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Abstract

With increasing age, the ability to produce protective antibodies in response to immunization
declines, leading to a reduced efficacy of vaccination in the elderly. To examine the effect of
age on the cognate function of CD4 T cells, we have used a novel adoptive transfer model that
allows us to compare identical numbers of antigen-specific naive T cells from young and aged
TCR transgenic (Tg) donors. Upon transfer of aged donor CD4 T cells to young hosts, there
was significantly reduced expansion and germinal center (GC) differentiation of the antigen-
specific B cell population after immunization. This reduced cognate helper function was seen
at all time points and over a wide range of donor cell numbers. In hosts receiving aged CD4
cells, there were also dramatically lower levels of antigen-specific IgG. These age-related defects
were not due to defects in migration of the aged CD4 T cells, but may be attributable to reduced
CD154 (CD40L) expression. Furthermore, we found that there was no difference in B cell ex-
pansion and differentiation or in IgG production when young CD4 T cells were transferred to
young or aged hosts. Our results show that, in this model, age-related reductions in the cognate
helper function of CD4 T cells contribute significantly to defects in humoral responses ob-

served in aged individuals.
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Introduction

The increased incidence and severity of infectious diseases
in elderly populations and a reduced ability to produce
high affinity antibodies upon immunization correlates with
relatively weak and short-lived primary antibody responses
in aged individuals (1-5). This can dramatically affect the
efficacy of vaccinations, which aim to produce high aftinity
neutralizing antibodies. Clinically, this issue is important
since the elderly are highly encouraged to receive vaccinations
for infectious diseases such as influenza and pneumococcal
pneumonia (6, 7). It is not surprising that vaccine efficacy is
reduced with age since numerous studies have shown that
aging leads to decreased germinal center (GC) formation,
decreased levels of somatic mutations and the production of
antibodies that are less protective (8—12). Furthermore, be-
cause GCs are required for memory B cell development
(13), the generation of B cell memory is also likely to be
reduced with increasing age.

CD4 T cells are absolutely necessary for the generation of
GCs (14) and CD4 cognate helper function has been shown
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to be reduced with age (12). Additional age-related defects
in T cell function have been well documented and include
decreased in vitro proliferation as well as reduced graft re-
jection, delayed hypersensitivity reactions, and rejection of
tumors (15). Our previous studies have shown that naive
CD#4 function decreases dramatically with age (16—-19). In
both in vitro and in vivo studies, naive CD4 T cells from
aged TCR transgenic (Tg) animals produce less IL-2, expand
less, and differentiate less upon antigen stimulation compared
with those from younger individuals (16, 20). One result of
this decreased IL-2 production is the incomplete difterentia-
tion of effector populations, resulting in decreased effector
function (16). In addition, cognate helper activity of CD4
T cells has been shown to require appropriate expression
of cell surface molecules such as CD154, CD28, CD134
(OX40), and CXCR5 (21-23), all of which might be affected
by incomplete effector differentiation. Importantly, these
age-related decreases in CD4 function could potentially im-

Abbreviations used in this paper. CFSE, carboxy fluorescein succinimidyl ester;
FDC, follicular dendritic cell; GC, germinal center; NP, 4-hydroxy-3-
nitrophenyl acetyl; NP-APC, NP conjugated to allophycocyanin; PCC,
pigeon cytochrome c¢; PNA, peanut agglutinin; Tg, transgenic.
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pact cognate interactions with both CD8 T cells and B cells,
resulting in diminished CTL activity and humoral responses,
respectively, and ultimately resulting in reduced responses
to both infections and vaccines.

In this study, we used an adoptive transter model, with
TCR Tg CD4 T cells, to examine the effect of age on cog-
nate helper activity. Our results show that even when iden-
tical numbers of young and aged antigen-specific donor T
cells were transferred to young hosts, the cognate helper
function of CD4 T cells from aged donors was significantly
reduced. This lead to reduced antigen-specific B cell expan-
sion and differentiation as well as decreased IgG production.
We also show that this reduction in cognate function was
not due to age-related differences in migration of donor
CD4 T cells into follicles, but may be attributable to age-
related reductions in CD154 expression. Finally, we show
that when CD4 T cells from young donors were transferred
to young or aged hosts, there was no difference in B cell ex-
pansion and differentiation or antigen-specific IgG produc-
tion. These results indicate that age-related reductions in
humoral responses are most likely attributable to defects in
CD4 T cell cognate helper function in our model system.

