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Abstract

Temporary wetlands dominate the wet season landscape of temperate, semi-arid and arid regions, yet, other than their
direct loss to development and agriculture, little information exists on how remaining wetlands have been altered by
anthropogenic conversion of surrounding landscapes. This study investigates relationships between the extent and type of
habitat transformation around temporary wetlands and their water column physico-chemical characteristics. A set of 90
isolated depression wetlands (seasonally inundated) occurring on coastal plains of the south-western Cape mediterranean-
climate region of South Africa was sampled during the winter/spring wet season of 2007. Wetlands were sampled across
habitat transformation gradients according to the areal cover of agriculture, urban development and alien invasive
vegetation within 100 and 500 m radii of each wetland edge. We hypothesized that the principal drivers of physico-
chemical conditions in these wetlands (e.g. soil properties, basin morphology) are altered by habitat transformation.
Multivariate multiple regression analyses (distance-based Redundancy Analysis) indicated significant associations between
wetland physico-chemistry and habitat transformation (overall transformation within 100 and 500 m, alien vegetation cover
within 100 and 500 m, urban cover within 100 m); although for significant regressions the amount of variation explained
was very low (range: ,2 to ,5.5%), relative to that explained by purely spatio-temporal factors (range: ,35.5 to ,43%). The
nature of the relationships between each type of transformation in the landscape and individual physico-chemical variables
in wetlands were further explored with univariate multiple regressions. Results suggest that conservation of relatively
narrow (,100 m) buffer strips around temporary wetlands is likely to be effective in the maintenance of natural conditions
in terms of physico-chemical water quality.
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Introduction

Landscapes in human-populated regions have become inten-

sively altered by anthropogenic activities and this landscape

transformation has become a key driver of ecological systems

worldwide (e.g. [1–4]). Information on the effects of terrestrial

habitat transformation on wetland ecosystems is scarce, particu-

larly so for small temporary wetlands, often a numerically

dominant wetland type in seasonally dry areas [5,6].

Physico-chemical constituents of the water column (e.g. pH,

nutrients, conductivity) are regarded as potentially important

determinants of biotic assemblage composition in wetlands and

other freshwater ecosystems (e.g. [7–14]). More specifically, in the

south-western Cape (South Africa) De Roeck [15] established that

physico-chemical factors exert a significant structuring effect on

invertebrate assemblage composition in temporary depression

wetlands. Alteration of these factors through anthropogenic

disturbance has potential to mediate ecosystem changes in these

wetlands, through bottom-up effects on biota such as aquatic

invertebrates and amphibians. Previous studies have focussed on

permanent wetland types, from which various authors have

reported significant effects of habitat transformation on an array

of individual physico-chemical variables including turbidity, pH,

nutrients, conductivity and dissolved oxygen [16–22]. Very few

studies have specifically addressed relationships between terrestrial

habitat transformation and physico-chemical conditions within

temporary wetlands. Carrino-Kyker and Swanson [23] found a

significant positive relationship between agricultural land use and

conductivity levels in a study of thirty temporary pools in northern

Ohio, USA. Brooks et al. [24] studied four ephemeral forest pools

in Massachusetts, USA, and reported higher pH and conductivity,

and lower concentrations of dissolved oxygen, for two of the pools

occurring in urban areas compared with the two pools situated in

undisturbed areas. Rhazi et al. [25] found higher levels of nutrients

(nitrogen and phosphorus) in wetlands surrounded by agricultural

fields than for those in natural areas for a set of ten temporary

wetlands in Morocco. It appears that no universally consistent

impacts of habitat transformation on physico-chemical conditions

within temporary wetlands have been established thus far.

This study assesses the extent and nature of alterations to

wetland physico-chemistry associated with human landscape

transformation around temporary depression wetlands of the
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south-western Cape mediterranean-climate region of South Africa.

Wetland physico-chemical characteristics are presented in relation

to gradients of surrounding terrestrial habitat transformation

induced by human activities. The term ‘habitat transformation’ is

used hereafter with reference to the loss of natural terrestrial

habitat around wetlands due directly (e.g. agriculture) or indirectly

(e.g. alien invasive vegetation) to human land-use practices. A

broad approach was taken by sampling a large number of wetlands

across the south-western Cape region (n = 90). The survey design

aimed to sample wetland sites across gradients of habitat

transformation, defined in terms of the amount of surrounding

habitat converted to agriculture, urban area, or invaded by alien

vegetation. These are the three major agents of habitat transfor-

mation in the south-western Cape [26–28] and are all particularly

prevalent on the low-lying coastal plains of the region [29], thus

threatening temporary depression wetlands. The assessment of

alien invasive vegetation as a type of habitat transformation

around wetlands is a key element of the approach to this

investigation. The negative effects of invasive vegetation on the

quantity of groundwater available to aquatic systems in the region

have been well documented [30–33], yet empirical studies that

have addressed the influence of alien vegetation on surface water

quality (e.g. physico-chemistry) of aquatic systems (lentic or lotic)

are lacking. A single exception is the study of Bird et al. [34], who

studied a set of 12 temporary depression wetlands within a Sand

fynbos ecosystem in Cape Town, where the landscape has become

differentially invaded by kikuyu grass, Pennisetum clandestinum

Höchst. ex Chiov, and Port Jackson willow Acacia saligna (Labill)

Wendl. They found that replacement of indigenous Sand fynbos

habitat with alien vegetation results in lowered humic input to

wetlands, with knock-on effects on other wetland physico-chemical

constituents such as pH. The results of Bird and co-workers

indicate the potential for broader effects on wetlands in the region,

as a result of large-scale replacement of sclerophyllous fynbos

vegetation with invasive plant species. This study investigates such

broad-scale patterns, assessing whether the small-scale patterns

observed by Bird and co-workers are also salient across the region.

