods and

S2 Table.

Next, we simulated mock patients infected by the four viruses to examine the detection

capacity of FlexTyper with respect to two established methods, Centrifuge and Kraken2. Simu-

lated reads from each of the four viruses were spiked-in at various concentrations (read

counts) within five different human RNA-seq datasets from the Genome England project

duplicates option is set, k-mers collated from the query set are filtered to remove any k-mers which were found in multiple query sequences. 3) The filtered k-mers are

then searched for within a single FM-index (left two panels) or multiple indexes (right two panels) of the read set. This can be done using single (top two panels) or

multiple (bottom two panels) threads. 4) The results corresponding to a position within the FM-index are then translated back into reads, with hits on reverse

complement reads assigned to the primary read, and collapsed into a set for each query. The final counts are reported per query.

https://doi.org/10.1371/journal.pcbi.1008815.g002
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(https://www.personalgenomes.org.uk/data/) (S1 Supplemental Methods). Using the opti-

mized parameters derived above (k = 30, s = 5, uniqueRead, and uniqueK), we are able to

detect each virus in the patient samples even at low concentrations (Fig 3). We also searched

these mock patient samples using an expanded set of parameters, and see the expected changes

in sensitivity as the uniqueness and k parameters are altered (S3 Table). For more direct com-

parison to Centrifuge and Kraken2 we ran FlexTyper in the paired-read mode, and show that

we are able to detect the pathogen sequences with high sensitivity and specificity (Fig 3). This

is true even for a sample (Patient 5) which had a 1x concentration–roughly 50–1150 reads

depending on genome size–of each viral genome spiked in. For Patient 4, where the level of

EBV spiked in is over 1 million reads, the undercounting stems from our limit on maximum

occurrence, which we set to 2000, and adjusting to a maximum occurrence of 10,000 increases

the count to 1,144,990. For the HPV viruses (U21941 and FR751039), we are able to detect the

levels of both strains, and observe a slight over-counting of FR751039 in Patient 2, possibly

from a high count of spiked in U21941 reads. We compared our approach with Centrifuge and

Kraken2, which match reads based on k-mers mapped against a comprehensive indexed viral

and bacterial database, and tabulate matches at the read pair level. Centrifuge works with

unmapped short-read sequencing data by performing read-length (k = 150) k-mer searches

against a database of viral and bacterial genomes, and hence was the least sensitive method due

to the limitations of full length k-mer queries [19]. Kraken2, which uses a minimizer for

approximate matching, can search for shorter k-mers (default k = 31), leading to increased

sensitivity over the Centrifuge method. Both Centrifuge and Kraken2 achieve accurate results

for the HIV-1 and EBV samples, but were only able to detect 5–10% of the reads for the two

HPV samples, U21941 and FR751039, even when aggregating at the family level (Papillomavir-

idae) (Fig 3). Initially, we hypothesized that this was due to off-target mapping to another

genome, perhaps the human genome, within their comprehensive database. However, after

testing a set of 5200 pure U21941 or FR751039 reads with Kraken2, we were only able to

recover 136 reads and 279 reads respectively, even when considering reads assigned to the

viral kingdom level (S1 Supplemental Methods). This limitation can be overcome with FlexTy-

per, which enables the user to define the relevant pathogens to search for, along with the ability

to repeat searches across different k-mer lengths, without the need for re-indexing a complex

bacterial or viral database. While Kraken2 and Centrifuge are powerful and comprehensive

metagenomic classifiers, which allow for increased breadth and classification across a phyloge-

netic tree, there may be cases where specific pathogen queries of interest require high sensitiv-

ity. We believe FlexTyper can serve as an option in these scenarios.

Genomic coverage and genotype detection within human WGS data

Knowing whether a given k-mer is present or absent from a human WGS datafile (in this

instance Illumina short-read, paired-end data) can have utility for estimating the depth of cov-

erage for a target region and genotyping SNPs. FlexTyper has the capacity to compute depth of

coverage or genotype SNPs from WGS data for both predefined and user-supplied loci. We

demonstrated this capacity for genomic sites using the probe sequences from the CytoScanHD

microarray, as well as a subset of previously collated population discriminating SNPs [11].

Using these loci, we created query files with a reference and alternate query sequence centered

on the biallelic site (S1 Supplemental Methods).