Materials and Methods

Animals.  All mice used in this study were bred at the
Trudeau Institute Animal Core Facility (Saranac Lake, NY). In-
tact young (2—4 mo) and aged B10.BR (>20 mo) mice were
used in the first set of experiments. Adoptive transfer experiments
involved the transfer of antigen-specific CD4 cells into adoptive
hosts. Young (2—4 mo) and aged (15—19 mo) as well as TCR Tg
mice, on a B10.BR background, were used as the source of do-
nor CD4 T cells. These mice express a V3/Vall TCR trans-
gene specific for a peptide fragment of pigeon cytochrome C
(PCC; 24). Young (2—4 mo) or aged (2024 mo) CD4KO mice,
backcrossed to B10.Br for 10 generations, were used as the adop-
tive hosts. All mice were housed in sterilized, Hepa-filtered, indi-
vidually ventilated caging at the animal facility at the Trudeau In-
stitute until their use. All experimental procedures involving
mice were approved by Trudeau Institute Institutional Animal
Care and Use Committee.

CD4 T Cell Isolation, Adoptive Transfer, and Immunization.
Lymphocytes were harvested from the spleens and peripheral
lymph nodes of young or aged TCR Tg mice. For each experi-
ment, lymphocytes from two young and four aged mice were
pooled to generate donor T cell populations. The enrichment of
naive Tg CD4 T cell populations by negative selection has been
described previously (16). The percent TCR Tg* cells within the
resulting enriched CD4 populations were similar for young
(97.2 = 1.9%) and aged (94.5 % 5.6%) populations. In addition,
these experiments have also been performed using FACS sorted
Tg"CD4 T cells from young and aged donors with similar results.
Donor Tg CD4 cells were transferred i.v. into CD4KO adoptive
hosts (10°/mouse or as indicated). When indicated, donor cells
were carboxy fluorescein succinimidyl ester (CFSE) labeled as pre-
viously described (16). Control hosts received no CD4 T cells.
Mice were immunized i.p. with 200 pg 4-hydroxy-3-nitrophenyl
acetyl conjugated PCC (NP-PCC) or PBS in alum. For each ex-
periment, three to five hosts were used in each group and each
experiment was performed from two to four times.
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In Vitro Stimulation of CD4 T Cells. Culture conditions for
CD4 T cells have been described previously (16). Enriched popu-
lations of Tg CD4 T cells from young and aged mice were stimu-
lated with PCC peptide and DCEK-ICAM APC cell line (25) at a
2:1 T/APC ratio in 24-well plates. At the indicated time points, T
cells were harvested and examined for CD4, V33 and CD154, or
CD28 expression by flow cytometry as described below. Data
presented representative of at least three separate experiments.

Immunofluorescent Staining.  Splenocytes from immunized
host animals or from in vitro—stimulated cultures of young and
aged TCR Tg CD4 T cells were harvested at the indicated time
points and individually analyzed. All staining was done at 4°C in
PBS with 1% BSA and 0.1% NaNj; and all samples were treated
with Fc blocking antibody (24G2) before staining. The following
antibodies were used (all purchased from BD Biosciences): Cy-
chrome anti-CD4 (RM4-5), PE or biotin anti-V[33 (KJ25), PE
anti-CXCR5, PE anti-CD154, FITC anti-mouse IgG1, biotin
anti-CD134, and PE anti-CD38. Strepavidin conjugated to allo-
phycocyanin was also purchased from BD Biosciences. FITC-
peanut agglutinin (PNA) was purchased from Sigma-Aldrich. NP
conjugated to allophycocyanin (NP-APC) was prepared as de-
scribed previously (26). Immediately before analysis, propidium
iodide was added to each sample to allow for identification of vi-
able cells. Flow cytometry was performed using a FACS Calibur
flow cytometer (Becton Dickinson) and the data were analyzed
with Cell Quest software.

Detection of NP-specific Antibodies.  Serum was collected from
all immunized animals. NP-specific IgM and IgG1 was deter-
mined by ELISA with NP-conjugated BSA. Isotype-specific anti-
bodies for detection were purchased from Southern Biotechnol-
ogy Inc. Titers were determined by the last dilution of serum
with detectable antibody above background.

Histology.  Spleens were frozen directly in Tissue-Tec OCT
(Fisher Scientific) over liquid nitrogen. Frozen tissue blocks were
brought to —20°C and 7-pm sections were cut and placed on
poly-L-lysine coated slides. Slides were dried at room tempera-
ture overnight and then either probed with antibodies or stored
at —20°C. Slides were brought to room temperature, fixed in ace-
tone at 4°C for 10 min, and then placed in PBS for 5 min to re-
move the OCT. All slides were blocked with 5% BSA in PBS for
30 min and then washed before being probed with biotinylated
antibodies to various antigens for 30 min in a humidified cham-
ber. Slides were incubated with biotinylated anti-CD4 (L3T4;
BD Biosciences) and biotinylated PNA (Vector Laboratories) and
were then washed. They were then incubated with streptavidin-
Alexa 594, streptavidin-Alexa 488, or streptavidin-Alexa 350
(Molecular Probes) for 30 min, washed, and mounted with Poly-
mount (Polysciences). Sections were also counterstained with
Hoechst (Sigma-Aldrich). Slides were viewed with a Zeiss Ax-
ioplan 2 microscope and images were recorded with a Zeiss Ax-
ioCam digital camera (Carl Zeiss Microlmaging, Inc.) using the
Zeiss proprietary software, Axiovision 3.0.6.0. Images, which
were originally obtained at 10X magnification, were manipulated

in Adobe Photoshop 5.5.

