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Abstract: Heat shock proteins (HSPs) constitute a large family of molecular chaperones classified
by their molecular weights, and they include HSP27, HSP40, HSP60, HSP70, and HSP90. HSPs
function in diverse physiological and protective processes to assist in maintaining cellular homeostasis.
In particular, HSPs participate in protein folding and maturation processes under diverse stressors
such as heat shock, hypoxia, and degradation. Notably, HSPs also play essential roles across
cancers as they are implicated in a variety of cancer-related activities such as cell proliferation,
metastasis, and anti-cancer drug resistance. In this review, we comprehensively discuss the functions
of HSPs in association with cancer initiation, progression, and metastasis and anti-cancer therapy
resistance. Moreover, the potential utilization of HSPs to enhance the effects of chemo-, radio-,
and immunotherapy is explored. Taken together, HSPs have multiple clinical usages as biomarkers for
cancer diagnosis and prognosis as well as the potential therapeutic targets for anti-cancer treatment.
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1. Introduction

Cancer is a major public health concern in the world. The report by World Health Organization
estimated for 18.1 million new cancer cases and 9.6 million cancer deaths in 2018 [1]. During past few
decades, surgical therapy, chemotherapy, radiotherapy, and immunotherapy have considerably been
developed. However, ongoing treatments are met with the limitations due to treatment-induced cellular
genetic and biochemical changes that confer treatment resistance [2]. Therefore, there is a growing need
for developing new therapeutic strategies and discovering molecular targets for effective cancer treatment.

Many studies on cancer biology have revealed lots of potential targets for cancer therapy. One of
these is a molecular chaperone, which is a class of proteins known as heat shock proteins (HSPs).
HSPs are highly conserved in all mammalian cells and participate in protein quality control by
promoting accurate folding of newly synthesized proteins and refolding of denatured proteins under a
variety of intracellular and extracellular stressor conditions. Such conditions include sudden changes in
temperature, exposure to high levels of reactive oxygen species (ROS), and significant cellular damage
affecting structure and stability of proteins [2]. Therefore, HSPs function as the first line of defense
against stress-associated cellular challenges. Intriguingly, studies have shown the abnormal expression
levels of HSPs in different types of cancer, including prostate, bladder, breast, ovarian, colorectal,
and lung cancers [3–5]. Since cancer cells require many metabolic needs for progression and invasion,
the modulation of HSPs to meet these ends is a requirement [6,7]. Accordingly, the mechanisms by
which HSPs regulate cancer cell proliferation, invasion, metastasis, and evasion of apoptosis have been
investigated [5,8,9]. HSPs have also been found to promote resistance to anti-cancer therapies such as
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chemotherapy and radiotherapy [10,11]. Due to these vast associations with cancer development and
treatment, targeting HSPs has been suggested as a potential strategy for anti-cancer therapy.

In this review, we comprehensively summarize the cancer-related biological functions of HSPs,
particularly focusing on recent findings. In addition, the utilization of HSPs in the context of cancer
treatment is discussed as a promising method for effective cancer treatment.

2. Overview of Heat Shock Proteins (HSPs) as Agents of Cancer Development

Heat Shock Proteins (HSPs) are a group of proteins that function to maintain cellular homeostasis
in response to stressors such as hypoxia, anoxia, high temperature, drugs, and other chemical agents
that induce protein denaturation [3,12]. They facilitate protein folding and maintain protein structures
that regulate cellular metabolisms that are essential for cell survival and proliferation. At the same time,
cancer cells hijack the protective roles of HSPs during carcinogenesis [13]. HSPs are classified on the
basis of molecular weights. In this review, we focus on the best studied HSPs, which are HSP27, HSP40,
HSP60, HSP70, and HSP90, and their roles in relation to cancer are summarized in Figures 1 and 2.

Figure 1. A schema illustrating the overview of heat shock proteins (HSPs) in cancer development.
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Figure 2. A schema illustrating the multiple signal pathways that are altered by heat shock proteins
(HSPs) in cancer.

2.1. Role of HSP27 as an Upstream Regulator of Oncogenic Pathways

HSP27 (HSPB1) is a type of small HSPs (12–43 kDa) that work independently of ATP. Induced
by heat shock, environmental, and pathophysiological stressors, HSP27 forms multimeric complexes
and stabilize denatured or aggregated proteins and return them to their original form [14]. Other
functions of HSP27 include direct interference with apoptotic pathway and regulation of cytoskeleton
dynamics [15,16]. Whereas its primary function is to promote cellular homeostasis under stressor
conditions, overexpression of HSP27 is closely related to tumorigenesis, metastasis, and invasiveness
in various cancers such as head and neck squamous cell carcinoma, pediatric acute myeloid leukemia,
breast cancer, and colorectal cancer [17–20]. HSP27 has been identified as an important regulator of
the Salvador–Warts–Hippo pathway (Hippo pathway), which controls tumor initiation, progression,
cancer stem cell programming, and metastasis. The elevated expression of HSP27 increases the
nuclear localization of the Hippo pathway transcription factor, YAP, which activates oncogenic
and metastatic pathways, including TGF-B/SMAD, WNT/B-Catenin, and ILK signaling pathways.
The Hippo pathway-associated role of HSP27 has been demonstrated in various tumors, including
prostate, breast, and lung cancers [21]. Sumoylation, a reversible post-translational modification by the
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small ubiquitin-related modifier (SUMO) plays an essential role in cancer development through the
modulation of DNA damage response, cell cycle progression, metastasis, and apoptosis, accompanied
by upregulation of HSP27 [22]. The increased expression of HSP27 also stimulates epidermal growth
factor (EGF)-induced cell migration, invasion, and matrix metalloproteinase (MMP) activity as well as
the expression of epithelial to mesenchymal transition (EMT) markers via activation or overexpression
of AKT, GSK3β, and β-catenin [23]. Furthermore, HSP27-mediated modulation of intracellular calcium
influx enhances colorectal cancer cell proliferation, migration, and invasion [24].

2.2. Oncogenic Role of HSP40 in Proliferation and Metastasis of Cancer

HSP40 belongs to DNAJ family subcategorized into three subclasses, which are DnaJA (DNAJA),
DnaJB (DNAJB), and DnaJC (DNAJC) [6]. HSP40 assists in protein folding, unfolding, translation,
translocation, and degradation [11,25,26], as well as ATPase activity of HSP70 [27]. Many of the
HSP40 family members are overexpressed in numerous human cancer types, such as colorectal, gastric,
and lung cancers [28–31]. Clinicopathologic analyses have shown the markedly increased expression
of DnaJA1 in colorectal cancer (CRC) tissues, particularly those of which had developed metastases in
lymph node and distant organs. Investigating the functional mechanism of HSP40 in cancer, Yang et al.
demonstrated that Hsp40 DNAJ member A1 (DnaJA1) is transcribed by E2F transcription factor 1 and
promotes cell cycle progression by inhibiting ubiquitin degradation of cell division cycle protein 45
(CDC45) in CRC [32]. DNAJ member B6 (DnaJB6) has also been elucidated as a poor prognostic factor
for CRC patients, where its overexpression was observed in 39% of the CRC patients, especially in
those at the stage of cancer IV compared to the stages I–III. In addition, Zhang et al. showed that the
mechanism of DnaJB6-mediated enhancement of invasion and metastasis of CRC is by hyper-activating
pERK-IQ-domain GTPase-activating protein 1 (IQGAP1) signaling axis. Inhibiting DnaJB6 decreases
the IQGAP1 expression and the phosphorylation of ERK in CRC cells in vitro and suppresses the
lung metastases of CRC in vivo [29]. In addition, DNAJ member c12 (DnaJC12) is associated with the
aggressive phenotype of gastric cancer. The transcriptome analysis has identified that the increased
expression of DnaJC12 is correlated with lymphatic invasion, infiltrative growth type, lymph node
metastasis, and progression of gastric cancer. The patients with increased levels of DnaJC12, therefore,
have higher morbidity and mortality rates, suggesting DnaJC12 as a potent therapeutic target [30].