We first sought to test the read recovery capacity of FlexTyper compared to an alignment

based method which we call BamCoverage. The BamCoverage method involves mapping the

reads to the reference genome, and then extracting per-base read coverage over a specific refer-

ence coordinate. BamCoverage utilizes the pysam package to extract read pileup over positions
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defined by the FlexTyper input query file (S1 Supplemental Methods). Using the CytoScanHD

SNP set, we found a high concordance between the read counts from FlexTyper and the depth

of coverage from aligned reads (Fig 4A). FlexTyper was run with parameters of k = 31, s = 10,

max occurrence 200, and the requirement of unique k-mers between queries. The vast major-

ity, 98.33% (784,297/797,653), of sites differed by less than 10 between FlexTyper and Bam-

Coverage, with a Spearman correlation of 0.86 (Fig 4B). The discrepancy in counts is similar

for both reference and alternate alleles, which is important since most genotyping models

assume relative contributions of observed alleles for genotype calling. There were 10,397 sites

with a delta, (Δ = FlexTyper—BamCoverage), greater than 10, and 1,469 sites with a delta

greater than 100 (Fig 4C). We manually investigated a few of these sites which were

Fig 3. Mixed Viral Analysis. Detection of pathogen sequences in five synthetic patient RNA-seq datasets (Patient 1–5; rows), each with different levels of spiked-in

viruses (EBV, HIV-1, U21941, and FR751039; columns), expected values shown as black vertical bars. As Centrifuge and Kraken2 are unable to delineate between the

two HPV substrains (U21941 and FR751039), a combined count at the HPV level is tabulated.

https://doi.org/10.1371/journal.pcbi.1008815.g003
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overcounted by FlexTyper by more than 100 and found that they are being overcounted due to

k-mers mapping to multiple possible locations. Comparing these over-counted hits with delta

greater than 100 to previously defined repeat regions shows that 1444/1469 or 98.3% of the

overcounted sites overlapped with predefined repeats [21]. The uniqueness of k-mers is impor-

tant for accurate read counting, thus it is recommended to filter query sequences within such

Fig 4. WGS Genotyping using FlexTyper. A) FlexTyper read count compared to the total coverage from BAM file over SNP sites represented on the

CytoScanHD microarray. B) Histogram showing the delta, (Δ = FlexTyper—BamCoverage), in read count for both the alternate (red) and reference (blue) alleles.

C) Histogram of the same delta as B) but with an extended axis from 100–2000, showing the frequency of over-counting for sites using FlexTyper. D) Scatter plot

showing the delta (Δ = FlexTyper—BamCoverage) on the y-axis, plotted across chromosome 1 on the x-axis. E) Principal component analysis showing projection

of FlexTyper-derived SNP genotypes from nine individuals of Asian (green), African (red) and European (purple) ancestry. Squares denote FlexTyper genotypes,

points denote existing data from the 1000 Genomes project provided by Peddy. F) Sex-typing for these Polaris samples showing the ratio of heterozygous to

homozygous sites on the X chromosome (y-axis) for individuals for the defined sexes as male (right) and female (left). Each individual is labeled as green

(correctly sex-labeled) or red (incorrectly labeled).

https://doi.org/10.1371/journal.pcbi.1008815.g004
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regions when using FlexTyper for genotyping or depth profiling. Lastly, by examining the

recovery of reads across the chromosome between FlexTyper and the BamCoverage approach,

we observe uniform recovery across the breadth of the chromosome (Fig 4D). This is impor-

tant for copy number variant calling applications, as they rely upon contiguous readouts of

genomic sequence coverage.

Next, we investigated whether FlexTyper can accurately recover genotypes at the SNP sites

profiled from the chromosomal microarray. The genotyping approach we use leverages a min-

imum count from the reference and alternate allele to assign heterozygous, homozygous alter-

nate, or homozygous reference genotypes (S1 Supplemental Methods). We applied this basic

genotyping algorithm to both FlexTyper and BamCoverage counts to produce a VCF file.