Results

Decreased B Cell Expansion and GC Formation in Aged
Mice. To confirm the findings previously published of
reduced antigen-specific B cell expansion and differentia-
tion in aged mice (1, 27), nontransgenic young and aged
B10.Br mice were immunized i.p. with NP-PCC/alum
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C Figure 1. Decreased B cell ex-
pansion and GC formation in

1000000 aged mice. Young (2 mo) and
<3,100000 e aged (23 mo) nontransgenic
) 10000 B10.Br mice were immunized
o ip. with NP-PCC/alum (200
E) 1000 ] pg) or PBS/alum. On day 14,
3; 100 - spleens were harvested and
a 10 T I stained with NP-APC to detect
=z YOUNG AGED NP-binding cells by flow cytome-

try. (A) Bar graph shows the to-
tal number of NP-binding cells
in young (striped bars) and aged

(solid bars) groups (mean * SE). (B) Representative flow cytometry dot plots gated on NP-binding cells showing CD38 and PNA expression. (C) NP-
specific serum IgG1 concentrations in each of the young and aged immunized mice. *P < 0.05.

and on day 14, the NP-binding population was examined
by flow cytometry. In NP-PCC immunized groups, there
was a threefold reduction in the expansion of NP cells in
aged mice compared with young (Fig. 1 A). There was also
reduced differentiation of these NP* cells in aged mice.
Fig. 1 B shows dot plots demonstrating that a significant
proportion (63%) of the young NP* cells had differentiated
to GC phenotype (CD38°PNAM), while those in aged
mice retained a predominantly naive phenotype (CD38M
PNAP; 28). In addition, the NP-specific IgG1 titers in im-
munized young mice were over 100-fold higher compared
with the aged mice (Fig. 1 C). Together, these results dem-
onstrate that there was a statistically significant age-related
defect in B cell expansion, differentiation and antibody pro-
duction. However, the frequency and differentiation state
of PCC-specific CD4 T cells in these young and aged mice
could not be enumerated or controlled. This is an impor-
tant issue since the number of naive CD4 T cells decreases
dramatically with age and the frequency of antigen-specific
CD4 cells is also likely to be affected (29, 30). Therefore,
we developed an adoptive transfer model to examine the
effect of age on CD4 T cell helper function.

Adoptive Transfer Model to Study In Vivo Cognate Helper
To examine the impact of age on CD4 T cell
cognate helper function more precisely, we adoptively
transferred AND TCR Tg CD4 cells from young and aged
mice into CD4KO recipients. The AND TCR Tg CD4
cells are specific for a peptide of PCC and express a naive
phenotype (both cell surface phenotype and functional
phenotype) even in very old Tg mice (18). We have exten-
sively characterized the responses of the young and aged
AND TCR Tg CD4 T cells and our published results
show that the naive Tg CD4 cells from aged mice do not
respond to TCR stimulation as well as cells from young
mice, resulting in reduced IL-2 production, expansion and
differentiation both in vitro and in vivo (16, 18, 20, 31).
Therefore, this model is both novel and very advantageous
as it allows us to directly compare similar populations of an-
tigen-specific naive CD4 T cells from young and aged
mice. It also allows us to eliminate differences in the fre-
quency or antigen experience of CD4 T cells that are likely
to occur in intact young and aged mice (29, 30).

AND TCR Tg CD4 cells from young or aged donors
were transferred into young or aged CD4KO hosts, which
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exhibit no endogenous cognate helper function, as shown
in Fig. 2. When young Tg CD#4 cells were transferred into
young NP-PCC—immunized hosts, there was significant
expansion and differentiation to GC phenotype (CD38°
PNAM) of the NP-binding population (Fig. 2, A and B, re-
spectively, left panels) on day 14. This indicated that the
transferred Tg CD4 cells provided eftective cognate help
that induced good GC differentiation. Upon CD4 T cell
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Figure 2. Adoptive transfer model to study in vivo cognate helper
function. (A) Young AND Tg CD4 cells (10°) were adoptively trans-
ferred i.v. to young CD4KO hosts. Control hosts received no CD4 cells.
Hosts were then immunized i.p. with 200 wg NP/PCC or PBS in alum.
On day 14, NP-specific expansion was examined by staining splenocytes
with NP-APC. The percent of NP-binding cells for each condition is
shown in the flow cytometry histograms. (B) Dot plots showing PNA
versus CD38 staining are gated on NP-binding cells in A. Percentages
indicate GC phenotype B cells (CD38°PNAM). (C) Flow cytometry his-
tograms showing expansion of NP-specific cells on day 14 after immuni-
zation with NP-PCC and transfer of young or aged donor CD4 T cells.
(D) Dot plots are gated on NP-binding cells in C; percentages indicate
the GC* phenotype population.