Despite a paucity of information on the principal drivers of

physico-chemical conditions in temporary depression wetlands,

certain key factors have emerged from the literature, which

include local geological substrate (soil properties), morphology of

the wetland basin, surrounding landscape topography, surround-

ing terrestrial vegetation type and local climate (for reviews see

[35–37]). Given that one or more of these driving factors were

expected to be significantly altered by human habitat transforma-

tion (e.g. soil physico-chemical properties may be affected by the

type of land use), we hypothesized that physico-chemical

conditions in the studied temporary wetlands would in turn show

significant association with changes in these driving variables and

thus we expected physico-chemistry to be affected by surrounding

habitat transformation. Specific relationships between each type of

habitat transformation and each measured physico-chemical

variable were explored to generate further hypotheses regarding

effects of habitat transformation on wetland physico-chemistry in

the region.

Methods

Ethics statement
Permission for fieldwork in the Agulhus National Park was

granted by South African National Parks. A scientific collection

permit was granted by Cape Nature, which allowed access to

conservation areas under control of the provincial administration

of the Western Cape and privately owned land in the province of

the Western Cape. This research did not involve capture or

handling of animals and therefore did not require approval of

animal care and use procedures. The field study did not create

effects on endangered or protected species.

Study area
Ninety isolated depression wetlands (sensu Ewart-Smith et al.

[38]) were sampled once during the winter-spring wet season (late-

July to early-October) of 2007. The south-western Cape is unique

in sub-Saharan Africa for having a mediterranean climate,

typically encompassing cool, wet winters and warm, dry summers.

The study area and selection of sites are described by Bird et al.

[39] in a concurrent study on macroinvertebrate assemblages that

utilised the same set of wetlands. Briefly, sampling covered an area

from Cape Agulhus in the south to St Helena Bay in the north and

incorporated three broadly distinguishable coastal plains (Figure 1).

Wetlands were grouped a priori according to their natural

(reference) state in terms of comparable soils and climate. Clusters

of comparable wetlands were established using the vegetation

groups of Rebelo et al. [40] as an indication of naturally

comparable wetland groups, given the intimate link between

vegetation type and local abiotic factors in the study region. In this

regard, five wetland clusters were sampled in the study region

(Appendix S1 in File S1), namely Sand fynbos (n = 44), Western

strandveld (n = 28), Shale renosterveld (n = 6), Ferricrete fynbos

(n = 6) and Sandstone fynbos (n = 6).

Habitat transformation
The assessment of transformed habitat around each wetland

was based on the quantification of the cover of natural vegetation

(untransformed land), alien vegetation (predominantly A. saligna

and P. clandestinum), agriculture and urban land within 100 and

500 m of each wetland [39]. An estimate of the areal cover of each

habitat category was obtained from circular areas corresponding

to 100 and 500 m radii from the edge of each wetland (i.e.

approximately 0.03 and 0.8 km2). These scales were chosen

because they could be accurately assessed on the ground without

using GIS data. For both scales, the cover of each habitat type was

estimated and assigned to one of four ordinal cover categories: 0 -

none; 1 – sparse cover (,33%); 2 – moderate cover (33–66%); 3 –

extensive cover (.66%). For those wetlands that were difficult to

survey for a 500 m radius on foot, satellite imagery (Google Earth,

accessed 2007) was combined with ground survey information, in

order to score the ordinal categories of habitat cover. All estimates

were made by the same person, in order to avoid inter-personal

judgment biases. Appendix S2 in File S1 reports the habitat

transformation scores for each wetland as raw data.

Environmental variables
In order to record the range of physico-chemical conditions in

each wetland, various biotopes were sampled. Biotopes were

differentiated based on the structural complexity of habitats, of

which four major types were encountered: complex vegetation

(generally submerged, inter-woven, rooted or non-rooted with fine

dissected leaves, including species such as Isolepis rubicunda, Stuckenia

pectinata, Chara glomerata and Paspalum vaginatum); simple vegetation

(typically rooted and emerging from the water surface, reed- or

sedge-like vegetation, including species such as Typha capensis,

Phragmites australis, Bolboschoenus maritimus and Juncus kraussii); open

water (no vegetation, deeper than 30 cm); and benthic un-

vegetated habitat (no vegetation, shallower than 30 cm). The

percentage surface area covered by each of these four different

biotopes in each wetland was recorded visually in the field. During

field sampling it was noted that a maximum of three biotopes

Habitat Transformation Affects Temporary Wetlands
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existed in any one wetland simultaneously. Thus, although all four

biotope types were encountered among wetlands during field

sampling, only three or fewer were represented within each

wetland.

A number of in situ physico-chemical variables were measured in

each of the biotopes within each wetland, producing three sets of in

situ physico-chemical measures per wetland. For sites with only

two biotopes, a double and a single set of physico-chemical

readings were taken in the more and less abundant biotopes

respectively. For sites where only one biotope covered the entire

wetland, three replicate sets of physico-chemical readings were

taken, with the aim of covering as much of the spatial extent of the

wetland as possible among each set. All physico-chemical readings

were taken at a standardized depth of 30 cm across all biotopes,

with the exception of readings taken from habitats ,30 cm deep.

Measurements were taken as follows: pH using a Crison pH25

meter; dissolved oxygen with a Crison OXI45 oxygen meter;

electrical conductivity (hereafter ‘conductivity’) with a Crison

CM35 conductivity meter; and turbidity using a Hach 2100P

turbidimeter. Temperature was recorded on the pH, oxygen and

conductivity meters, although for analytical purposes an average of

the readings across all three instruments was used.