These genotypes were compared to an alternate pipeline which uses reference-based mapping

and sophisticated variant calling using BWA-MEM and DeepVariant [22] (S1 Supplemental

Methods). For the CytoScanHD microarray, all three methods report the same genotype for

99.4% (792,805/797,653) of the SNP sites. We further investigated the discordant genotypes to

see if we can explain why there is a disagreement between FlexTyper and the other two meth-

ods. First, we compared these genotypes to the repeats defined above and see that 77.6%

(2,980/3,838) of the discordant genotypes overlap with predefined repeat loci. Additionally, we

implemented a flag for offending k-mers, to signal when a k-mer was non-unique or surpassed

the max occurrence (maxOcc) parameter. There were a total of 685 genotypes with offending

k-mers, of which 355 (8.6% of the 3,838) overlap with the discordant genotypes unique to Flex-

Typer. We further demonstrate the accuracy of FlexTyper-derived genotypes by indexing nine

WGS samples from the Polaris project representing diverse populations including three Afri-

can, three Southeast Asian, and three European individuals [23]. After indexing, we queried

the samples for population discriminating sites and then genotyped the output table to pro-

duce a VCF file. The output VCFs were then used within the Peddy tool, and a principal com-

ponent analysis was performed to predict the ancestry of the samples [11]. In all nine cases the

population was correctly determined, as well as the relatedness inference for the three trios

(Figs 4E and S1). Interestingly, we observed a discrepancy between the listed sex for the child

of the European trio, individual HG01683, and the inferred sex from FlexTyper and Peddy

(Fig 4F). We followed up on this observation and revealed that the individual is not an XY

male, but rather an XXY individual, and communication was made that resulted in the relabel-

ing of the individual within the online repository. The analysis time for extracting the queries

from the indexed reads for all WGS analysis can be found in S4 Table, highlighting that espe-

cially for informative subsets of queries, such as population discriminating sites, genotypes can

be recovered accurately and quickly (~10–15 minutes). Taken together, FlexTyper has the

capacity to provide accurate counts of observed reads matching two alleles over informative

SNP sites, with relevant utilities such as copy number estimation, sample identification, ances-

try typing, and sex identification.

Exploring creative uses of FlexTyper

To demonstrate the flexible utility of our k-mer-based searching method, we explored regions

of the genome which are challenging for read mapping and downstream analysis when repre-

sented within haploid, linear reference genomes. The two areas we chose to focus on include

contigs derived from a population but not present in the reference genome, and hypervariable

and homologous regions, where linear representations are known to perform poorly.

The contigs we chose to process include the “non-reference” contigs from a recent African

pan-genome publication [6]. These contigs, which were assembled from non-mapped reads,

collectively contain nearly 300 megabases of DNA, represented by ~125,000 contigs. We
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created queries of these contigs, and then searched them using the nine samples from our

ancestry WGS experiment using parameters of k = 50, s = 5, and uniqueRead = true. Unex-

pectedly, when we queried the African contigs across the children from three populations

(AFR, EAS, and EUR), we observed similar contig coverage across all three populations (Fig

5A). Comparing the contig counts directly between the African child against the European

and Asian children reveals a high correlation (Spearman Correlation, AFR_Child:EAS_-

Child = 0.730, AFR_Child:EUR_Child = 0.734) between these individuals from different popu-

lations, suggesting that the sequences within these contigs are not unique to the African

population (Fig 5B). Next, we sought to identify discriminating contigs within the ~125,000

non-reference contigs by filtering for those which consistently appear in one population (>10

counts in mother, father, and child), but had low coverage in the other two populations (<5

counts). Applying this to the three groups, we identified a set of discriminating contigs (Fig

5C). The African trio had 151 unique contigs, the East Asian trio had 60 unique contigs, and

only four contigs were unique to the European trio. In total, the analysis indicates that the Afri-

can-derived contigs are widespread across populations. Two limitations of our analysis

include: 1) FlexTyper was run in unique mode, so reads mapping across highly similar contigs

are discounted, and 2) FlexTyper does not account for local genome context, so it is possible

that some of the contigs are unique not due to specific sequence, but due to their placement in

the genome (e.g. structural variants). This application highlights the potential of FlexTyper in

filtering and querying for contigs unique to a subpopulation.