transfer and immunization with PBS (Fig. 2, A and B, mid-
dle panels) or upon NP-PCC immunization with no trans-
fer of CD4 T cells (Fig. 2, A and B, right panels), there was
no NP-specific expansion or differentiation to GC pheno-
type. Therefore, in these experiments, all of the observed
cognate helper function could be attributed to the adop-
tively transterred Tg CD4 cells.

Decreased Cognate Helper Function of Aged CD4 Cells.
To determine whether the age of donor CD4 T cells af-
fected expansion and differentiation of NP* B cells, we
transferred naive TCR Tg CD4 T cells from young and
aged donors into young CD4KO hosts and immunized
with NP-PCC. Fig. 2, C and D, shows representative flow
cytometry results comparing young and aged donor T cell
function on day 14. The percentage of NP cells generated
in hosts that received young donor cells was dramatically
increased compared with hosts receiving aged donor cells
(Fig. 2 C). In addition, the percentage of NP* cells that
had differentiated to a GC* phenotype (CD38°PNAM) was
greater in hosts receiving young donor cells (Fig. 2 D).

On days 7, 14, and 21 after immunization, the total
numbers and percentages of host NP-binding cells and NP-
binding B cells expressing a GC phenotype were deter-
mined by flow cytometry. Fig. 3, A and B, shows that at
each time point, hosts receiving young CD4 T cells had
significantly greater expansion of the NP-binding popula-
tion compared with those receiving CD4 T cells from aged
donors. Fig. 3, C and D, shows that at each time point
there is also a significant increase in the percentages and
numbers of differentiated GC*NP™ B cells in hosts receiv-
ing young donor cells compared with those receiving aged
T cells. In PBS-immunized hosts or in hosts receiving no
donor TCR Tg CD4 cells very few GC phenotype cells
were evident (unpublished data).

In addition, we examined whether CD25* CD4 regula-
tory T cells played a role in this age-related reduction in
cognate helper function by removing CD25" CD4 T cells
by FACSorting before adoptive transfer. When the number
of total NP and NPT GC™ cells was determined on days 7,
14, and 21, the results were similar to those in Fig. 3. Sig-
nificant reductions in NP* cell expansion and GC differen-
tiation were observed in hosts receiving aged donor T cells
(unpublished data). These results indicate that regulatory
CD4 T cells do not play a role in the reduced function of
aged CD4 T cells in this model.

In the experiments shown in Fig. 3, A-D, 10° Tg CD4
cells from young or aged donors were transferred into the
adoptive hosts. To determine if transferring fewer or more
aged CD4 T cells would enhance helper function, the
number of transferred cells was titrated from 10° to 107.
Fig. 3 E shows that when 10° to 10° T cells were trans-
ferred, CD4 T cells from young donors always induced sig-
nificantly more NP-specific GC phenotype cells compared
with those from aged donors. Interestingly, when 107 CD4
cells were transterred, both young and aged populations
provided greatly reduced levels of cognate helper activity.
For the young helper population at the 107 cell concentra-
tion, the heightened engagement of CD40 on responding
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Figure 3. Reduced cognate helper function of Tg CD4 T cells from

aged mice. Young (striped bars) and aged (solid bars) AND Tg CD#4 cells
(10°) were adoptively transferred i.v. to young CD4KO hosts. Hosts were
then immunized i.p. with 200 g NP/PCC in alum. On days 7, 14, and
21 the (A) percentages and (B) numbers of NP-binding cells were deter-
mined by flow cytometry following staining with NP-APC (mean * SE).
On days 7, 14, and 21 the (C) percentages and (D) numbers of GC phe-
notype (CD38°PNAM) cells within the NP-binding population was deter-
mined by flow cytometry (mean * SE). (E) Numbers of GC phenotype
(CD38°PNAM) NP-binding cells per spleen on day 14 upon titration of
donor T cell numbers. The numbers of young and aged donor cells were
titrated from 10° to 107 per host. Data shown is mean * SE. (F) NP-specific
serum IgG1 titers in NP-PCC immunized hosts receiving young (shaded
squares) or aged (open squares) Tg CD4 T cells on days 7, 14, and 21 after
immunization. (G) NP-specific serum IgM titers in NP-PCC immunized
hosts receiving young (shaded squares) or aged (open squares) Tg CD4 T cells
on days 7, 14, and 21 after immunization. For all experiments: *P < 0.05.