2.3. Role of HSP60 in Cancer Development through Regulation of Mitochondrial Biogenesis

As one of the most conserved proteins from bacteria to mammals, HSP60 (HSPD1) plays an essential
role in mitochondrial protein import and quality control machinery [11,33]. At the same time, HSP60
may function as a promoter and suppressor of cancer formation depending on disease type. In ovarian
cancer (OC), the increased expression of HSP60 enhances tumor progression by stabilizing mitochondrial
homeostasis and activating mTOR signaling pathway [34]. In glioblastoma, inhibition of HSP60 leads
to the increased formation of reactive species (ROS) in mitochondria, subsequently exerting the
complex I inhibitor retenone-induced AMPK activation, which in turn suppresses mTORC1-mediated
phosphorylation of S6K and 4EBP1 and deactivates the protein translation machinery and cancer cell
growth [33]. The HSP60 family also includes a type II hetero-oligomeric chaperonin (TRiC/CCT), which
assists in the folding of about 10% of cytosolic proteins that are not folded by other simpler chaperone
systems [35]. TRiC/CCT is associated with pathogenesis of many types of cancers through modulation
of TRiC client proteins such as STAT3, cyclins B and E, p53, and Von Hippel-Lindau [36–39]. TRiC/CCT
regulates the folding and function of STAT3 while activation of STAT3 is a common basal property
of several solid and hematologic tumors. Abnormal activation of STAT3 induces many oncogenic
transcriptional processes related to promotion of cell survival, progression, and angiogenesis [36,40–42].

In contrast, the excess formation of ROS that results from mitochondrial dysfunction may also
drive primary cancer cells to undergo EMT and enhance their metastatic potentials. When the
clinicopathological characteristics of hepatocellular carcinoma (HCC) were analyzed, the expression of
HSP60 was significantly decreased in HCC tissues compared to peritumor tissues in the patients with
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poor prognosis. The low HSP60 cancer/pericancer (C/P) expression ratio was found to be correlated with
the dedifferentiation of cancer cell for EMT and malignance. Increasing HSP60 expression, therefore,
limits the dedifferentiation process and the metastatic potential of HCC in vitro and in vivo [43].
Similarly, the low HSP60 C/P ratio has also been observed in clear cell renal cell carcinoma (ccRCC)
patients. Consistently, overexpressing HSP60 in ccRCC cells restored the mitochondrial function and
ROS levels, limiting the metastatic ability of ccRCC in a mouse model [44].

2.4. Role of HSP70 in Cancer Development

Encoded by HSPA genes, HSP70 consists of 13 members that play essential roles in protein folding,
protein homeostasis, and promotion of cell survival under various stresses [45]. In cancer cells, HSP70
functions to induce mitotic signals and suppress apoptosis as well as oncogene induced senescence [46].
The increased expression of HSP70 has been indicated as a poor prognostic marker for a variety of
cancers, including breast, lung, ovarian, colorectal, and pancreatic cancers and glioblastoma [45,47–50].
Among HSP70 family, five members have been especially well examined in association with cancer,
which are stress-inducible HSP70s, HSP72 (HSPA1) and HSP70B (HSPA6), and constitutively expressed
HSP70s, HSC70 (HSPA8), GRP75/Mortalin (HSPA9), and GRP78 (HSPA5) [51,52]. Recently, it has been
found that HSP72 (HSP70) plays an essential role in organizing kinetochore-associated microtubules for
amplified centrosomes, a cancer specific phenotype which, if not stabilized, triggers mitotic catastrophe
and apoptosis [53]. In addition, increased levels of HSP70B (HSP70) contribute to breast cancer
metastasis through upregulation of mesenchymal markers such as N-cadherin, MMP2, SNAIL, and
vimentin [54]. Furthermore, HSC70 overexpression enhances the glioma cell proliferation, migration,
and invasion through phosphorylation and activation of FAK, Src, and Pyk2. [55]. As extensively
studied in relation to cancer, Mortalin is overexpressed in a variety of tumors, including breast,
pancreatic, lung, and ovarian cancers, and it is associated with multiple processes of carcinogenesis,
which include the inactivation of tumor suppressor p53, deregulation of apoptosis, activation of
EMT, and induction of cancer cell stemness. [56–60]. GRP78, a resident protein in endoplasmic
reticulum (ER), is also overexpressed in multiple cancers, which are basally subject to ER stress.
GRP78 serves as a survival factor for cancer cells as it prevents ER-stress related autophagy and
apoptosis [11]. In HSP70-overexpressed cancer cells, HSP70 may translocate to plasma membrane
or can be extracellularly released, where it mediates antitumor immune responses [61]. Although
the function of extracellular HSP70 regarding carcinogenesis is largely unknown, the extracellular
form may provide an additional advantage to cancer cells by stimulating the immune system to
remove the unwanted cells from circulation [62]. Intriguingly, extracellular HSP70 forms the activation
complex with various co-chaperones, including HSP90α, Hop, and HSP40, which together promote
the migration and invasion of the breast cancer cells via the enhanced activity of MMP2 [63]. HSP70
can also be localized on the endolysosomal membrane of cancer cells and serves to resist lysosomal
cathepsine-induced cell death [64].

2.5. Role of HSP90 in Cancer Development

HSP90 is the most studied HSP family for its numerous implications in cancer development.
Like HSP27 and HSP70, HSP90 family inhibits cellular apoptosis and plays important roles in the
folding, stabilization, activation, and proteolytic degradation in multiple cancers [65]. HSP90 family
consists of five members that are encoded by the HSPC1-5 genes which modulate tumor growth,
adhesion, invasion, metastasis, angiogenesis, and apoptosis [51]. Many studies have reported that
HSP90 is often overexpressed and associated with poor prognosis in multiple tumors, including
cholangiocarcinoma, lung, gastric, and breast cancers and glioblastoma [8,66–69]. The increased
expression of HSP90 promotes carcinogenesis through regulation of correct folding, stability,
and function of numerous oncogenic proteins. HSP90 exerts the structural stabilization of the mutated
form of p53, which suppresses the growth arrest and apoptosis in response to cell stressors such as DNA
damage [70]. The increased expression of HSP90 promotes the activation of oncogenic protein kinases,
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which are JAK2/STAT3, PI3K/AKT, and MAPK, and facilitates the cancer cell progression [71]. It has
also been demonstrated that HSP90 physically interacts with the promoter of human telomerase reverse
transcriptase (hTERT), whose expression is frequently enhanced during cellular immortalization, and
is responsible for the enhanced telomerase activity in cancer cells [72]. In addition, HSP90 activates
HIF-1α and NF-kB, which together enhance the oncogenic events such as cancer cell EMT, invasion,
and motility that together confer metastasis of cancer [73]. Furthermore, HSP90 interacts with and
inhibits the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the rate-limiting
enzyme of mevalonate pathway that is essential for cancer progression [74]. Since HSP90 serves to
promote the transcription and expression of vascular endothelial growth factor receptors (VEGFRs),
the major receptors involved in endothelial cell-dependent tumor angiogenesis, HSP90 overexpression
leads to the enhanced proliferation, migration, invasion, and tube cell-dependent tumor angiogenesis
in vitro and in vivo [75]. In breast cancer, increased levels of HSP90 are often detected, and HSP90
functions to stabilize the heightened activation of estrogen receptor (ErbB)-dependent PI3K/AKT and
ERK signaling pathways. This effect reverses the anti-cancer effects of the hormonal drug Fulvestrant
that aims to deactivate the pathways [76]. In addition, HSP90 plays a critical role in prostate cancer
formation as it serves to stabilize androgen receptor in a conformation with better affinity for androgen.
Therefore, heightened levels of HSP90 are detected in prostate cancer cells [77].