Water column nutrient concentrations were measured at each

wetland. Five 1L surface water samples were collected from each

wetland, with the aim of covering the full spatial extent of each

site, and pooled to form a bulk 5L sample. This was then

thoroughly mixed and a 200 ml sub-sample was taken for analysis

of nutrients levels in the laboratory. Samples were stored

immediately in the dark at 4uC and upon return to the laboratory

were frozen at 218uC. All samples were analysed within 30 days

of collection from the field. NO3
2+NO2

2–N, PO4
3+–P and

NH4
+–N concentrations were estimated using a Lachat Flow

Injection Analyser. Approximate detection limits are: for PO4
3+

15 mg.L21 P; for NO3
2 and NO2

2 2.5 mg.L21 N; and for NH4
+

5 mg.L21 N. These variables are hereafter referred to in the text as

‘phosphates’, ‘nitrates + nitrites’ and ‘ammonium’ respectively.

The geographical position and altitude at the centre point of each

wetland were recorded using a Garmin eTrex Vista handheld GPS

device (point accuracy of 3 m). In order to make sure no

permanently inundated wetlands were included in the dataset,

only sites with maximum depth ,2 m were sampled. Most of the

deeper sites were re-visited in summer to confirm that they had

dried up. Appendix S3 in File S1 reports the raw environmental

data collected at each wetland.

Data analysis
Separate subsets of the dataset were used to analyse relation-

ships between each type of habitat transformation and physico-

chemical conditions in wetlands. These subsets were composed of

sites affected by only one type of habitat transformation (e.g.

agriculture). This was done to exclude sites that were affected by

habitat transformations other than the type of interest. Each

separate dataset was composed of least impaired sites (surrounded

by extensive indigenous vegetation) and those sites that were

impacted by varying degrees of habitat conversion for the given

Figure 1. The south-western Cape study region showing sites sampled during the 2007 wet season (n = 90). Study sites were
concentrated on three broadly distinguishable coastal plains (indicated by the bold circles). The region is bounded approximately by Cape Agulhus in
the south and St Helena Bay in the north (modified from Bird et al. [39], for illustrative purposes only).
doi:10.1371/journal.pone.0088935.g001
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transformation type. Only least impaired sites occurring within the

same wetland cluster as impacted sites were selected, to ensure

comparison with naturally similar wetlands in the area. Two

different but largely overlapping datasets were created for each

habitat transformation type, corresponding to the 100 and 500 m

scales of analysis, because in certain cases sites used in analysis of

impact at one scale were not applicable at the other. An exception

to this was for analyses relating to the amount of natural

(indigenous) vegetation cover around wetlands, as this criterion

was applicable to all cases.

Two broad types of response data were analysed in relation to

surrounding gradients of habitat transformation, namely physico-

chemical variables as a set (multivariate response) and individual

physico-chemical variables (univariate response). Table 1 provides

a list of the variables analysed in this study. The names used for

these variables in Table 1 are hereafter used in the text. For

multivariate analyses, response variables were first normalized and

then converted into a Euclidean distance matrix, which was

subsequently related to surrounding levels of habitat transforma-

tion. For the physico-chemical variables that were measured in situ

for each biotope, an average of the three readings per wetland was

used in subsequent analyses. Multivariate linear regressions were

used to relate the physico-chemical response matrices to the

habitat transformation predictor variables. Following the recom-

mendations of Somerfield et al. [41], the gradient analyses in this

study are best performed using regression rather than ANOVA

techniques, given that the predictor variables representing

gradients of impact are ordinal. Detrended Correspondence

Analysis (DCA) indicated that gradient lengths in the physico-

chemical dataset were best suited to linear rather than unimodal

analyses [42]. Multivariate regressions were performed using

distance-based Redundancy Analysis (dbRDA, [43,44]), a non-

parametric multivariate regression procedure based on any given

dissimilarity measure, in this case Euclidean distance. Patterns in

the multivariate physico-chemical data were visually explored

using Principal Components Analysis (PCA) ordination. Sites were

coded on each PCA plot according to three factors of interest,

namely surrounding overall levels of habitat transformation

(‘Natural 100 m’ and ‘Natural 500 m’, Table 1), the wetland

cluster into which they were classified (defined by vegetation type,

Table 1), and at a broader level, the coastal plain on which they

were situated (West Coast, Cape Flats and Agulhus Plain,

Figure 1). These factors were incorporated in order to assess the

variation in physico-chemical conditions among wetlands in

relation to habitat transformation gradients, as well as natural

spatial factors.

Univariate multiple linear regression models were used to test

for relationships between individual physico-chemical variables

and gradients of habitat transformation. The coefficient of partial

determination (partial r2) was incorporated into the univariate

regression results by squaring the partial correlation coefficient (r)

for the predictor variable of interest [45]. Univariate relationships

were visualized using partial residual plots (sensu Larsen &

McCleary [46]), which allow one to hold the covariables constant

in each model and also allow visual examination for heterogeneity

in the spread of residuals, deviations from linearity and outliers

[45,47]. Potential outliers were quantitatively assessed using

Cook’s distances (Cook’s Di, sensu Cook and Weisberg [48]),

where Di values .1 or Di values considerably larger than the rest

of the values would warrant an outlier [45]. All univariate and

multivariate regression models were conditioned upon covariables,

so as to partial out the effects of potentially confounding factors.

Covariables included the following measures for each wetland:

longitude and latitude (decimal degrees); time (days since first

sampling event); altitude (m); and vegetation type (five dummy

variables defined the wetland clusters). Where there was urban

land surrounding wetlands, there was often invasive vegetation

and vice versa. To help address this overlap, when assessing

relationships between invasive vegetation cover and wetland

physico-chemical conditions, the amount of urban land cover

was specified as a covariable, and vice versa when assessing the

effects of urban land cover as the primary variable. To maximise

parsimony, covariable subsets were pre-selected for each model

using step-wise regression of each response variable or matrix on

the full list of possible covariables (Table 1, Appendix S1 in File

S1).