B cells, as a result of increased antigen-specific T cell help,
has been shown to ablate GC formation and prematurely
terminates an ongoing GC response through an unknown
mechanism (32). These results indicate that providing
greater numbers of antigen-specific aged CD4 T cells does
not lead to better cognate helper function.

Production of NP-specific serum antibodies was also ex-
amined in each adoptive host. Fig. 3 F shows that on days

Impaired Cognate Function of Aged CD4 T Cells
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7, 14, and 21 after immunization, there were significantly
higher levels of NP-specific IgG1 in the hosts receiving
CD4 cells from young mice compared with those receiving
cells from aged donors. Interestingly, there was a significant
age-related difference in IgM production only on day 7,
but not on days 14 or 21 (Fig. 3 G), which was not surpris-
ing as IgM production is less dependent on CD4 cognate
help compared with IgG1 (33).

In Vivo Migration and Expansion of Donor Tg CD4 T
Cells.  Because CD4 T cells from aged donor mice ex-
hibited reduced cognate helper function, the next set of
experiments examined whether the in vivo migration and
expansion of the aged donor T cells was defective. Fig. 4
shows photomicrographs of splenic sections from young
hosts receiving young (Fig. 4 A) or aged (Fig. 4 B) donor T
cells. Although the GCs observed in the sections from do-
nors receiving young CD4 T cells were larger and more
frequent compared with those receiving aged donor cells,
we found no difference in migration of the donor T cell
populations. Both young and aged CD4 T cells (Fig. 4,
red) migrated similarly and could be found in the B cell fol-
licle (blue) and in the GC (green), with no age-related dif-
ferences. We also examined the expression of the chemo-
kine receptor CXCRS5 by these young and aged donor
CD4 T cells by flow cytometry. As shown in Fig. 5 A, we
found no difference in CXCRS5 expression on the young
and aged donor cells. This correlates well with the histol-
ogy results shown in Fig. 4, since CXCRS5 expression is re-
quired for appropriate T cell migration into GCs (23).

Because the CD4 T cells from aged mice seem to mi-
grate appropriately, they must lack the ability to provide
cognate help once they reach the B cell follicle. Given that
CD28 and CD134 (OX40) have been implicated in the
cognate functions of CD4 T cells (22, 34), we examined
the expression of these molecules on young and aged Tg
CD4 T cells after 4 d of culture with Ag/APC. We found
no difference in the expression of either CD134 or CD28
on naive (unpublished data) or in vitro activated young and
aged Tg CD4 T cells (Fig. 5, B and C). Another molecule
that has been shown to play an important role in T-B cog-
nate interactions is CD154 (CD40 ligand), which is ex-
pressed by activated helper T cells (33). We examined the
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Figure 4. Young and aged Tg
CD4 T cells migrate similarly in
young hosts after immunization.
On day 14 after immunization
with NP-PCC/alum and transfer
of young and aged donor T cells
into young CD4KO hosts, the
migration of donor cells into fol-

licles was examined by fluores-
cence microscopy. Frozen sec-
tions were cut from spleens of
young hosts receiving (A) young
or (B) aged donor Tg CD4 T
cells and stained with anti-CD4
(red), PNA (green), and Hoechst
(blue).
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Figure 5. Phenotype of young and aged CD4 T cells. (A) Young (bold
gray line) and aged (thin black line) donor T cells from the experiment in
Fig. 4 (day 14 after immunization) were prepared for flow cytometry and
stained for expression of CD4, VB3, and CXCRS5. The flow cytometry
dot plots are gated on CD4*VB3* T cells and show the percent positive
for CXCRS5 expression. (B) Naive young and aged Tg CD4 T cells were
stimulated with Ag/APC for 4 d. Effector populations were harvested and
stained for CD4, VB3, and CD134 expression; histogram is gated on
VB3*CD4* cells. (C) 4 d young and aged Tg effectors were also stained
for CD4, VB3, and CD28 expression; histogram is gated on VB3+*CD4"
cells. (D) Young (filled squares) and aged (open squares) Tg CD4 T cells
were stimulated in vitro with Ag/APC. At 6, 24, 48, 72, and 96 h, cul-
tures were harvested, stained for CD4, VB3, and CD154 expression and
analyzed by flow cytometry. T cell populations were gated on CD4*
VB3* T cells and the percent CD154 positive in young and aged popula-
tions were determined. Graph shows the mean = SE; *P < 0.05. Repre-
sentative of three experiments.