Recent tailored approaches to genotyping challenging genomic regions, which are difficult

due to their hypervariability in the population and/or high sequence similarity between

homologous genes, utilize unique k-mer counts to distinguish between alleles present in a sam-

ple [24,25]. As FlexTyper has the capacity to rapidly query k-mers and generate unique k-mers

across input queries, we decided to test FlexTyper’s utility in distinguishing between samples

for a locus known to be challenging: the killer-cell immune receptor (KIR) locus. We down-

loaded a curated set of gene-distinguishing k-mers for this locus which have been used, with

the k-mer counting tool KMC3, to identify the presence-absence of the 28 genes/alleles in the

KIR locus [25]. Using the FlexTyper function ksearch, we searched the nine WGS samples for

this set of k-mers, and then tallied the k-mers with>3 counts per gene (Fig 5D). While we did

not see many differences at the family level with this set, we did observe an outlier sample: the

mother in the East Asian trio. For the KIR3DS1 gene, she had several high-counting k-mers

which were absent in the other samples. KIR3DS1 is an alternate haplotype of the KIR3DL1

gene in the canonical reference genome, and is represented in the GRCh38 reference on an

ALT contig (chr19_KI270887v1_alt). By plotting a histogram of the counts for the nine indi-

viduals over both the KIR3DS1 and KIR3DL1 genes, we observed that the mother of the East

Asian trio is the only sample in this set with k-mer coverage over KIR3DS1, and consequently

has reduced coverage of the KIR3DL1 gene (Fig 5E and 5F). Taken together, this suggests that

the mother is heterozygous for the KIR3DL1 and KIR3DS1 alleles, while the rest of the samples

in this set are homozygous for the KIR3DL1 allele. This observation is enabled by the careful

selection of k-mers by Roe et al., and is a demonstration of how FlexTyper can utilize user

curated k-mers for genotyping within a challenging locus.

Discussion

Here we presented FlexTyper, a user-friendly tool which enables exploratory analysis of short

read datasets without the need to perform reference guided alignment. Our framework allows

the user to generate custom queries, or to directly search from a list of k-mers. This gives the

user complete flexibility to tailor the search inputs and parameters to the problem at hand. We
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demonstrated three common applications: depth of coverage analysis, accurate SNP genotyp-

ing, and sensitive detection of pathogen sequences. We then showcased the potential for Flex-

Typer to extract useful information from complex, hypervariable, or non-reference genomic

sequences. FlexTyper was designed with user simplicity in mind, but without comprising the

breadth of potential applications, and hence the tool is available for the creative use of geno-

mics researchers.

Fig 5. Explorative uses of FlexTyper. Two examples of the creative uses of FlexTyper within challenging regions. A) Density plots of counts for the African contigs for

the children from the three populations (left to right AFR, EAS, EUR). B) Scatterplot comparing the African contig counts for the AFR child against the EUR child

(pink) and the EAS child (teal). C) Heatmap in log-scale for population-specific contigs, clustered by sample similarity (columns) and contig count similarity (rows). D)

Heatmap showing the log10 transform of the sum of k-mer counts per gene, with genes as rows, and samples as columns. The two alleles, KIR3DS1 and KIR3DL1 are

labeled as rows on the left side. E) Overlayed histograms for the 9 samples, showing the frequency of the FlexTyper k-mer count for the KIR3DS1 allele. F) Overlayed

histogram showing the frequency of the FlexTyper k-mer count for the KIR3DL1 allele.

https://doi.org/10.1371/journal.pcbi.1008815.g005
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The rapid and accurate recovery of read depth enables innovative usage of FlexTyper in the

space of copy number variant profiling. We demonstrated that we could reproduce the depth

of coverage of a genomic region without the need for reference-based mapping. As microar-

rays begin to be replaced by genome sequencing assays, we envision that FlexTyper could be

extended to reproduce microarray-style outputs that are established in clinical labs. Further,

we show that when genomic queries with counts higher than the expectation arise, these events

correspond to repetitive genomic sequences. As such, FlexTyper may not only enable the

recovery of read depth in an accurate manner, but it can also inform the quality of a sequence

query as a “unique probe” for assessing genomic copy number.