Environmental variables were log10 transformed where appro-

priate, in order to achieve normality. A standard a level of 0.05

was used to assess the statistical significance of regression

relationships, except for tests related to agriculture, as the smaller

sample size of the two agricultural datasets (100 m: n = 24; 500 m:

n = 21) indicated that the possible lack of power to detect effects

could be countered by interpreting P values ,0.10 as offering

some evidence against the null hypothesis. Due to the possibility of

inflated Type 1 error for multiple testing the significance of

regressions was also assessed at a more conservative a level of 0.01,

as well as after sequential Bonferroni correction (sensu Holm [49]).

The Bonferroni procedure is likely to yield inappropriately

conservative results (inflated Type 2 error) for univariate testing

in this study, given the large number of tests conducted. Significant

results (for both a,0.05 and a,0.01) were interpreted with

caution if there were only one or two significant variables out of a

large group of tested variables [50,51]. DCA ordinations were

performed using CANOCO for Windows v4.5 [52]. All dbRDA

models (including the step-wise models) were implemented using

the DISTLM routine of the PERMANOVA+ package [53]. P

values for dbRDA models were tested by 9999 permutations of

residuals under the reduced model. PCA ordinations were

performed using PRIMER v6 software [54,55]. Univariate

multiple regressions (including step-wise models and partial

residual plots) were performed using STATISTICA v10 software

(Statsoft Inc. 2010, Tulsa, Oklahoma, USA).

Results

Physico-chemical characteristics of wetlands
Wetlands generally had a neutral pH or were slightly alkaline,

although several highly acidic sites were encountered in the Sand

fynbos cluster and several highly alkaline sites were spread among

the clusters (for pH ranges per wetland cluster see Appendix S4 in

File S1). Conductivity levels (as a proxy for salinity) were generally

low, with mean and median values per wetland cluster all below

5 mS.cm21. Turbidity levels were low on the whole and had mean

and median values across all wetland clusters ,10 NTU, except

for the Shale renosterveld cluster, which stood out for having

higher values (reflecting the naturally high quantity of clay

particles in these shale-derived soils). Dissolved oxygen concen-

trations varied between moderate and high levels (range: 4.05–

9.85 mg.L21) in terms of mean and median values among the

wetland clusters. Mean and median nutrient concentrations were

low, except for the high values reported for phosphates and

ammonium in Shale renosterveld wetlands (phosphates range:

12.03–999.41 mg.L21; ammonium range: 61.72–2803.87 mg.L21).

Several extremely nutrient-enriched sites were found in the Sand

fynbos cluster, as reflected by the very high maximum values for

all three nutrient variables in this cluster (nitrates + nitrites

maximum: 8241.59 mg.L21; phosphates maximum:

Habitat Transformation Affects Temporary Wetlands
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2827.36 mg.L21; ammonium maximum: 4231.53 mg.L21, Appen-

dix S4 in File S1).

Multivariate patterns
Physico-chemical conditions in wetlands were significantly

related (a,0.01 and also after Bonferroni correction) to the cover

of natural (indigenous) vegetation within 100 m (P = 0.002) and

500 m (P = 0.009), and the cover of alien invasive vegetation

within 100 m (P = 0.005) and 500 m (P = 0.005) (Table 2).

Wetland physico-chemistry and urban cover within 100 m of

wetlands were significantly related at a,0.05 only (P = 0.022).

Despite some of the results being significant, very little of the

variation in physico-chemical conditions was explained by these

land cover variables (range: 2.08–5.57%) in comparison to that

explained by the spatio-temporal covariables (range: 35.57–

43.09%). No significant relationships were found between

physico-chemical conditions in wetlands and urban cover within

500 m or agricultural cover within 100 and 500 m (Table 2).

Although the variables ‘Natural 100 m’ and ‘Natural 500 m’

were significantly related to physico-chemical conditions (Table 2),

the patterns are not obvious in the PCA plots (Figure 2a–b) with

no clear grouping according to the different levels of natural

Table 1. List of the physico-chemical response variables, habitat transformation predictor variables and spatio-temporal
covariables incorporated into the analyses of this study.

Variable type Variable scale Category/set Variable name Description

Response variables Quantitative
(continuous)

Physico-chemistry

pH Measured in situ for each biotope

Conductivity Measured in situ for each biotope

Temperature Measured in situ for each biotope

Turbidity Measured in situ for each biotope

Dissolved oxygen Measured in situ for each biotope

Nitrates + nitrites Integrated sample from across the wetland

Phosphates Integrated sample from across the wetland

Ammonium Integrated sample from across the wetland

Predictor variables Semi-quantitative
(ordinal)

Habitat transformation

Natural 100 m Areal cover of indigenous vegetation within 100 m radius of
wetland edge

Natural 500 m Areal cover of indigenous vegetation within 500 m radius of
wetland edge

Invaded 100 m Areal cover of alien invasive vegetation within 100 m radius
of wetland edge

Invaded 500 m Areal cover of alien invasive vegetation within 500 m radius
of wetland edge

Agriculture 100 m Areal cover of agriculture within 100 m radius of wetland
edge

Agriculture 500 m Areal cover of agriculture within 500 m radius of wetland
edge

Urban 100 m Areal cover of urban surface within 100 m radius of wetland
edge

Urban 500 m Areal cover of urban surface within 500 m radius of wetland
edge

Covariables Quantitative
(continuous)