expression of CD154 on young and aged Tg CD4 T cells
after in vitro stimulation with Ag/APC. CD154 expression
occurs in two phases, one very early after TCR stimulation
(6 h) and one much later (40-60 h) (35). Fig. 5 D shows
that both young and aged Tg CD4 T cells up-regulate
CD154 similarly at the early time point, but the second
phase of expression is significantly lower on aged cells. As
we find that there is a significant reduction in CD154 ex-
pression on the aged cells, this could have a dramatic im-
pact on cognate helper function and could account for the
results shown in Fig. 3.

Additionally, the in vivo expansion of these donor CD4
populations in young hosts was examined. We have shown



Figure 6. Recovery of young and
aged donor T cells in young hosts.
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Figure 7. Cognate helper function of young donor T cells is similar in

young and aged hosts. Young Tg CD4 T cells (10°) were adoptively trans-
ferred i.v. to young or aged CD4KO hosts. Hosts were then immunized
i.p. with 200 pg NP/PCC or PBS in alum. (A) On day 14, the percentage
of NP* cells in young and aged hosts was determined by staining spleno-
cytes with NP-APC. Representative flow cytometry histograms are
shown. (B) Flow cytometry dot plots are gated on NP* cells from A. Per-
centages indicate GC phenotype cells (CD38°VPNAM) in young and aged
hosts. (C) On days 7, 14, and 21 the numbers of NP-binding cells in young
(striped bars) and aged (solid bars) hosts were determined by flow cytome-
try after staining with NP-APC. (D) On days 7, 14, and 21 the numbers of
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4 donor cells, showing CFSE profiles
of young and aged cells on days 7,
14, and 21 after immunization.

previously that the early (through day 6) in vivo expansion of
aged CD4 T cells 1s reduced compared with young cells (17,
20). Fig. 6 A shows that on day 7 after immunization there
was significantly greater expansion of donor cells from young
mice compared with those from aged mice, but by days 14
and 21, expansion had reached a plateau and similar numbers
of young and aged donor cells were recovered. These results
could be due to the fact that the young donor effectors had
either stopped proliferating or had begun to undergo apopto-
sis. In either case, this is likely due to host-related factors
controlling the number of peripheral T cells. Because these
CD4 T cells from young and aged donors were labeled with
the fluorescent dye CFSE before transfer, we could also ex-
amine the extent of cell division after immunization. Fig. 6 B
shows that on days 7, 14, and 21, cells from young donors
(top panel) had undergone more rounds of cell division com-
pared with those from aged donors (bottom panel). These re-
sults indicate that even though the total cell recoveries were
the same on days 14 and 21, there may be other age-related
differences in the in vivo—generated CD4 effector popula-
tions derived from young and aged donors.

Effect of Host Age on Humoral Responses. — To determine
if there were age-related defects in host components, in-
cluding B cells and follicular dendritic cells (FDCs), we
modified our adoptive transfer model such that TCR Tg
CD4 T cells from young mice were transferred into young
and aged hosts. In these studies, the adoptive hosts were 20
to 24 mo old. On day 14 after immunization, we found no
difference in expansion (Fig. 7 A) or GC differentiation
(Fig. 7 B) of the NP* populations in young and aged hosts.
We also examined other time points and found no signifi-
cant differences in either the number of NP-specific cells
(Fig. 7 C) or the number of GC phenotype cells (Fig. 7 D)
in young versus aged hosts. Finally, we compared the cog-
nate function of young versus aged donors transferred into
young versus aged hosts in the same experiment. We found

GC phenotype (CD38°PNAM) cells within the NP-binding population in
young (striped) and aged (solid) hosts was determined by flow cytometry.
(E) Young or aged donor Tg CD4 T cells (10°) were transferred into
young or aged CD4KO hosts, which were immunized with NP-PCC. On
day 14, the number of NP-binding cells was determined by flow cytome-
try. (F) The number of GC phenotype NP-binding cells was also deter-
mined on day 14 by flow cytometry. For all, data shown is mean = SE;
*P < 0.05 when aged donors compared with young donors.