The genotyping case study highlights how pre-alignment analysis of genome sequence data

can provide rapid insights into the properties of a sample. SNP genotyping was accurate across

the genome, allowing rapid identification of sample ancestry, sample relatedness in the trio set-

ting, and sample sex typing using Peddy [11]. Interestingly, applying Peddy to the output of

FlexTyper for open source trio data from the Polaris project revealed a mislabeling of the sex

for individual HG01683, which was reported and subsequently amended in the online data

repository (https://github.com/Illumina/Polaris/wiki/HiSeqX-Kids-Cohort). Since ancestry

and sex information can inform choices in downstream data processing, identifying these dis-

crepancies between labeled sex and inferred sex in a data-driven manner is a critical step of

pre-alignment informatics. For instance, mapping against the sample-matched sex chromo-

somes has been shown to improve performance [26,27]. As such, using FlexTyper, in combi-

nation with Peddy, on diverse datasets prior to reference-guided read alignment will lead to

improved results from mapping-based pipelines.

There is increased recognition of the important of pathogen detection. In both cancer pro-

filing [16] and public health studies [28], rapid determination of the presence of pathogen

sequences could obviate the need for full reference mapping. Some existing tools designed for

viral detection in sequencing data rely upon pre-indexed databases of viral and bacterial

sequences, sometimes including a phylogenetic relationship between genomes within the

index [18–20]. Two approaches, Centrifuge and Kraken2, have been applied to cancer

genomes to confirm the presence of viral pathogens, including Human papilloma virus

(HPV). We demonstrated that our approach compares favorably to Centrifuge, with a more

sensitive detection level, due to the ability to search for k-mers shorter than the read length

and the advantage of fine-tuned control over the searchable database. Comparing FlexTyper to

Kraken2, which doesn’t rely upon full read length queries, detection of the spiked-in pathogen

sequences was as good or better than Kraken2, with improved performance for detecting the

HPV-derived reads. Interestingly, both Kraken2 and Centrifuge had difficulties in detecting

HPV reads, both within mixed-virus and pure viral read sets. Here we only searched for viral

pathogens of interest, although other specific pathogen queries could be performed, such as

the presence of antibiotic resistance genes within a patient RNA-seq sample.

As the research community begins to move away from a single haploid reference towards

richer pan-genome representations, we anticipate that more diverse and creative uses for Flex-

Typer’s ‘reverse mapping’ approach will emerge. During our continued exploration of FlexTy-

per’s potential, we have identified a few possible applications. We focused on regions of the

genome which are challenging for traditional linear reference approaches, including a set of

sequences not present in the reference genome, and a highly polymorphic region with homol-

ogous genes. Using the set of contigs assembled from the African Pan-genome project, we

applied FlexTyper and observed similar sequence coverage over these contigs across three fam-

ilies from European, East Asian, and African ancestry. Surprisingly, we did not see higher

counts for the individuals of African ancestry, suggesting that the sequences may not be spe-

cific to the African population. A limitation of our analysis stems from the comparison at the
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kmer level, and we recognize that the placement within the genome could indeed be unique

for these contigs. We further filtered this set of contigs and identified a limited set of discrimi-

nating contigs, highlighting another relevant use case for FlexTyper. Beyond non-reference

contig searching, we explore the utility of FlexTyper in genotyping the polymorphic and

homologous genes within the KIR locus. We use a curated set of k-mers from a work by Roe

et al, and identify an alternate haplotype (namely KIR3DS1, present in the ALT contigs of

GRCh38) for the KIR3DL1 gene in one of the nine individuals. This genotyping demonstra-

tion with a curated set of k-mers highlights the potential for FlexTyper to be adopted by other

specialized methods tailored for challenging genomic regions.

The full breadth of possible applications of FlexTyper and its reverse mapping approach has

yet to be discovered, but we have highlighted multiple potential avenues here. For WGS read

data sets, it is feasible to genotype complex structural variants by searching for sequences over-

lapping breakpoints, such as those observed in a subpopulation, or events recurrently found in

cancer [29,30]. Within RNA-seq data, querying for exon-exon splice junctions in a rapid man-

ner can allow isoform quantification, as has been previously demonstrated [31,32]. Further, a

recent report showed the utility of k-mer-counting methods in resolving copy number variants

within paralogous loci and genes [33]. Another group showed the advantage of examining

depth of coverage at specific sites across the paralogous genes in Spinal Muscular Atrophy [34]

As FlexTyper is well suited for specific sequence recovery operations, scanning with prese-

lected query sequences such as defined by these studies can enable rapid detection. All of these

proposed applications help tackle challenges which are currently a burden for traditional refer-

ence-based mapping approaches.