Spatio-temporal

Longitude Taken at the wetland centre-point

Latitude Taken at the wetland centre-point

Altitude Taken at the wetland centre-point

Time Number of days since first sampling event

Categorical Spatio-temporal

Ferricrete fynbos *Indigenous terrestrial vegetation type

Sand fynbos *Indigenous terrestrial vegetation type

Sandstone fynbos *Indigenous terrestrial vegetation type

Shale renosterveld *Indigenous terrestrial vegetation type

Western strandveld *Indigenous terrestrial vegetation type

* Either presently or historically surrounding each wetland (vegetation types sensu Rebelo et al. [40]).
doi:10.1371/journal.pone.0088935.t001
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vegetation within 100 and 500 m. The PCA does not allow

visualization of patterns with the effects of covariables partialled

out (e.g. time, latitude), and thus may limit its usefulness in

visualizing the effects of habitat transformation when covariables

are involved in the analysis. In terms of physico-chemical

constituents, sites showed better grouping according to the

vegetation types in which they would naturally occur (i.e. the

wetland clusters), but none of the vegetation types formed clusters

that were clearly separated from the rest of the groups (Figure 2c).

Variation within certain groups was large, particularly for the

Sand fynbos cluster, which covered the broadest area of sampling

and showed by far the most variation in physico-chemical

conditions, as evidenced by scatter in the PCA plot among sites

for this cluster (Figure 2c). The Western strandveld was the second

largest cluster, showing the second-highest levels of physico-

chemical variation. With the exception of Sandstone fynbos, which

showed considerable variation among few sites, the remaining

small wetland clusters displayed correspondingly lower levels of

variation than for the bigger clusters. Physico-chemical conditions

among the three broad coastal plain areas appear to be more

distinguishable, although there is some overlap among areas

towards the centre of the ordination (Figure 2d).

Univariate patterns
pH, phosphates, dissolved oxygen and turbidity were negatively

related to indigenous vegetation cover within both 100 and 500 m

radii of wetlands (Table 3). With the exception of turbidity, the

same variables were positively related to invasive vegetation cover

within 100 m of wetlands. Only dissolved oxygen concentrations

were significantly related (positive slope) to invasive vegetation

cover within 500 m. Phosphate concentrations in wetlands were

positively related to agricultural cover within 100 m, whilst

ammonium concentrations were negatively related to agricultural

cover within 500 m. pH was positively related to urban cover

within 100 m of wetlands, but none of the variables were

significantly related to urban cover within 500 m. The relation-

ships presented in Table 3, although significant, are generally

weak, as inferred from the low amounts of explained variation in

the response variables due to the habitat transformation predictor

variables (partial r2 values mostly ,0.20 i.e. 20%, and none

.0.30). As observed for the multivariate regressions (Table 2), the

percentages of explained variation due to the spatio-temporal

covariables (see ‘r2 - Covariables’) in Table 3 were for the most

part considerably higher than that explained by the habitat

transformation predictor variables (see ‘Partial r2 – predictor’). Six

of the univariate relationships were significant at a,0.01

(Table 3a, 3e, 3i, 3l, 3o, 3p) and only two relationships

(Table 3a, 3i) were significant after sequential Bonferroni

correction.

The partial residual plots of Figure 3 offer visual representation

of the regression relationships reported in Table 3, holding the

covariables constant. Apparent in most of the plots is the

considerable amount of vertical (Y axis) scatter in the residual

points, which accounts for the low partial r2 values observed in

Table 3 and shows that relationships were generally weak. The

plots also allow identification of outliers or groups of high leverage

points. The pattern for pH appears to be highly leveraged by five

very low pH sites occurring in one particular area on the Cape

Flats, visible at the bottom of the plots in Figure 3a, 3e, 3i and 3p.

To test their influence, a post hoc analysis was run without these

sites and revealed that the partial relationships between pH and

natural vegetation cover within 100 and 500 m remained

significant at a= 0.05, but were substantially weaker (‘Natural

100 m’: t80 = 22.124, P = 0.037, partial r2 = 0.053; ‘Natural

500 m’: t80 = 21.994, P = 0.049, partial r2 = 0.047). Partial rela-

tionships between pH and invasive vegetation cover within 100 m,

and between pH and urban cover within 100 m, were rendered

non-significant by exclusion of these sites from the models

(‘Invaded 100 m’: t61 = 1.303, P = 0.198, partial r2 = 0.027;

‘Urban 100 m’: t29 = 20.187, P = 0.853, partial r2 = 0.001),

indicating a strong influence of these sites on the regressions.

Relationships between phosphate concentrations and habitat

transformation (Figure 3b, 3g, 3j and 3 m) showed high phosphate

values associated with several of the extensively transformed

wetlands, which may have influenced the reliability of these trends.

Examination of Cook’s distances for these models did not indicate

that any of these high phosphate values had undue leverage on the

trends (the maximum Cook’s Di value was 0.228). Dissolved

oxygen concentrations showed similar patterns as for phosphates,

although only one outlier was clearly apparent in these plots

(Figure 3c and 3f, Figure 3k and 3l). Cook’s distances once again

indicated that no points had particularly undue leverage in these

Table 2. Non-parametric multivariate regression tests (dbRDA) for relationships between habitat transformation gradients and
physico-chemical conditions in wetlands.