Impaired Cognate Function of Aged CD4 T Cells
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Figure 8. Antibody production in young and aged hosts. Young and
aged CD4KO hosts were given young donor CD4 T cells and immu-
nized as described in the previous figure. Serum was collected on days 7,
14, and 21 after immunization. (A) NP-specific IgG1 titers were deter-
mined by ELISA from serum of young (filled squares) and aged (open
squares) hosts. (B) NP-specific IgM titers were determined by ELISA
from serum of young (filled squares) and aged (open squares) hosts.
(C) Splenocytes from young and aged hosts were stained for NP binding
and surface IgG1 expression on day 14 after immunization. Representa-
tive flow cytometry histograms are gated on NP™ splenocytes; percent-
ages indicate the positive staining for IgG1.

no difference in the expansion of NP* B cells when young
donor T cells were used, but there was significantly re-
duced expansion when aged donor cells were used, regard-
less of host age (Fig. 7 E). The same pattern was also seen
for GC differentiation of the NP* B cells (Fig. 7 F). Al-
though it does appear that there was a reduction in the
number of NP* and GC* B cells when aged donor T cells
were transferred into aged hosts, this difference was not sig-
nificant. Importantly, this experiment shows that transfer-
ring a population of antigen-specific TCR Tg-aged donor
cells into aged hosts does not overcome the defect that we
observed in intact aged mice as shown in Fig. 1.

As it has been shown that aging negatively impacts B
cell Ig class switching (36), we examined serum IgG pro-
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duction and surface IgG expression on NP-specific cells
from these young and aged hosts. Fig. 8 A shows that
there was no difference in serum titers of NP-specific
IgG1 in the young and aged hosts over a period of 3 wk
after immunization. Additionally, we also found no differ-
ence in serum IgM titers (Fig. 8 B). To examine whether
similar proportions of NP-specific cells in the young and
aged hosts were undergoing class switching, we examined
surface IgG1 expression by flow cytometry. Fig. 8 C shows
representative histograms indicating that similar percent-
ages of NP-specific cells from young and aged hosts stained
positive for IgG1. Therefore, in this model, we found no
age-related defects in the ability of NP-specific cells to un-
dergo Ig class switching.

We also examined the expansion of young donor CD4 T
cells in the young and aged hosts. Fig. 9 A shows that there
was no difference in the number of the donor cells recov-
ered in either the young or aged hosts at days 7, 14, or 21
after transfer and immunization. In addition, Fig. 9 B shows
the CESE profiles of the donor cells at each time point.
There were no differences in these profiles, indicating that
the young donor T cells responded similarly in the young
and aged hosts, with no age-related differences in donor T
cell priming. Taken together the results shown in Figs. 7, 8,
and 9 indicate that the age of the host components have no
effect on the response to immunization in our NP-PCC
model and that age-related differences in CD4 T cell cog-
nate function could account for the reduction in antibody
production that we have observed in our model.

Discussion

Aging has severe effects on antibody production, which
can impact vaccine efficacy in the elderly. In older individu-
als, the primary antibody response is very weak and short-
lived with reduced affinity maturation and reduced memory
B cell generation (1-5). These eftects are thought to be due
to reduced GC formation in the aged, because GCs are re-
quired for all of these events to occur (13). The goal of our
study was to determine which lymphocyte populations are
responsible for the observed age-related declines in antibody
production. To accomplish this, we used an adoptive transfer
model using CD4 T cells from TCR Tg mice. Our previous
studies have shown that T cells from aged AND Tg mice ex-
press a naive phenotype, with respect to both cell surface

Figure 9. Recovery of young donor T
cells in young and aged hosts. Young Tg

!

CD4 T cells were CFSE labeled and trans-
ferred to young and aged CD4KO hosts
that were then immunized with NP-PCC.
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molecules (CD44°CD45RBMCD62LMCD258) and in vitro
function (16, 18, 37). This model eliminates the differences
that are found in polyclonal CD4 T cell populations from
young and aged mice and allows us to directly compare ho-
mogeneous populations of naive CD4 T cells of identical an-
tigenic specificity, with the only difference being that they
were obtained from young or aged Tg mice. Furthermore,
this model involves the transfer of young and aged Tg CD4
T cell populations into CD4KO hosts, which lack CD4 T
cells and, therefore, have no endogenous cognate helper ac-
tivity. This allows us to specifically examine the helper func-
tion of the young and aged donor CD4 T cells.

The results presented in this study show that when we
transfer Tg CD4 T cells from aged donors into young
hosts, we observe significant reductions in antigen-specific
B cell expansion and differentiation as well as reduced IgG
production. These difterences were evident at time points
over a 3-wk period and over a wide range of donor cell
concentrations. As we found that there was no ditference
in the migration of the young and aged donor cells, we sur-
mised that the aged donor cells exhibited defects in cognate
helper activity once they had trafficked to the B cell folli-
cle. Therefore, we examined cell surface molecules that
have been shown to be involved in CD4 T cell cognate
function (21-23). Even though the aged donor cells ex-
pressed normal levels of CXCRS5, CD134 and CD28, they
did not up-regulate CD154 to the same extent as young
donor cells. This could have a significant impact on their
cognate helper activity and on GC formation in the young
hosts, considering CD40-CD154 interactions are required
for GC formation as well as antibody affinity maturation
and class switching (33, 38). Interestingly, we have shown
that these aged donor CD4 T cells exhibit reduced NF«kB
activation after TCR stimulation (20), which may nega-
tively impact up-regulation of CDD154 as this transcription
factor 1s important for appropriate CD154 expression by T
cells (39-41).