2.6. Role of HSF1 in Cancer Development

Heat shock transcription factor 1 (HSF1) is a master regulator of all heat shock responses and
overexpressed in various cancers [78]. In fact, the increased expression and activity of HSF1 are
observed in a variety of cancers, such as prostate and breast cancers, in advanced stages, suggesting
HSF1 as an important regulator of tumor progression and metastasis [79–83]. As the upstream
modulator of various pathophysiological proteins such as HSP70, HSP90, MIF, Bcl2, and Bax, HSF1
assists in multiple parts of malignancy, including proliferation, migration, invasion, and inhibition
of apoptosis [84,85]. Furthermore, HSF1 functions to allow cancer cell formation and progression
by inducing genomic instability and stabilizing mitotic spindle organization through regulation of
Cyclin D, p21, and p27 during mitosis [86–88]. It has recently been reported that the phosphorylation
of HSF1 by PIM2, which interrupts the binding of the E3 ligase to HSF1, enhances the stability
of HSF1, and promotes HSF1 binding to PD-L1 promoter. The resulting overexpression of PD-L1
enhances the breast cancer growth and tumorigenesis in vitro and in vivo [89]. In addition, Family with
sequence similarity member C (FAM3C) is a commonly known interleukin-like EMT inducer, and it has
been demonstrated that the upregulation of HSF1 is the underlying mechanism of FAM3C-mediated
tumorigenesis [90]. In gastric cancer, the overexpression of HSF1 has been observed in the patient
samples, suggesting HSF1 to be the poor prognosis factor [91,92]. Regarding cancer cell defense
mechanism, it has been shown that HSF1 forms a positive feedback loop with pyruvate dehydrogenase
3 (PDK3) to drive chemoresistance of cancers [93]. In hepatocellular carcinoma, HSF1 reduces the
anti-cancer effects of epirubicin and increases the cell viability by promoting protective autophagy
through upregulation of ATG4B expression [94].

3. Role of Heat Shock Proteins in Chemotherapy Resistance

As HSPs play protective roles in response to stress conditions that induce protein denaturation
and apoptosis, HSPs also play important roles in inducing cancer cell resistance to various drugs used
in anti-cancer chemotherapy [35]. In this review, their roles in chemotherapy resistance in different
cancer types are discussed and summarized in Table 1.
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Table 1. Role of heat shock proteins in chemotherapy resistance.

Name Cancer Type Findings Reference

HSP27

Squamous cell carcinoma
of tongue

Induction of multidrug-resistance by hyperactivating NF-κB
signal and suppressing mitochondrial caspase signal

Reduction of chemoresistance via HSP27 knockdown and its
antibody treatment

[95]

Ovarian cancer Induction of cisplatin resistance by inhibiting p21 via
activation of AKT pathway [96]

Laryngeal cancer cell Induction of chemoresistance to cisplatin and staurosporin by
delaying cell growth and remodeling actin polymerization [97]

Pancreatic cancer Induction of chemoresistance to gemcitabine by activation of
Snail and ERCC1 and decrease of E-cadherin [98]

Lung cancer
Blockage of TGF-β-mediated cisplatin resistance and decrease
of cell viability, and increase of cell apoptosis by knockdown

of HSP27
[99]

Lung cancer stem cells
Decrease of apoptotic response treated with superoxide,

cisplatin, gemcitabine by activating HSP27/p38/MAPKAK2
and inactivating apoptosis signal

[100]

HSP40

Ovarian cancer Induction of multidrug resistance, such as paclitaxel,
topotecan, and cisplatin [101]

Renal cell carcinoma Induction of chemoresistance to docetaxel by DnaJB8 [102]

Malignant pediatric
brain tumor

Inactivation of DnaJD1, potential role in pathogenesis and
chemotherapeutic resistance [103]

HSP60
Ovarian and bladder

cancer Induction of chemoresistance to oxaliplatin and cisplatin [104]

Colorectal cancer Enhancement of drug sensitivity to 5-FU by inhibiting HSP60 [104]

HSP70

Lung and ovarian cancer,
osteosarcoma Induction of chemoresistance to cisplatin and 5-FU [105–108]

Ovarian cancer Enhancement of drug sensitivity to cisplatin by increasing
mitochondrial cytochrome c release via inhibition of Mortalin [109]

Colorectal and ovarian
cancer

Acquirement of 5-FU resistance via regulation of
PI3K/AKT/mTOR and c-Src/LSF/TS signal by GRP78 [108,110]

Cervical cancer Induction of apoptosis by regulating mitochondrial related
proteins via GRP78 knockdown [111]

Osteosarcoma Decrease of HSP70 expression by miR-223, deactivation of
JNK/JUN signal, and enhancement of cisplatin sensitivity [106]

Non-small cell lung
cancer

Promotion of cellular resistance to EGFR tyrosine inhibitors by
enhancing gene mutation and tumor heterogeneity via

inhibition of HSP70
[112]

HSP90

Osteosarcoma
Induction of chemoresistance by inducing autophagy via

PI3K/AKT/mTOR pathway and inhibiting of apoptosis via
JNK/p38 pathway

[113]

Colon cancer Acquirement of drug resistance by activating HSP90 client
proteins, such as EGFR, IGF-IR, and Src [114]

Ovarian cancer Regulation of various drug resistant genes, such as LRP, GST-π,
p53, bcl-2, survivin, ERCC1, XRCC1, BRCA1 and BRCA2 [115]

Pancreatic cancer
Induction of drug resistance to 5-FU and gemcitabine by
regulating AKT and MAPK and enhancing apoptosis via

inhibition of HSP90
[116]

Breast and gastric cancer AUY-022 (HSP90 inhibitor), increased effects of lapatinib via
inhibition of HER2 and AKT pathway [117]

HSP27 is associated with chemoresistance and poor prognosis in multiple cancers, including
gastric, liver, prostate, lung, and colorectal cancers [16]. HSP27 enhances multidrug-resistance in
squamous cell carcinoma of tongue (SCCT) through hyperactivation of NF-κB. [95]. In ovarian cancer,
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the increased expression of HSP27 induces cellular resistance against cisplatin therapy by inhibiting
p21 transfer from the nucleus [96]. In laryngeal cancer cells, the overexpression of HSP27 exerts
cellular resistance against various cytotoxic agents, such as cisplatin and staurosporin, by inducing
cell cycle arrest and remodeling actin polymerization involved in drug uptake [97]. In lung cancer,
HSP27 promotes TGF-β-induced cisplatin resistance through regulation of SMAD3 [99]. In particular,
lung cancer stem cells showed decreased apoptotic response to treatment with superoxide, cisplatin,
and gemcitabine when HSP27 was hyperactivated [100].

Although the exact mechanisms are still not known, the cellular modulation of HSP40 and HSP60
has been shown to be implicated in various drug resistance cancer cells. HSP40 hypo-expression was
observed in the ovarian cancer lesions that were resistant to the chemotherapeutic agents, including
paclitaxel, topotecan, and cisplatin [101]. In another study, inhibition of DnaJB8 restored the drug
sensitivity to docetaxel in renal cell carcinoma [102]. The epigenetic inactivation of DnaJD1, observed
in malignant pediatric brain tumors, further indicated for its potential role in disease pathogenesis and
chemotherapeutic resistance [103]. HSP60 is highly expressed in oxaliplatin- and cisplatin-resistant
ovarian and bladder cancer cells compared to the nonresistant cancer cells [104]. Notably, inhibition of
HSP60 enhanced the drug sensitivity of 5-FU-resistant colorectal cancer cells, suggesting that HSP60 may
play an important role in 5-FU resistance [104]. However, more investigations are needed to investigate
for the role of HSP40 and HSP60 in exerting cellular resistance against chemotherapeutic agents.

As a major HSP that promotes cellular evasion of apoptosis, the association of HSP70 with
anti-cancer drug resistance of various cancer cells has been extensively studied. HSP70 is highly
expressed in cisplatin-resistant cancer cells, including ovarian cancer, lung cancer, and osteosarcoma.
The underlying mechanisms of HSP70-mediated chemoresistance include disruption of mitochondrial
apoptotic cascade and maintenance of cell cycle progression [105–108]. Mortalin (HSP70) overexpression
is associated with cisplatin resistance of ovarian cancer cells [109]. In addition, the elevated expression
of GRP78 (HSP70) is implicated in 5-FU resistance of colorectal and ovarian cancer cells through
modulation of PI3K/AKT/mTOR and c-Src/LSF/TS signaling axes, respectively. [108,110].