Predictor variable Res. df F P % Var Covariables % Var (covariables)

Natural 100 m 82 3.962 0.002*** 2.62 Time, longitude, latitude, altitude, SF, SR 43.09

Natural 500 m 82 3.106 0.009*** 2.08 Time, longitude, latitude, altitude, SF, SR 43.09

Invaded 100 m 65 3.529 0.005*** 3.26 Time, longitude, latitude, altitude 36.71

Invaded 500 m 66 3.441 0.005*** 3.18 Time, longitude, latitude, altitude 35.79

Agriculture 100 m 18 1.333 0.243 2.50 Time, longitude, latitude, SR 63.71

Agriculture 500 m 16 1.186 0.299 3.45 Time, FF, SR 50.04

Urban 100 m 31 2.927 0.022* 5.57 Time, longitude, latitude, altitude 35.47

Urban 500 m 49 1.879 0.090 2.24 Time, latitude, altitude, Invaded 500 m 39.37

Natural - indigenous vegetation; Invaded - alien invasive vegetation; Agriculture - agricultural land; Urban - urban area. The areal cover of these variables is represented
within 100 and 500 m radii of each wetland edge. To maximise parsimony, covariable subsets were pre-selected for each model using step-wise regression of each
response matrix on the full list of possible covariables (see Table 1). % Var - the percentage of variation in each Euclidean distance matrix (normalized physico-chemical
variables) that is explained by each respective predictor variable or covariable set in each model; Time – number of days since the first sampling event; SF – Sand fynbos;
SR – Shale renosterveld; FF – Ferricrete fynbos; Res. df – residual degrees of freedom for each model. Significant P values at a,0.05 (*), a,0.01 (**) and after sequential
Bonferroni correction (***) are indicated.
doi:10.1371/journal.pone.0088935.t002
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models (maximum Cook’s Di value: 0.373). Turbidity displayed

weak linear trends with the ‘Natural 100 m’ and ‘Natural 500 m’

variables (Figure 3d and 3h respectively), with low gradient slopes

and considerable spread in the residual points on either side of the

regression line. The positive relationship between turbidity levels

and urban cover within 100 m (Figure 3o) was clearer and showed

less scatter among points.

Discussion

Indigenous vegetation cover
The multivariate regression relationships presented in this study

indicate that human transformation of the landscape surrounding

temporary depression wetlands in the south-western Cape is

associated with physico-chemical conditions in these wetlands.

This statement refers to overall transformation of adjacent habitats

as represented by the remaining indigenous vegetation cover. The

pattern appears to be slightly stronger for habitat transformation

taking place within 100 m of wetlands than for 500 m, although

significant trends were seen at both scales. The contribution to the

percentage variation in physico-chemical conditions explained by

variables representing the different types of habitat transformation

was very low (2.08–5.57%, Table 2), despite being significant in

some cases. This explained variation was generally in the region of

one order of magnitude lower than that explained by the spatio-

temporal covariables in the multivariate models (35.47–63.71%,

Table 2). At the broad scale of this study, the primary influence on

physico-chemical conditions in wetlands thus appeared to come

from spatio-temporal factors, although a significant signal was still

detected for certain habitat transformation factors over and above

the spatio-temporal influence. This indicates firstly, that spatio-

temporal variation in physico-chemical conditions is high for these

wetlands, and secondly, that habitat transformation has played a

meaningful role (albeit relatively weak in comparison to that of

spatio-temporal factors) in altering the physico-chemistry of these

wetlands, as was hypothesized at the outset of this study.

Our results are in line with those of a similar study by Declerck

et al. [20] on the water quality of 99 small permanent ponds

(natural and artificial) affected by agriculture in Belgium. These

authors recorded land use at multiple spatial scales up to 3.2 km

around ponds and found that the maximum amount of variation

in a set of physico-chemical variables explained by crop land was

2.3% and by the amount of indigenous forest cover was 4%, both

measured at a scale of 100 m around ponds and both were

statistically significant. Their study also corroborates our finding

that habitat transformation influences on the physico-chemistry of

small, isolated wetlands appear to be strongest within 100 m of

wetlands, although only a slight difference was found between the

100 and 500 m scales in this study. Given that small isolated

wetlands have been shown elsewhere to drain localised catch-

Figure 2. Principal Components Analysis ordinations of the physico-chemical variables (normalized) for all study sites (n = 90). The
first two principal component axes are displayed. Sites are coded according to: (a) the areal cover of natural (indigenous) vegetation within a 100 m
radius of each wetland edge; (b) the areal cover of natural (indigenous) vegetation within a 500 m radius of each wetland edge; (c) the natural
vegetation type either presently or historically surrounding each wetland; and (d) the three broad coastal plains covered in this study.
doi:10.1371/journal.pone.0088935.g002
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ments, they would not be expected to be affected by broader

catchment-scale processes, as might be the case for rivers or lakes

[56]. This may well explain why the strongest relationships

between wetland physico-chemical conditions and surrounding

land cover are reported at the 100 m scale in this study and that of

Declerck et al. [20].