We focused this report on the expansive utility of querying indexed read sets for interesting

and informative sequences, but recognize that speed and computational resources are an

important consideration in the adoption of the method. One obvious, but transient, constraint

on the utility of FlexTyper is the ability to generate the FM-index of a read data set. Our imple-

mentation utilizes the SDSL library, chosen for its stability, however as the FM-index is critical

to many aspects of genome scale analyses there have been strong efforts to develop more effi-

cient indexing algorithms. Recent methods have shown both dramatic increases in construc-

tion speed either through induced suffix sorting [35] or GPU-based construction algorithms

[36], and decreases in memory requirements [37,38]. Within our current framework, to try

and mitigate some of these issues, we built in methods to split the read set into smaller chunks,

each of which is indexed in serial. Although not currently implemented, it is clear that this

could be executed in parallel, if there is sufficient RAM available, as each index is generated

independently of other chunks. Furthermore, the nature of the reverse mapping approach

holds promise with massive parallelization approaches, including those involving GPU accel-

eration [39]. Moving forward, accelerations to the FM-index generation and reverse mapping

approach will result in faster genomic analysis pipelines than is currently possible with align-

ment-based methods.

Looking to the future, we see the k-mer-searching approach of FlexTyper as having great

utility when used in conjunction with emergent pan-genome and graph representations of the

reference genome [9,40,41]. Whether users seek to select a population specific reference graph

as the basis for read mapping, or to introduce Bayesian priors (edge weighting) within a pan-

population reference graph, knowledge of population markers spanning chromosomes will be

required to inform the processes. Furthermore, it is our expectation that pan-genome mapping

methods will ultimately use full text read-based indexes, to allow for data compression without

loss of information or functionality, while avoiding the plethora of issues facing approaches

that index a pan-genomic representation [42,43]. As the reference structure is enriched and

algorithms for use with pan-genome graphs mature, approaches such as FlexTyper, which
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enable the reverse mapping of informative sequences against a set of indexed reads, will be

instrumental in the initial steps of genome analysis pipelines.

Supporting information

S1 Fig. For the three trios (nine individuals), the output from Peddy is plotted to inform

relatedness. Relatedness comparison for the three trios correctly identifies the six relationships

of parent-offspring (orange squares) and correctly identifies a lack of relatedness for the other

comparisons.

(TIF)

S1 Table. Indexing times for WGS and RNA seq samples using FlexTyper. Columns include

sample id, sample type (WGS or RNAseq) with read pair info (e.g. 2x150), read count, number

of sub-indexes, maximum RAM used, wall time, time in seconds. For the WGS samples, we

list the time in seconds for the analysis with other tools including BWA mem, Samtools, and

DeepVariant.

(XLSX)

S2 Table. An exploration of parameter settings for the recovery of pathogen reads in pure

simulated viral samples. Indexed samples include EBV, HIV-1, FR751039, U21941, and

ERR2322364 (human RNA-seq sample). The viral samples are simulated to a depth of 100x

genomic coverage. Each subsection of the table is the analysis for an individual sample, which

has been searched with specified parameters. An example parameter string: k100s1m2000u_U-

niqRead, can be interpreted as k-mer length 100, step size 1, maximum occurrence 2000,

uniqueKmer parameter turned on, and unique read flag turned on. For each of the queries

(EBV, HIV-1, FR751039, U21941), the FlexTyper count in Single-end mode is listed. Last, the

search time for retrieving k-mers from the index is listed in seconds.

(XLSX)

S3 Table. Extended data for Fig 3, showing the results of the mixed viral analysis with

altered parameters for k, s, and unique reads. The sample (Patient 1–5), query strain (EBV,

HIV-1, U21941, FR751039, and TOTAL HPV as sum of U21941 and FR751039), expected sin-

gle end (SE) number of reads, expected paired end (PE) number of read pairs, k-mer length,

step size, boolean value for unique read parameter (UniqRead), FlexTyper Single-End count,

FlexTyper Paired-End count, Centrifuge paired-end count, and Kraken2 Paired-end count.

(XLSX)

S4 Table. FlexTyper search times for WGS samples. The operation (either Cytoscan search

or Ancestry search), number of queries, sample id, max RAM used for search, wall time, and

time in seconds. Parameter settings for search found in main text.

(XLSX)

S1 Supplemental Methods. Supplemental methods and detailed usage of the FlexTyper

tool.

(DOCX)
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