Various drug-resistant cancer cell lines have increased expression of HSP90 and concomitantly
increased activations of pro-survival signaling pathways and cell cycle progression. The expression of
HSP90 is induced by the commonly used chemotherapeutic agents, which are doxorubicin, cisplatin,
and methotrexate [113]. A mechanism study indicated that the increased HSP90 expression along
with its client proteins, EGFR, IGF-1R, and Src, promotes autophagy in cancer cells and confers drug
resistance [114]. In addition, HSP90 regulates the expression of various drug resistant genes, including
LRP, GST-π, p53, bcl-2, survivin, ERCC1, XRCC1, BRCA1, and BRCA2 [115].

4. Role of Heat Shock Proteins in Radiotherapy Resistance

Radiotherapy along with surgery and chemotherapy has been one of the most commonly used
cancer therapies for almost a century. RT combined with standard chemotherapeutic drugs focuses
on sensitizing cancer cells to ionizing radiation (IR), which damages DNA of cancerous tissue and
induces cell death [118]. DNA Damage Response Pathway (DDR) occurs shortly after the creation
of single or double strand breaks that result from IR. An increasing body of work proposes that
DDR proteins, such as ATR, FANCA, RAD51, and BRCA2, are kept active by HSP70 and HSP90.
Also, HSP70 and HSP90 are directly related to cell cycle regulators, including CHK1, WEE1, CDK1,
and CDK4 [119,120]. Therefore, the adjuvant therapies that increase tumor sensitivity to IR through
modulation of the proteins that affect the expression and/or activation of HSP70 and HSP90 proteins,
have been suggested [121].

The elevated expression of HSP70 has been observed in various cancers that exhibit resistance to
radiotherapy, including lung cancer, breast cancer, tongue cancer, and gingiva cancer [122]. HSP70 is
induced by HSF1, which is the main factor involved in the transcription of HSP70. Under radiotherapy
treatment, HSF1 is transported into the nucleus and binds to the heat shock element in the promoter
region of HSP70. This inducible overexpression of HSP70 in human cancers is associated with poor
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prognosis and resistance against radiotherapy [123]. HSF1 and HSP70 are already overexpressed in
tumor cells under physiological conditions, and therefore, RT exacerbates the therapy resistance in
the vicious manner [124]. To overcome the tolerance, several strategies have been proposed to limit
the expression of HSP70 under radiotherapy. Du et al. discovered that siRNA-mediated inhibition of
HSP70 effectively enhances radiotherapy efficacy in endometrial cancer cells [125]. A recent study
discovered that the constitutive overexpression of Redd1, which positively regulates the expression of
HSP70 through AKT phosphorylation, is observed in IR-resistant lung cancer cells compared to that in
normal lung tissues, suggesting Redd1 as a novel adjuvant target [126]. Meanwhile, the extracellular
form of HSP70 tethered to the cellular membrane can be induced by radiotherapy, suggesting that
the immunotherapy following after radiotherapy may be an effective combinatorial strategy [127].
Inhibition of HSP70 by peptide aptamer A17 exerts the radiosensitizing effect on breast and lung
cancers as the co-administration of aptamer A17 and Hsp90 inhibitor NVP-AUY922 significantly
enhance DNA double-strand breaks and cell cycle arrest in cancer cells [128].

HSP90-mediated signaling was identified as the main pathway associated with cancer cell
resistance to radiotherapy [129–131]. Accordingly, targeting HSP90 using numerous candidate
inhibitors has been regarded as an attractive strategy to sensitize various cancers to radiotherapy.
HSP90 inhibitor NW457, synergized with IR therapy, induces CRC cell apoptosis by inhibiting
DDR and abrogating clonogenic survival in vitro and in vivo [132]. The use of HSP90 inhibitor
AUY922 with platin-based radiation has shown efficacy in synergistic killing of mutant head and neck
squamous cell carcinoma (HNSCC) cells through chromosomal fragmentation [119]. HSP90 inhibitor,
Ganetespib, has been identified as a radiosensitizer that works via modulation of HIF-1α, STAT3,
and AKT-driven pathways in pancreatic ductal adenocarcinoma [133]. Also, Ganetespib significantly
limits the cancer cell survival by inducing G2-M arrest and disrupting DDR during irradiation [134].
PU-H71, Hsp90 inhibitor, exhibits therapeutic efficacy in inhibition of cell survival and accumulation
of DNA damage by suppressing RAD51 and Ku70 expression; it is currently evaluated in clinical
trials [135]. PU-H71 sensitizes tumor cells to Carbon-ion radiotherapy (CIRT) through interruption
of homologous recombination and non-homologous end-joining machineries. Similarly, TAS-116
suppresses cancer cell survival under radiotherapy by interrupting the double-strand break repair
systems [136]. In lung cancer, the combined approach that involves HSF-1 knockdown and HSP90
inhibitor NVP-AUY922 inhibits the expression and activation of HSP90 client protein Akt and impairs
Rad51-mediated homologous recombination [137] (Table 2).

Table 2. Role of heat shock proteins in radiotherapy resistance.

Name Cancer Type Findings Reference

HSP70

Human glioblastoma
Regulation of HSP70 by HSF1, relation of

poor prognosis and resistance against
radiotherapy

[123]

Endometrial cancer Inhibition of HSP70 by siRNA, promotion
of radiotherapy efficacy [125]

Lung cancer
Regulation of HSP70 and AKT

phosphorylation by Redd1, acquirement of
radiotherapy resistance

[126]

Breast and lung cancer

peptide aptamer A17 (HSP70 inhibition),
NVP-AUY922 (HSP90 inhibitor),

radiosensitization by increasing DNA
double strand breaks and cell cycle arrest

[128]
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Table 2. Cont.

Name Cancer Type Findings Reference

HSP90

Human gallbladder
cancer

NW457 (HSP90 inhibitor), induction of
apoptosis by suppressing DDR and
survival under IR therapy in CRC

[132]

Head and neck
squamous cell carcinoma

AUY922 (HSP90 inhibitor), sensitization of
radiotherapy resistance via chromosomal

fragmentation
[119]

Pancreatic ductal
adenocarcinoma

Ganetespib (HSP90 inhibitor), induction of
radiosensitization through regulation of

HIF-1α, STAT3, and AKT-driven pathways
[133]

Lung cancer
Ganetespib, inhibition of cancer cell

survival via induction of cell cycle arrest
and disruption DDR

[134]

Murine osteosarcoma
PU-H71 (HSP90 inhibitor), inhibition of cell
survival and accumulation of DNA damage

via decrease of RAD51 and Ku70
[135]

Lung cancer

NVP-AUY922 (HSP90 inhibitor), inhibition
of HSF1, reduction of HSP90 client protein
AKT, radiosensitization by impairing the

homologous recombination

[137]

5. Role of Heat Shock Proteins as Immunomodulants

As HSPs are overexpressed in cancer cells under physiological conditions, immunotherapy that
targets cancer-derived HSPs has recently been suggested as a novel strategy. The use of HSPs in
enhancing the effects of immunotherapy is summarized in Table 3. HSP27 and HSP90 are highly
expressed in myeloma cells and have been identified to be naturally expressed in the context of major
histocompatibility complex class I (MHC I) molecules. The treatment of cytotoxic T lymphocytes
engineered to target HSP27- and HSP90-specific peptides effectively decreased the tumor growth in
a myeloma xenograft mouse model, suggesting the HSPs as tumor associated antigens (TAA) for
myeloma immunotherapy [138]. Similarly, DnaJB8, which is HSP40 subfamily, is highly expressed in
cancer stem-like cell/cancer-initiating cell (CSC/CIC) isolated from colorectal cancer compared with
non-CSC/CIC. As CSC/CIC have been thought to be essential for tumor maintenance, recurrence,
and distant metastasis, the engineering and administration of DnaJB8-specific cytotoxic T lymphocytes
exhibited a significant anti-cancer activity in vivo [139].

Table 3. Role of heat shock proteins as immunomodulants.