Negative linear relationships were reported between surround-

ing indigenous vegetation cover within 100 and 500 m of wetlands

and pH, phosphates, dissolved oxygen and turbidity levels in these

wetlands (Table 3). Turbidity has been shown to increase with

transformation of the surrounding landscape for other wetland

ecosystems, particularly as a result of sedimentation from

agricultural or urban runoff [16,20]. Replacement of natural

vegetation often leads to de-stabilization of soils [21] and thus

various forms of habitat transformation could be responsible for

increased sediment input to wetlands through increased surface

water flows during rain events. The negative relationship between

wetland pH and natural vegetation cover within 100 m is most

likely an effect of removing fynbos, which is known to release

acidic leachates into the soil [34,57–59]. The resultant physico-

chemical effect would be an increase in the pH of wetlands as

surrounding fynbos is lost. Bird et al. [34] found that the

replacement of indigenous Sand fynbos with alien vegetation

caused a reduction of humic input to wetlands, which in turn

affected other physico-chemical constituents such as pH. They

hypothesized that the alteration of pH with transformation of the

landscape is only likely to occur in areas where soils are naturally

acidic and the vegetation type is sclerophyllous fynbos. With

reference to the current study, the Western strandveld cluster

occurs on naturally alkaline soils due to the intrusion of calcareous

sediments of marine origin [40], and the vegetation is not

sclerophyllous, but dominated by succulents. Replacing this

vegetation type with alien vegetation would not lead to effects

on soil or surface water pH. However, Sand fynbos is a vegetation

type that occurs on well-leached, naturally acidic soils and the

vegetation itself is sclerophyllous, containing high levels of acidic

Figure 3. Partial residual plots displaying the relationships a – p presented in Table 3. Environmental response variables are depicted in
relation to the habitat transformation variables (predictors, x axes), holding the spatio-temporal covariables constant. Natural - indigenous
vegetation; Invaded - alien invasive vegetation; Agri - agricultural land; Urban – urban area. The areal cover of these variables is represented within
100 and 500 m radii of each wetland edge, measured on an ordinal scale: 0 – none; 1 – sparse; 2 – moderate; 3 – extensive. For more detailed
information regarding each model, refer to Table 3. Note: The residuals on the vertical axis of each plot come from the regression of the response
variable against all the predictors except the one of interest. The residuals for the horizontal axis of each plot come from the regression of the
predictor variable of interest against all other predictors. Each residual scatterplot shows the relationship between a given univariate response
variable and a predictor variable of interest, holding the other predictor variables constant. The regression equation for each relationship has been
indicated, with each slope being equal to the non-standardized regression coefficient (b) in the full multiple regression model in which the parameter
was included. ‘0.0000’ indicates that the intercept value is ,0.0001.
doi:10.1371/journal.pone.0088935.g003
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tannins as a defence against herbivory [40]. Therefore, the loss of

fynbos in this area can be hypothesized to raise soil and surface

water pH. Closer inspection of Figure 3a and 3e reveals that five of

the sites appeared to have a high leverage on the strength of the

trend between indigenous vegetation cover and the pH of

wetlands. These sites occurred inside the Kenilworth racetrack

on the Cape Flats and were among the most pristine wetlands in

the Sand fynbos cluster, due to an historical lack of disturbance

inside the racetrack [60–64]. The low pH values are thus most

likely a real reflection of the vast amount of undisturbed fynbos

vegetation surrounding these sites. Evidence presented in this

study provides further confirmation of the trend reported by Bird

et al. [34], although the effect appears to be patchy at the broader

scale and driven by sites occurring within Sand fynbos. One

cannot expect to observe this relationship in areas where the

natural vegetation type does not contain acidic tannins.

The negative relationships between surrounding indigenous

vegetation cover and dissolved oxygen levels were surprising given

that previous studies have found human disturbance of the

landscape to be generally associated with decreased levels of

oxygen and increased levels of nutrients in aquatic ecosystems (e.g.

[65–67]). Further investigation is required to establish any

underlying causes in this regard. The negative association between

phosphate concentrations and natural vegetation cover within 100

and 500 m could be due to the effects of alien vegetation,

agriculture or urban development.

Alien invasive vegetation
Considering the three types of habitat transformation separate-

ly, only invasive vegetation cover was significantly related to

physico-chemical conditions at both 100 and 500 m spatial scales

and thus appears to be an influential form of habitat transforma-

tion. Using various modelling approaches, Rouget et al. [28]

predicted that between 27.2 and 30% of remaining untransformed

habitat in the Cape Floristic Region is likely to be invaded by alien

plants over the next 20 years (i.e. from the time of their study). Our

results suggest that this predicted spread of alien invasive plants

into untransformed areas in the near future could impact

significantly on temporary wetland environments occurring in

those areas without ‘polluting’ or physically altering them. Our

results corroborate those of Bird et al. [34] in suggesting that

terrestrial alien plants are indeed affecting the water quality of

aquatic ecosystems in the region, despite numerous research efforts

that have focussed only on water quantity effects of alien plants.

Furthermore this has importance in the light of changes in biotic

assemblages that could potentially be induced by these physico-

chemical effects, given the potential importance of physico-

chemistry in structuring biotic assemblages such as invertebrates.

The positive association between dissolved oxygen concentra-

tions in wetlands and surrounding invasive vegetation cover within

100 and 500 m was difficult to explain and no literature appears to

report similar findings. Further investigation is required to explore

possible mechanisms governing this trend, although it should be

noted that these relationships were not convincing as reflected by

the low partial r2 values (0.079 and 0.123 at 100 and 500 m

respectively, Table 3). Phosphate concentrations (Appendix S3, S4

in File S1) were positively related to invasive vegetation cover

within 100 m, but not 500 m, suggesting a localised nutrient input

from invasive vegetation into groundwater. Once again the

relationship was weak as judged by the small extent of explained

variation in phosphates due to the predictor variable ‘Invaded

100 m’ (partial r2 = 0.090). Bird et al. [34] also reported a

significant positive relationship between alien vegetation cover

within 100 m of wetlands and water column phosphate concen-

trations in temporary wetlands. A possible mechanism governing

this trend is the elevation of soil phosphorus in adjacent terrestrial

soils due to infestation by alien shrubs, which may then leach into

wetlands. This is postulated based on the findings of Witkowski

and Mitchell [68], who reported a significant increase in soil

phosphorus in stands of Acacia saligna (also the dominant invader in

the current study) compared to surrounding natural lowland

fynbos vegetation. It was established that this was due to higher

litterfall from acacias, which released leaves into the soil with

significantly higher phosphorus content than those of lowland

fynbos vegetation [68].