In this study, our model also shows that host compo-
nents, such as B cells and FDCs, do not exhibit the same
degree of age-related defects that we observe in aged CD4
T cells. When we transfer young donor CD4 T cells into
aged CD4KO mice, we find no reduction in antigen-spe-
cific B cell expansion or differentiation or serum IgG pro-
duction. This is in contrast to other reports that have dem-
onstrated defects in both B cell populations and FDCs with
increasing age. Whereas many age-related defects in B cell
responses can be attributed to reduced cognate function of
aged CD4 T cells, other defects have been hypothesized to
be intrinsic to B cell populations. Most notably, an age-
related decline in B-lineage precursors leading to reduced
production of new mature B cells has been described. In-
terestingly, this defect does not result in a decline in the
generation of new B cells or in the numbers of peripheral
mature B cells (42, 43). Other studies have examined the
antigen-specific responses of young versus aged B cells us-
ing splenic fragment cultures. Although the numbers of B
cells responding to haptens such as NP was shown to de-
cline with age, the amount of antibody produced per cell
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remained constant (44). We do not find differences in the
number of NP-specific B cells in aged hosts in our model,
but our studies are quite difterent from the splenic fragment
culture experiments. Most notably, in the splenic fragment
culture assay, antigen-specific B cells were enumerated by
their ability to produce antibodies, whereas our assay in-
volves only the ability to bind NP. Therefore, it is not sur-
prising that we observed somewhat different results.

In addition, other studies, using in vitro systems, have
shown defects in the ability of aged B cells to undergo Ig
class switching, independent of aging eftects on CD4 cog-
nate helper function (36). We do not find this in our anti-
gen-specific in vivo model, which is quite different from in
vitro polyclonal stimulation of B cell populations. When we
transfer young Tg CD4 T cells into young or aged hosts, we
find no age-related differences in either serum IgG1 titers or
in the proportion of NP-specific cells expressing surface
IgG1 after immunization. It is possible that there are other
undetected defects in affinity maturation or somatic muta-
tion of the NP-specific B cells in the aged hosts. We are ex-
amining these parameters in ongoing experiments.

Our model is well suited for this sort of analysis because
in both the young and aged CD4KO hosts there is no en-
dogenous CD4 helper activity (Fig. 2). This allows us to
compare predominantly naive B cell populations in both
the young and aged hosts (something that is not possible in
immunologically intact models, where memory B cells ac-
cumulate with increasing age; 45). One other possibility to
account for our results is that B cells in the CD4KO model
do not undergo age-associated changes that are observed in
normal mice. This is probable because, unlike normal wild-
type mice, B cells in unimmunized aged CD4KO mice do
not show a decrease in follicular (CD21i" CD23™) B cells
or a decrease in B220 expression (unpublished data), both
of which are associated with aging B cell populations (46).

One other cell type that has been implicated in age-
related reductions in GC formation is the FDC. It has been
shown, using in vitro models, that FDCs from older ani-
mals bind fewer antigen—antibody immune complexes,
thus reducing the amount of cross-linked antigen available
to B cells. This is thought to lead to age-related reductions
in GC formation, affinity maturation, and the development
of memory B cells (27, 47). Although these studies defini-
tively show age-related defects in FDCs, it is not clear that
they might have an impact on in vivo GC formation.
Other researchers have shown that FDCs are not absolutely
necessary for GC formation (48-50), and we see no evi-
dence of decreased GC development in aged hosts using
our model. It is probable that our immunization protocol,
using NP conjugated to PCC at a 3 to 1 ratio along with
alum precipitation, provides enough cross-linking to ade-
quately stimulate NP-specific B cells, thus bypassing any
age-related functional defects in FDC populations.

In summary, our results show that age-related reductions
in humoral responses are likely the result of decreased CD4
T cell helper activity and that other cell types, such as B
cells and FDCs, are less affected by age. In addition, we hy-
pothesize that this defect is related to significantly reduced

Impaired Cognate Function of Aged CD4 T Cells



CD154 expression by the aged CD4 T cells, leading to de-
creased B cell expansion, GC formation and IgG produc-
tion. By defining specific age-related defects in specific
lymphocyte populations, we can then target strategies for
enhancing humoral responses. Ultimately, this will allow us
to improve vaccine efficacy in the elderly.
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