Name Cancer Type Findings Reference

HSP27
HSP90 Myeloma

Usage of HLA*0201-binding peptides for HSP27 and HSP90,
stimulation of peripheral blood cells, production of HSP

peptide-specific cytotoxic T lymphocytes (CTLs), induction of
cell death, decrease of tumor growth

[138]

HSP90

Human melanoma

Ganetespib—HSP90 inhibitor, enhancement of T-cell induced
cell death and anti-CTLA4 and anti-PD1 response, induction

of interferon response genes and anti-cancer immune
responses of T cells

[140]

Melanoma

HSP90 inhibitor induced the increase of melanocyte
differentiation antigens Melan-A/MART-1, gp-100, TRP-2, and
MHC Class I, enhancement of tumor recognition by immune

response via increase of MHC class I

[141]

Melanoma 17-DMAG—HSP90 inhibitor, decrease of EphA2, induction of
the recognition of tumor cells by T cells specific antigens [142]
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Table 3. Cont.

Name Cancer Type Findings Reference

HSP40
/DnaJB8 Colorectal cancer

Overexpression of DnaJB8 in cancer stem-like
cell/cancer-initiating cell, upregulation of stem cell markers
and tumorigenesis, production of DnaJB8-specific CTLs by

DnaJB8-derived peptide, induction of cell death

[139]

HSP70

Glioblastoma

Administration of HSP70—activation of adaptive immunity,
reduction of tumor progression, enhancement of survival,

activation of infiltrating NK cells and T lymphocytes,
production of IFNγ

[143]

Non-small cell lung
cancer

Activation of NK cells by membrane localized HSP70 peptide
(TKD) and IL-2 [144]

Breast cancer
HSP70 peptide complexes derived from dendritic cell-tumor

fusion, enhancement of immunogenicity and immune
responses, promotion of T cell activation and CTL responses

[145]

HSP90
/GRP94 Colon Cancer

Genetic deletion of GRP94 from macrophages suppressed the
production of IL-17 and IL-23 and decreased

inflammation-associated tumorigenesis
[146]

HSP70 has been found to be secreted from cancer cells, and, unlike the intracellular form,
extracellular HSP70 proteins prompt cytotoxic lymphocytes to target and kill the cancer. An unusual
cell surface localization of HSP70 has been demonstrated by a variety of solid tumors, including
lung, breast, colorectal, and pancreatic cancers. The membrane HSP70 phenotype has been associated
with tumor malignancy, characterized by increased invasion, metastasis, and resistance to cell death.
Intriguingly, natural killer (NK) cells, but not T cells, have been found to kill membrane HSP70 positive
tumor cells [147]. Ex vivo activation of NK cells with a naturally occurring HSP70 peptide and IL-2
(TKD-IL-2) enhanced the anti-cancer ability of NK cells against lung cancer and glioblastoma in
preclinical tumor models [144]. Many vaccines, therefore, have been developed on the basis of ability
of HSP70 to efficiently reconfigure antigen presenting system. Guzhova and Margulis discovered that
the continuous intratumoral administration of HSP70 inhibits the tumor progression and thus delays
the tumor growth. The treatment has been shown to increase the survival of cancer-bearing rats by
enhancing the infiltration and activation of NK cells and T lymphocytes through the upregulation
of IFNγ production [143]. Recently, the fusion of dendritic cells and whole tumor cells to generate
DC-tumor fusion cells (DC-tumor FCs) has been developed to effectively deliver TAAs to dendritic cells
as cancer vaccines. The cell fusion method facilitates dendritic cells to be exposed to the broad array of
TAAs originally expressed by whole tumor cells, thereby stimulating antitumor immunity through
simultaneous activation of both CD4+ and CD8+ T cells. Whereas tumor-derived HSP70-peptide
complexes have shown the limited immunogenicity in large-scale phase III trials, HSP70-peptide
complexes derived from DC-tumor FCs have shown the enhanced immunogenicity and induced much
more powerful immune responses against breast cancer [145].

Other than suppressing the expression and activation of oncogenic proteins, HSP90 inhibition has
recently been found to positively modulate the effect of cancer immunotherapy [148]. HSP90 inhibition
using Ganetespib has been shown to increase the expression of interferon response genes, such as IFIT1,
IFIT2, and IFIT3, which promote killing of melanoma cells by T cells. The combination of Ganetespib
and anti-PD1 or anti-CTLA4 conferred a better anti-tumor response in mouse model, compared to
either treatment alone [140]. In addition, Haggerty et al. investigated that twelve different HSP90
inhibitors increase the expression of melanocyte differentiation antigens, Melan-A/MART-1, gp100,
and TRP1, as well as MHC Class I. This finding suggests that HSP90 inhibition facilitates recognition of
tumor cells by T cells by increasing the expression of intracellular antigen pool available for processing
and presentation by MHC Class I, along with the increased expression of MHC Class I itself [141].
Furthermore, HSP90 inhibitor 17-MAG has been indicated as an immune adjuvant in the context of
vaccines targeting HSP90 client protein EphA2, reconditioning the tumor microenvironment to enhance
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patient immune responses. The co-treatment of 17-MAG and antibody against HSP90 client protein
EphA2 effectively reduces immune suppressor cell populations, such as myeloid-derived suppressor
cell and regulatory T cells, while recruiting Type-1 T effector cells through chemokines such as CXCL10
and enhancing the recognition of tumor cells by CD8+ T cells [142]. GRP94 is an ER resident HSP90
paralog that plays an essential role in the folding of Toll-like receptors (TLRs) and integrins, suggesting
GRP94 as a specialized immune chaperone that controls receptors for immune function [149,150]. As a
master immune chaperone, GRP94 is associated with early B- and T-cell development and regulates the
innate immune response of macrophage and regulatory T cells [151,152]. In addition, GRP94 regulates
the activity of tumor-associated macrophages through folding of TLRs and integrins [153]. Genetic
deletion of GRP94 from macrophages decreased the inflammation-associated colon tumorigenesis by
suppressing the production of pro-inflammatory cytokines such as IL-17 and IL-23 [146].

6. HSP Inhibition as a Potential Strategy to Effectively Cure Cancer

6.1. HSP27 Inhibition for Cancer Therapy

Since HSP27 induces therapeutic resistance against radiotherapy and chemotherapy, HSP27 may
serve as a potential targeting molecule for cancer therapy [96,100,126,154]. HSP27 inhibitors, such
as quercetin and RP101, enhance the anticancer therapeutic effects in various cell lines, including
leukemia, glioblastoma, and oral cancer cells [155–158]. In human leukemia, quercetin in combination
with shHSP27 synergistically inhibits cell proliferation and promotes apoptosis by decreasing Bcl2
to Bax ratio. In addition, the combinatorial administration significantly suppresses the infiltration of
tumor cells by decreasing the activation of Notch/AKT/mTOR signaling pathway and down-regulating
the expression of angiogenesis-associated proteins, HIF1α and VEGF [155]. Moreover, treatment of
quercetin suppresses the expression of autophagy-associated protein Atg7, thereby promoting cancer
cell death through autophagy blockade, when co-administrated with cytotoxic agent t-AUCB [156].
Another HSP27 inhibitor, RP101, is an antiviral nucleoside, also known as bromovinyldeoxyuridine,
and binds through π-stacking with Phe 29 and Phe 33 of HSP27. This agent interrupts HSP27 interaction
with client proteins and functions to sensitize tumor cells to chemotherapy [159]. In a stage II clinical
study, RP101 enhanced the survival of pancreatic cancer patients in combination with chemotherapeutic
agent gemcitabine (NCT00550004) [159]. In addition, TDP, a natural HSP27 inhibitor extracted from
Chinese traditional medicinal herb Garcinia oblongifolia, suppresses levels of HSP27 and induces
cancer cell death [160,161]. Another approach to target HSP27 is to use the peptide aptamer (PA)
that limits the structural flexibility of HSP27 and impairs HSP27- dependent anti-apoptotic and
cyto-protective activities [162]. Two peptide aptamers, PA11 and PA50, have been shown to limit the
structural changes of HSP27 and decrease its anti-apoptotic and tumorigenic activities [163]. While the
use of HSP27 is implicated in antisense therapy, OGX-427 (apatorsen) is an antisense oligonucleotide
that decreases the expression of HSP27 and is currently progressed in Phase II clinical trials. Treatment
with OGX-427 has incurred the decreased metastatic ability of prostate cancer cells [164] (Table 4).