The relatively strong (P = 0.001, partial r2 = 0.229, Table 3)

positive relationship between pH and alien vegetation cover within

100 m is most likely a consequence of the loss of natural

vegetation, which accompanies the transformation of habitats by

invasive alien vegetation. As discussed earlier, we hypothesize that

the loss of natural vegetation in the Sand fynbos area would cause

an increase in soil and surface water pH through the loss of acidic

tannins that characterise natural fynbos ecosystems. The predom-

inant disturbance type in this area was alien vegetation and thus it

was positively associated with levels of pH, even though it is not

expected that alien vegetation itself raises the soil pH, but rather

that it is associated with higher levels of pH as a consequence of

the loss of naturally acidic vegetation to the system.

Agriculture
Previous studies, mostly on permanent wetlands, have indicated

that agriculture has significant impacts on the water chemistry of

wetlands (e.g. [20,21,25,69]), whilst no significant effects were

detected in this study. This may, to some extent, be an artefact of

the relatively small sample size for the agricultural datasets (100 m

scale: n = 24; 500 m scale: n = 21), which reduces the statistical

power to detect an effect [70]. The primary agricultural areas of

the study region occur mostly on relatively fertile shale soils [40],

where wheat agriculture has transformed the landscape so

intensively that least impaired wetlands were difficult to find and

it was necessary to search for small fragments of remaining natural

vegetation that also happened to house temporary wetlands. In the

Sand fynbos cluster, least impaired sites were not too difficult to

find, and these were compared with sites occurring within pasture

areas (the predominant form of agriculture in this area). However,

the difficulty in this case was in finding enough sites within

moderately and extensively transformed pasture areas. Our data

on agriculture is thus limited and although no effect on wetland

physico-chemistry was found, this should be interpreted with

caution until a larger set of data is available. The lack of un-

impacted depression wetlands that could be found within the

extensively transformed wheat farming areas highlights the plight

of these wetlands in lowland agricultural areas.

Urban development
The association between urban cover within 100 m and

physico-chemical conditions in the studied wetlands is in line with

the few previous studies which have addressed the topic for

temporary wetlands [18,24], however certain affected variables

appear to be different. The significant positive relationship

between amount of urban area (within 100 m in this study) and

wetland turbidity has been reported elsewhere [24,71] and could

be attributed to sedimentation from increased surface runoff,

amongst other factors. The positive relationship between pH and

urban cover within 100 m is once again likely to be due to the rise

in pH associated with the loss of fynbos vegetation, as habitat is

converted to urban surfaces. It was surprising that nutrient

concentrations were not associated with surrounding urban cover,
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as previous literature has reported this for other temporary

wetland systems [18,24] and it was expected that the major form

of disturbance for urban-exposed wetlands would be in the form of

increased nutrient levels. Furthermore, it was expected that effects

of urban development would extend beyond 100 m, given the

intensity of this land use, and that a significant association would

have been found between physico-chemical conditions and urban

cover within 500 m. Follow-up work focussing on urban-

encroached temporary wetlands in the area may help to establish

why nutrient levels are not elevated in urban-impacted wetlands

relative to unimpacted wetlands.

Spatial patterns of wetland physico-chemistry
The PCA ordinations indicated that the spatial scale of

sampling was positively associated with the amount of variation

in physico-chemical conditions in the temporary wetlands.

Although wetland clusters did not clearly separate out on the

basis of their physico-chemical constituents, the amount of

variation within each cluster was linked to the spatial area

covered. The ordinations further indicated that the spatial scale

with the clearest pattern of influence on the physico-chemical

variables was at the level of broad latitudinal regions (Agulhus

Plain, Cape Flats and West coast, Figure 2d). This appears to be

consistent with the above-mentioned pattern of increased variation

with increased spatial scale and reinforces the pattern of a link

between spatial extent of sampling and increasing variation of

physico-chemical conditions in the region. This is perhaps not

surprising given that one expects more variation in physico-

chemistry as the area sampled broadens, due to an associated

increased variation in natural environmental factors such as

geology and local climate. However, very little information exists

on these basic aspects of spatial variation of environmental

conditions in temporary wetlands of the region (but see [15,34,72])

and thus it is important to document such patterns. There is a

certain degree of confounding from temporal differences between

clusters (they were sampled sequentially), which cannot be

accounted for in the PCA ordinations, but which were partialled

out of the multiple regression models.

Conclusions and recommendations
Significant physico-chemical signals (both multivariate and

univariate) for effects of habitat transformation on temporary

wetlands were detected over and above strong spatio-temporal

influences in this study, confirming the hypothesis stated at the

outset. We acknowledge that the dataset upon which our

conclusions have been drawn does contain a degree of spatial

and temporal confounding due to the sampling of wetlands over a

period of several months and over a fairly large geographical area.

However, this was largely unavoidable given the scale of the study

and we have best accounted for spatio-temporal confounding

through explicit incorporation of covariables into statistical

models. Further studies at smaller spatial scales and better

accounting for temporal variation are suggested to elucidate more

specific information on the nature of the impacts of habitat

transformation on temporary wetland ecosystems (e.g. [34]). The

potential knock-on effects on wetland biota of the region due to

physico-chemical changes associated with habitat transformation

should also be investigated to help further understand the extent of

ecosystem impacts (e.g. macroinvertebrate assemblages, [39,73]).

Our data indicate that the physico-chemical environment of these

temporary wetlands is significantly influenced by human transfor-

mation of natural habitat within adjacent landscapes (,500 m).

Relationships were generally stronger at the scale of 100 m around

wetlands than for 500 m, indicating that preservation of narrow

buffer strips of indigenous vegetation around these wetlands may

afford significant protection of water quality. Restoration of even

small fragments of terrestrial vegetation surrounding temporary

wetlands is likely to yield significant improvements in water quality

towards the original least impaired state.
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Data for the candidate covariables incorporated into the analyses

of this study. Time was incorporated as a quantitative covariable
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indigenous vegetation; Invaded – alien invasive vegetation;
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