Table 4. HSP27 inhibition for cancer therapy.

Name Cancer Type Findings Reference

HSP27

Human leukemia

Quercetin—HSP27 inhibitor, suppression of cell
proliferation, induction of apoptosis by decreasing
of BCL2/BAX ratio, inhibition of tumor infiltration
via inactivation of Notch/AKT/mTOR pathway and

HIF1α and VEGF

[155]

Glioblastoma

Combination of shHSP27 and quercetin—decrease
of cancer infiltration and neovascularization

related proteins, blockage of cell cycle, induction of
autophagy by inhibiting ATG7 expression,

acquired chemoresistance

[156]
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Table 4. Cont.

Name Cancer Type Findings Reference

HSP27

Pancreatic cancer

RP101–HSP27 inhibitor, promotion of survival of
pancreatic cancer patients combined with

gemcitabine, suppression of HSP27 induced
resistance

[159]
NCT00550004

Hepatocellular
carcinoma

TDP—extraction from Chinese medicinal herb,
downregulation of HSP27 expression, induction of

apoptosis, decrease of cell growth
[160,161]

Human cervical cancer
and HNSCC

Peptide aptamers—PA11 and PA50, HSP27
targeting, reduction of anti-apoptotic activity of
HSP27, decrease of tumorigenesis, inhibition of

tumor growth

[163]

Prostate and bladder
cancer

OGX-427—antisense oligonucleotide, suppression
of HSP27, decrease of tumor metastasis and

circulating cancer cells

[164],
NCT01681433

6.2. HSP40 Inhibition for Cancer Therapy

Although the exact underlying mechanism needs further investigations, regulation of HSP40 family
proteins have been implicated in various chemotherapeutic agents and shown to enhance the anti-cancer
activity. KNK437, a benzylidene lactam compound and a pan-HSP inhibitor, inhibits the expression of
HSPs, which are HSP27, HSP40, HSP 72, and HSP110 [165]. Treatment of colorectal cancer cells with
KNK437 inhibits the expression of DnaJA1 and the cell cycle progression through destabilization of
CDC45 [32]. As DnaJB1 positively regulates the epidermal growth factor receptors (EGFR) signaling,
knockdown of DnaJB1 promotes the sensitivity of tumor cells to anti-cancer effects of the EGFR
inhibitor gefitinib in human lung epithelial adenocarcinoma cells [31]. In non-small cell lung cancer,
BMS-690514, an inhibitor of human EGFR and vascular EGFR, induces G1 cell cycle arrest and stimulates
caspase-dependent apoptosis through downregulation of HSP40 and other HSPs [166]. Inhibition of
DnaJB8 also induces the sensitivity of kidney cancer cells to decetaxel [102]. Phenoxy-N-arylacetamides
is known to significantly inhibit the expression of HSP40, but it is still in the early stages of development
to be confirmed as a therapeutic tool [167]. In colorectal cancer cells, knockdown of DnaJB6 suppresses
the cancer metastasis by decreasing IQ-domain GTpase-activating protein 1 and phosphorylated
ERK. Silencing DnaJB6 with siRNA exerts the genotoxic stress/p53-induced apoptosis in human
neuroblastoma, osteosarcoma, and lung cancer [29] (Table 5).

Table 5. HSP40 and HSP60 inhibition for cancer therapy.

Name Cancer Type Findings Reference

HSP40

Colorectal cancer
KNK437—pan-HSPs inhibitor, inhibitions of

HSP40/DnaJA1, suppression of cell cycle progression by
destabilizing CDC45

[32]

Lung cancer Knockdown of DnaJB1, enhanced effect of gefitinib
(EGFR inhibitor) [31]

NSCLC
BMS-690514—hEGFR and VEGFR inhibitor,

downregulation of HSP40, promotion of cell cycle arrest
and apoptosis

[166]

HSP60

Leukemia Myrtucommulone—targeting of mitochondrial HSP60,
induction of mitochondrial apoptosis [168]

Melanoma
Sinularin—HSP60 inhibition, induction of anti-cancer
activity, inhibition of cell proliferation and migration,

induction of apoptosis
[169]

Ovarian cancer
Bortezomib—proteasome inhibitor, exhibition of

anti-cancer effects, upregulation of HSP60 and HSP90,
induction of phagocytosis

[170]
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6.3. HSP60 Inhibition for Cancer Therapy

HSP60 has been implicated in anti-cancer drug activities and drug resistance. Loss of mitochondrial
HSP60 pool has been implicated in geldanamycin (GA)-induced killing of osteosarcoma cells,
suggesting that targeting HSP60 may be the underlying mechanism of GA-mediated cytotoxicity [171].
Myrtucommulone (MC), a nonprenylated acylphloroglucinol present in the leaves of myrtle, directly
interacts with HSP60 to induce mitochondrial related apoptosis [168]. Sinularin, a bioactive
compound derived from coral Sinularia flexibilis, exhibits the anti-cancer effects through upregulation of
pro-apoptotic caspase system by decreasing the expression of HSP60 in A2058 melanoma cells [169,170].
In regard to therapy resistance, the increased expression of HSP60 enhances the extent of cancer
cell resistance to platinum analogs in human ovarian and bladder carcinoma cells, and, therefore,
inhibition of HSP60 in 5-FU resistant SW480 CRC cells induces the attenuation of drug resistance [172].
As an interesting side note, a proteasome inhibitor Bortezomib assists in the anti-cancer treatment via
upregulation of HSP60 and HSP90 on the surface of cancer cells, facilitating cancer cell recognition by
dendritic cells [170] (Table 5).

6.4. HSP70 Inhibition for Cancer Therapy

HSP70 is highly expressed in various cancers and associated with tumorigenesis and drug
resistance [11]. Over the last decade, various studies have been conducted to advance the development
of HSP70 inhibitors for cancer therapy. Fisetin, a dietary flavonoid, is known to induce cell apoptosis in
HCT-116 colon cancer cells by inhibiting HSF1 from binding to the promoter region of HSP70 and BAG3.
Since HSP70/BAG complexes protect cancer cells from apoptosis through stabilization of anti-apoptotic
Bcl-2 family member proteins, the downregulation of HSP70/BAG3 significantly reduces the levels
of BCL-2, BCL-XL, and myeloid cell leukemia 1 (MCL-1) proteins in human HCT-116 colon cancer
cells [173]. Pifithrin-µ (PES), also known as 2-phenylethynesulfonamide, is a HSP70 inhibitor that
exerts anti-cancer effects in various cancer types, such as non-small cell lung cancer (NSCLC), through
G0/G1 phase cell cycle arrest and promotion of the death receptors 4 and 5 expression [174]. However,
it has recently investigated that PES may increase intracellular ROS levels and promote the metastatic
behavior of surviving cells [175]. Cantharidin (CTD) is a terpenoid derivative isolated from blister
beetles and inhibits the expression of HSP70 by blocking HSF1 from binding to HSP70 promoter [176].
Administration of thermal-sensitive liposomes encapsulating CTD induces cell apoptosis by blocking
heat shock response and the subsequent expression of HSP70 and BAG3 in human cervical cancer [177].
In addition, Apoptozole (AZ) is a HSP70 inhibitor that promotes cancer cell apoptosis through
lysosomal membrane permeabilization. AZ-mediated impairment of lysosomal function also inhibits
the protective autophagy and promotes cell apoptosis in multiple cancer cell lines [178].

Since HSP70 promotes the resistance of cancer cells to chemotherapy, the strategies that
chemo-sensitize cancer cells through HSP70 inhibition have been explored. HSP70 knockdown
is suggested as an adjuvant strategy to enhance the apoptotic effect of cisplatin in cervical cancer [179].
Furthermore, as HSP72 (HSP70) stabilizes stromal cell-derived factor 2 (SCF2) that protects human
gastric cancer cells against oxaliplatin, inhibition of HSP72 (HSP70) to debilitate the protective function
of SCF2 was suggested [180]. Moreover, overexpression of HSP72 (HSP70) induced by bortezomib
was found to limit the anti-cancer effects of bortezomib, and combination therapy with HSF1 inhibitor
was effective in enhancing bortezomib-mediated cancer cell death [181]. To overcome the inducible
overexpression of HSP70, HS-72, an allosteric inhibitor selective for the inducible form of HSP72,
has been posed as an effective agent to limit the expression of HSP70 after anti-cancer treatments [182].
In addition, abnormal phosphorylation of HSC70 (HSP70) has been found to inhibit transportation
of methotrexate anti-cancer agents into tumor cells, suggesting de-phosphorylation of HSC70 as a
viable strategy to enhance the sensitivity to methotrexate [183]. Tissue microarray analyses suggested
Mortalin (HSP70)-positive tumor cells exhibit the increased resistance against cisplatin, and silencing
Mortalin with shRNA enhanced the drug sensitivity to cisplatin and reduced the tumor cell growth
in ovarian cancer [109]. In addition, MKT-077, a cationic rhodacyanine dye that inhibits Mortalin
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(HSP70), suppresses the cell viability of ovarian cancer and blocks the EMT progression through
inhibition of Wnt/β-Catenin signaling [184]. Embelin, a natural quinone derived from the fruits of
Embelia ribes, exerts the anti-cancer effect by limiting the inhibitory function of Mortalin (HSP70) on
p53. In breast cancer, the treatment of embelin, therefore, reduced cancer cell growth and metastatic
ability by activation of p53 [185]. Veratridine (VTD) has shown efficacy in selectively suppressing
the expression of Mortalin (HSP70) by increasing the expression of a ubiquitin-like protein called
UBXN2A that degrades Mortalin (HSP70) [186]. In addition, knockdown of GRP78 (HSP70) prompts
5-FU-induced apoptosis through deterioration of ER stress [108]. Isoliquirtigenin, a chalcone-type
flavonoid derived from licorice root, directly targets GRP78 (HSP70) and suppresses cancer cell colony
formation through inhibition of GRP78 (HSP70)-mediated β-catenin/ABCG2 signaling in breast cancer
stem cells [187,188] (Table 6).

Table 6. HSP70 inhibition for cancer therapy.

Targeting HSPs Cancer Type Findings Reference

HSP70

Colon cancer
Fisetin—HSF1 inhibition, reduction of

HSP70, induction of apoptosis by inhibiting
BCL-2, BCL-XL, and MCL-1

[173]

Non-small cell lung
cancer

Pifithrin-µ—HSP70 inhibitor, inhibition of
proliferation via induction of cell cycle

arrest, suppression of cell migration,
induction of apoptosis

[174]

Cervical cancer

Cantharidin—HSP70 inhibitor, blockage of
HSF1 binding to HSP70 promoter,

induction of apoptosis via the inhibition of
heat shock response and HSP70 expression

[176,177]

Cervical, lung colon, and
pancreatic cancer

Apoptozole—HSP70 inhibitor, promotion
of apoptosis through induction of lysomal

membrane permeabilization and
impairment of autophagy

[178]

Ovarian cancer

MKT-077—Mortalin (HSP70) inhibitor,
decrease of cell viability, blockage of cell

EMT progression, inhibition of
Wnt/β-Catenin signaling

[184]

Breast cancer

HS-72—selective HSP72 inhibitor,
reduction of ATP-binding affinity,

inhibition of tumor growth, and increase of
survival in breast cancer animal model

[182]

Breast cancer
Embelin—inhibition of Mortalin and p53
interaction, decrease of cell growth and

metastasis
[185]

Colon cancer Veratridin (VTD)—inhibition of Mortalin
through upregulation of UBXN2A [186]

Breast and oral cancer
stem cells

Isoliquirtigenin—GRP78 inhibitor,
inhibition of cell proliferation and colony

formation, suppression of
β-catenin/ABCG2 signaling

Inhibition of cancer stemness, cell
proliferation, metastasis and

chemoresistance by disrupting ABC
transportation

[187,188]
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6.5. HSP90 Inhibition for Cancer Therapy

HSP90 has been the effective anti-cancer therapeutic target for its extensive associations with
tumor initiation, development, metastasis, and resistance to anti-cancer drugs. A variety of HSP90
inhibitors have been evaluated in clinical trials for cancer therapy. Some of the clinical trials are
completed (NCT01294202, NCT01685268, NCT00878423, NCT01246102), and others are recruiting
more patients. Ganetespib, a second-generation synthetic HSP90 inhibitor that has exhibited promising
antitumor effects with safety profiles, is being developed to treat metastasis-prone and drug-resistant
thyroid, ovarian, breast, and non-small cell lung cancers, currently undergoing clinical trials [189–192].
Ganetespib effectively suppresses cancer progression by inducing G2/M cell cycle arrest through
inhibition of RAS/RAF/ERK and PI3K/AKT/mTOR pathways and promoting caspase-3-mediated
apoptosis [189,193]. Another HSP90 inhibitor, NVP-AUY922, is a novel resorcinylic isoxazole amide
that decreases cancer cell viability through suppression of cancer-derived survivin protein levels, which
functionally interfere with the cell modalities for growth inhibition and cell apoptosis [194]. As an
adjuvant therapy, co-administration of HSP90 inhibitor, NVP-AUY922, with ABT-737, BCL-2 inhibitor,
enhances the anti-cancer effect of ABT-737 by targeting MCL-1 protein that grants the cancer resistance
to ABT-737 in small cell lung cancer [195]. Likewise, NVP-AUY922 inhibits cell growth in HER2-positive
and trastuzumab-resistant breast cancer cells [196]. PU-H71 is a next-generation HSP90 inhibitor
that exhibits the anti-cancer activity in multiple tumors. In chronic lymphocyte leukemia (CLL),
PU-H71 decreases B-cell receptor (RCR) kinases and induces CLL cell apoptosis under cytoprotective
conditions [197]. In addition, PU-H71 inhibits PI3K/mTOR pathway in Burkitt lymphoma through
MYC dysregulation [198]. Panaxynol is a natural compound that elicits anti-cancer activity through
inhibition of the HSP90 expression and induction of apoptosis [199]. Geldanamycin, extracted from
Streptomyces hygroscopicus, elicits the anti-cancer activity through blockage of ATP-binding site of HSP90
and inhibition of its function [200]. Geldanamycin also restores cancer cell sensitivity to paclitaxel by
inactivation of p38/H2AX axis in paclitaxel-resistant ovarian cancer cells [201]. The natural product,
gambogic acid (GBA), binds selectively to the middle domain of HSP90β [202]. In pancreatic cancer,
the administration of GBA suppresses cell proliferation by inducing cell cycle arrest and apoptosis.
In addition, GBA attenuates the evolution of cancer cell resistance to gemcitabine by inhibiting
ERK/E2F1/RRM2 signaling pathway [203]. TAS-116, a selective cytosolic HSP90α and β inhibitor
that does not inhibit HSP90 paralogs such as GRP94, has been shown to exert antitumor activities by
depleting levels of several HSP90 client proteins [204]. In the clinical phase I study, the administration
of TAS-116 garnered an acceptable safety profile for the patients with non-small cell lung cancer and
gastrointestinal stromal tumor [205]. In prostate cancer, the C-terminal HSP90 inhibitor KU675 exerts
cytotoxic effects by inhibiting the formation of HSP90 complexes and promoting degradation of HSP90
client proteins [206]. Other C-terminal HSP90 inhibitors, SM253 and SM258, have also been shown to
inhibit cell proliferation and induce apoptosis in several prostate cancer cell lines. Unlike N-terminal
inhibitors, such as AUY922 and 17-AAG, these C-terminal inhibitors do not increase the expression of
HSP27, HSP40, and HSP70, suggesting their efficacy in anti-cancer function [207]. In triple-negative
breast cancer, the C-terminal HSP90 inhibitor L80 effectively reduces the cell proliferation, breast
cancer stemness, tumor growth, and metastasis by inhibiting AKT/MEK/ERK/JAK2/STAT3 signaling,
while not affecting normal cells [208]. GRP94-selective inhibitor 30 has been developed from the
structural modification of the first generation cis-amide bioisostere imidazole to improve its affinity for
GRP94 [209]. Since GRP94 is responsible for the maturation and trafficking of proteins involved in
cell signaling and motility, the treatment of GRP94-selective inhibitor 30 has shown potent anti-cancer
activity in aggressive and metastatic cancers [209] (Table 7).
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Table 7. HSP90 inhibition for cancer therapy.

Targeting HSPs Cancer Type Findings Reference

HSP90

Thyroid, breast, lung and
ovarian cancer

Ganetespib—HSP90 inhibitor, inhibition of cell
proliferation metastasis, induction of cell cycle
arrest, enhancement of apoptosis, decrease of

tumor growth

[189–192]

Papillary thyroid
carcinoma

NVP-AUY922—HSP90 inhibitor, inhibition of
cell viability, induction of apoptosis, suppression

of survivin
[194]

Gastric cancer an NSCLC NVP-AUY922, inhibition of tumor growth,
angiogenesis, metastasis [210,211]

Small cell lung cancer

Co-administration of HSP90 inhibitor
NVP-AUY922 and BCL-2 inhibitor

ABT-737—induction of apoptosis, inhibition of
ABT-737 drug resistance, downregulation of AKT

and ERK

[195], NCT01294202,
NCT01685268,
NCT00878423,
NCT01246102

Chronic lymphocytic
leukemia

PU-H71—HSP90 inhibitor, decrease of B-cell
receptor kinase, induction of apoptosis,

inhibition of PI3K/mTOR pathway
[197]

ovarian cancer

Geldanamycin—HSP90 inhibitor, induction of
paclitaxel sensitivity, inactivation of p38/H2AX,

inhibition of tumor growth, exhibition of
structural instability and hepatotoxicity, failure in

phase I clinical trials

[201,212]

Pancreatic cancer

Gambogic acid—selective HSP90β inhibitor,
inhibition of cell growth, induction of cell cycle

arrest and apoptosis, sensitization of cancer cells
to gemcitabine by regulating ERK/E2F1/RRM2

signaling pathway

[203]

Prostate cancer

KU675—C-terminal HSP90 inhibitor, exhibition
of anti-proliferative and cytotoxic activity by

suppressing formation of HSP90 complexes and
degrading client proteins

[206]

Prostate cancer

SM253 and SM258—C-termincal HSP90 inhibitor,
suppression of cell proliferation, induction of

apoptosis, no effect on the expression of HSP27,
HSP40, and HSP70

[207]

Triple-negative breast
cancer

L80—C-terminal HSP90 inhibitor, reduction of
cell proliferation, cancer stem cell like properties

and metastasis by regulating
AKT/MEK/ERK/JAK2/STAT3 signaling pathway

[208]

Lung and gastric cancer
TAS-116—selective HSP90α and β inhibitor,
reduction of multiple HSP90 clients, efficient

anti-cancer activity
[204,205]

Breast and prostate
cancer

GRP94-selective inhibitor 30—GRP94 inhibitor,
potent anti-cancer activity [209]

6.6. HSF1 Inhibition for Cancer Therapy

Studies have shown that HSF1 plays an important role in cancer cell tumorigenesis, apoptosis,
and proliferation and multi-drug resistant in malignant tumors [213,214]. Targeting HSF1-mediated
signaling axes may pose an effective strategy to treat cancer. The effects of suppressing the function of
HSF1 in cancer types such as breast cancer, colorectal cancer, and leukemia have been examined [215].
The inhibition of HSF1 led to the decreased breast cancer formation and lung metastasis in a mouse
model [216]. In colorectal cancer, the knockdown of HSF1 inhibited mTOR activation and glutamine
metabolism while attenuating the cancer cell growth in vitro [215]. It has also been demonstrated
that the inhibition of HSF1 reduces the invasion, migration, and EMT of pancreatic cancer cells by
suppressing activation of AMPK. In addition, HSF1 inhibition decreased tumor growth and increased
the overall survival of tumor-bearing mice [217]. In breast cancer, since the activation of AKT and the
subsequent activation of HSF1 by p-AKT shortens the metastatic intervals of tumor cells, inhibition
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of the AKT/HSF1 signaling axis resulted in the reduced number of metastatic breast cancer cells
and cancer stem cells [80]. Currently, several HSF1 inhibitors have been identified for the treatment
of cancer, although the therapeutic effects are still being evaluated. An HSF1 inhibitor, 2,4-Bis(4-
hydroxybenzyl)phenol, extracted from rhizomes of Gastrodia elata, induces the degradation of HSF1
through the impairment of HSF1 protein stability. The decreased level of HSF1 is accompanied by
attenuated levels of HSPs, such as HSP27 and HSP70. In lung cancer, the HSF1 inhibitor induced
cancer cell growth arrest and apoptosis and helps to overcome cancer cell resistance to conventional
anti-cancer drugs, including paclitaxel and cisplatin [218]. From the phenotypic screen targeting HSF1
heat shock pathway with a chemically diversified library of over 100,000 compounds, PW3405 has
been identified to inhibit phosphorylation and activity of HSF1 and suggested to inhibit cancer cell
viability in a broad range of tumors in vitro [219]. A synthetic HSF1 inhibitor, IHSF115, inhibits the
transcription activity of HSF1 by interfering with the assembly of the transcription complexes. IHSF115
exhibits high cytotoxicity for multiple cancer and myeloma cell lines, repressing a large majority of
heat-induced genes [220] (Table 8).

Table 8. HSP90 inhibition for cancer therapy.

Targeting HSPs Cancer Type Findings Reference

HSF1

Lung cancer

2,4-Bis(4-hydroxybenzyl)phenol—HSF1
inhibitor, inhibition of HSF1 activity, reduction
of HSP27 and HSP70 expression, induction of
cell growth arrest and apoptosis, mediation of

cancer cell drug resistance

[218]

Prostate, pancreatic
cancer and NSCLC

PW3405—HSF1 inhibitor, reduction of HSPs
expression, anti-cancer activity, low cytotoxicity

to normal cells
[219]

Lung, ovarian, cervical,
breast, prostate cancer

and myeloma

IHSF115—HSF1 inhibitor, inhibition of HSF1
transcription, repression of heat-induced genes,

anti-cancer activity
[220]

7. Discussion

HSPs are molecular chaperones that are induced under cellular stress and often overexpressed
in many cancers. The major HSPs, including HSP27, HSP40, HSP60, HSP70, HSP90, are associated
with several key oncogenic drivers for tumorigenesis. In the clinical context, the abnormal levels of
HSPs may indicate poor prognostic outcomes. In addition, the major HSPs that serve as diagnostic
biomarkers of cancer have been discussed in relation to their roles in tumorigenesis, evasion of
apoptosis, cell invasion, and metastasis. The functions of HSPs are diverse and elicit the hallmarks of
cancer, as their roles are essential in initiation, development, and recurrence of cancer. At the same time,
their differentiated roles share a similar level of importance in paving the way towards understanding
cancer and developing effective treatments.

As noted above, HSPs play important roles in cancer development and resistance to chemo-,
radio-, and immunotherapy treatments. Accordingly, targeting HSPs has been discussed as a necessary
standalone or adjuvant therapy to overcome the limitations of current anti-cancer treatments. In fact,
several anti-cancer drugs that inhibit HSP client proteins have already been approved by the FDA.
For instance, HSP70 client protein inhibitor sorafenib has been approved to treat renal carcinoma,
hepatocellular carcinoma, and thyroid carcinoma (25858032). Moreover, candidate anti-cancer drugs
that modulate the function of HSPs have been investigated in numerous preclinical lab settings and
clinical trials. To date, however, there are no FDA-approved HSP inhibitors available. Regardless,
future HSP-associated drugs may directly target HSPs, regulating the downstream effectors of
HSPs and enhancing the anti-cancer effects of various therapies met with their own limitations.
Furthermore, understanding the role of HSPs in immunotherapy settings poses a significant opportunity.
Several studies have demonstrated that modulation of HSPs may stimulate the innate, cell-mediated,
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and humoral immune responses. The use of HSPs as target antigens or activators of the immune
responses is a novel strategy to regulate immunostimulatory. To meet these ends, understanding the
functions and molecular mechanisms of HSPs is essential and requires continuous efforts.
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